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Effects of beam wobbling and target rotation on reducing target temperature are quantitatively
considered with simulations and calculations. These manipulations with the beam and target reduce
sharpness in the beam-density distribution, making it quasiuniform on the target surface. A uniform
beam density is essential in prolonged experiments on the synthesis of superheavy nuclei using intense
heavy-ion beams and actinide targets. The heavy-ion beam energy partially absorbed by the target and
target backing heats them and transfers warmth to the surrounding by different means. The target
temperature was initially considered for a stationary target using notions of heat transfer due to the
thermal conductivity, radiation emission, and heat removal to dilute gas surrounding the target. The
effects of the beam width, the amplitude of the wobbler, and the rotating target velocity on the beam-
density distribution across the target surface and, consequently, on its temperature are further estimated
with the same notions.
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I. INTRODUCTION

Complete fusion reactions induced by the 48Ca pro-
jectile on actinide target nuclei allowed one to synthesize
superheavy nuclei (SHN) with 112 ≤ Z ≤ 118 [1]. In the
Dubna discovery experiments, the 48Ca beam delivered to
the target had the intensity of ∼1pμA that allowed one to
obtain several atoms of SHN per month at the production
cross section of a few pb and the efficiency provided by
the Dubna gas-filled recoil separator (DGFRS) used in
experiments [1,2]. In these experiments, the actinide
targets of 0.3–0.8 mg=cm2 of thickness were deposited
on Ti backing foils of 0.71–0.73 mg=cm2 of thickness and
maintained on a rotating wheel. The target wheel placed
in the atmosphere of hydrogen at the pressure of 1 Torr
withstood the beam’s load in long-term experiments.
A beam dose exceeding 1019 particles was usually
collected for a beam time [1].
The detailed study of SHN properties and experiments

on the synthesis of heavier SHN with Z > 118 need more
intense heavy-ion (HI) beams than those used before. Such
beams are now provided by the high-current cyclotron
DC280 recently commissioned at the Flerov Laboratory

of Nuclear Reactions (FLNR) of JINR. The intensity of
the 48Ca beam delivered to a physical target is close to the
expected one [3]. A power density released inside the
targets and target backing amounts from several tens to
several hundreds of W=cm2. The synthesis of SHN with
Z > 118 implies heavier beam particles such as 50Ti and
54Cr. For SHN formed in the fusion-evaporation reactions
with these projectiles, one may expect the production
cross sections of ∼0.05 pb [4]. To observe several events
of these SHN, one should collect the beam dose exceeding
1020 particles. This dose can be provided at the intensity
of 5–10 pμA or ð3.12–6.24Þ × 1013 p=s for a reasonable
beam time.
High heating powers released inside a target as well as

high-beam doses reduce its durability. One would think that
the target and its backing are mainly degraded due to the
sputtering of their atoms, radiation damages of their crystal
lattices, and thermal loads. All the processes are noninde-
pendent, but they can be evaluated by treating them
separately [5]. The target temperature is determined by
the heating power released inside the target and backing
and conditions of heat removal from a hot spot formed by a
HI beam. In general, this heat can be removed due to the
thermal conductivity of the target and backing, heat
radiation emitted from them, and heat transfer to gas in
the case of its presence [6–9]. Pulse heating is one of the
ways to reduce thermal load. In the case of a continuous
beam, a pulsing regime can be realized with target rotation.
Rotating target wheels of different constructions are

used at the laboratories, where experiments with intense
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HI beams are carried out. The size of a target wheel mainly
depends on the availability of target materials, considering
that target thickness is within 0.4–0.7 mg=cm2 for experi-
ments with recoil separators. The width of the target
annulus usually corresponds to 0.8–1.2 cm. Thus, in the
case of experiments with available low-melting-point target
materials (Pb, Bi), wheels with rather sizeable central
radius Rc of 15 cm [10], 15.5 cm [11], and 33.5 cm
[12] were used. For experiments with radioactive actinides,
target wheels with smaller Rc of 6 cm [1], 1.675 cm [13],
and 5 cm [14] were exploited. The velocity of target wheels
increased over time. For example, in SHIP experiments
with Pb and Bi targets, the velocity of the wheel was
increased from 375 rpm initially used [11] to 1332 rpm set
later [15]. Similar evolution from 600 to 3000 rpm took
place in experiments carried out with GARIS [10]. In
TASCA experiments with actinide targets, the velocity was
also increased from 2000 rpm for a small wheel [13] to
2249 rpm for a larger one [14]. In contrast to that, DGFRS
experiments were carried out with the same target wheel
of a 6 cm radius and at the same wheel velocity of
2000 rpm [1]. One has to mention that rotation of target
wheels used in GSI experiments is synchronized with the
macrostructure of the UNILAC beam [11,13–15].
Calculations show that increasing the target wheel radius

and rotation velocity allows one to reduce the average
temperature of the target and the difference between its
maximal and minimal values [8,12,16]. These calculations
were performed with the uniform beam-density distribution
throughout the beam spot area. At the same time, in
experiments, bidimensional quasi-Gaussian distributions
are usually accessible in a plane perpendicular to the beam
direction. Infrared snapshots of rotating targets [7] dem-
onstrate traces left by a HI beam on the target surface,
which reflect nonuniform beam-density distributions along
the target width annulus. In general, a beam profile has a
bidimensional Gaussian-like shape with half-widths
depending on the beam tuning. This shape may vary during
the irradiation of a target in a prolonged experiment. Beam
wobbling was applied in intense HI beam experiments
with a stationary target as early as 1974 [17], making a
quasiuniform beam-density distribution. In the DGFRS
experiments [1], beam wobbling in the direction
perpendicular to the target rotation was used to spread
the high-intensity 48Ca beam within a whole target annulus.
In the present work, an attempt is made to obtain

quantitative estimates of the effects of target rotation and
beam wobbling on the beam-density distribution across a
target area. In the next section, the target temperature is
considered for a stationary target and uniform and non-
uniform beam-density distribution. In Sec. III, the effects
of target rotation and beam wobbling on the beam-density
distribution across a target surface and target temperature
are presented. The last section summarizes the efforts
undertaken in the present work.

II. STATIONARY TARGET TEMPERATURE

A. Assumptions and beam-density distribution

The importance of a uniform beam distribution, though
seemingly evident, can be confirmed quantitatively with the
calculation of a temperature distribution across a target
area. Thermal diffusivity values allow one to estimate a
time of heat diffusion away from the beam spot of radius rb
as τthd ¼ πr2b=αthd. According to the recent study [18],
for Ti, αthd drops from 9.3 to 6.4 mm2=s with increasing
temperature from 20 to 800 °C and then rises to 7.9 mm2=s
at 1008 °C (hereinafter the properties of pure Ti are used for
the estimates). ForUO2, according toRefs. [19,20],αthd drops
from 3 to 0.6 mm2=s with increasing temperature from 20 to
1500 °C. For rb ¼ rt=2 and target radius rt ¼ 0.5 cm, one
can obtain τthd in the region of 2.1–3.1 s and 6.5–33 s for
Ti and UO2, respectively. Rather large times for the temper-
ature (heat) propagation allow one to consider the effect of a
nonuniform density distribution across a target and target
backing area. Such consideration can be done for a steady-
state regime at a constant beam intensity and assuming a
negligible heat transfer between neighbor annuluses, into
which a circle target may be partitioned.
In general, the bidimensional Gaussian beam-density

distribution can describe the beam spot spread in
x- and y-direction with standard deviations σx and σy,
respectively. In a simple case, when a correlation coef-
ficient is equal to zero and σx ¼ σy ¼ σb, this distribution
can be written as

fðrÞ ¼ 1=ð2πσ2bÞ expð−0.5r2=σ2bÞ; ð1Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the deviation from the beam

(target) center. Partitioning the beam spot into the
annuluses of an equal area, one can obtain the ratios of
the beam densities according to Eq. (1) and those corre-
sponding to the uniform distribution. It was done with
Monte Carlo (MC) simulations and the results are shown
in Fig. 1.
The values of beam losses εloss for transmission through

the target of a 0.5 cm radius are indicated in the figure.
They show that the beam tuning corresponding to
σb > 0.2 cm leads to significant beam losses. These values
will be further compared with similar ones obtained for the
rotating target and beam wobbling.

B. Heat removal from target

As was mentioned above, heating power generated
inside the target and target backing can be removed due
to the thermal conductivity of the target and backing,
radiation emitted from them, and the conductivity of gas or
heat transfer to gas molecules [6–9]. Below, these processes
are considered for the uniform beam-density distribution
throughout a target area.
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1. Thermal conductivity of target and backing

For a stationary target with radius rt at temperature Ts,
which is under surrounding temperature T0, a power
removing due to the thermal conductivity can be estimated,
according to [21,22], as

Qcnd ¼ 2πλDðTs − T0Þ= lnðrt=rbÞ; ð2Þ

where λ is the coefficient of thermal conductivity, D is the
thickness of the target or backing foil in corresponding
units, and T0 ¼ 293.15 K is the surrounding temperature of
the target frame. Note that Eq. (2) may estimate only the
upper limit of heat transfer. The heat transfer is actually
determined by respective transferring to the frame which
is in contact with the backing foil edges clamped between
two parts of the target frame. This way of heat removal
leads to much smaller values of transferred heating power
than those obtained with idealized Eq. (2). Heat exchange
between the target itself and target backing was not
considered, bearing in mind their small thicknesses and
assuming a good contact between them. Equation (2) can
only be used for the approximate estimates of upper limits
of heat removal from a stationary target due to the thermal
conductivity of the target itself and its backing.
Here and throughout the present work, temperature

dependencies of parameters determining a heat transfer

were used in respective estimates. In Fig. 2, a polynomial
approximation to the tabulated λ values for Ti [22–24]
in the region of 200–1900 K is shown. Ti foils of the
1.5–2.5 μm of thickness are preferentially used in the high-
intensity HI experiments with actinide targets [1,12–14]
due to their durability. For λ data of UO2, the respective
approximations, corresponding to the 100% UO2 density
[19,25], are also shown in Fig. 2.
In Fig. 3, the estimates of heating power removed due

to the thermal conductivity of the Ti-backing foil and
UO2 target of respective thicknesses are shown as
functions of temperature. These correspond to the uni-
form beam-density distribution within rb ¼ 0.5 cm. In
the application of Eq. (2), rt ¼ 0.7 cm for the backing and
rt ¼ 0.55 cm for the target were used. The estimate with
the last value is a conditional one since, in the case of a
stationary target, the size of the “cool” target frame is
usually larger than the target itself. With these assump-
tions, heat removal from the backing is 3–8 times greater
than the one from the target.

FIG. 2. Data on thermal conductivity coefficients λ for Ti
(symbols) [22–24] and for UO2 approximations (lines) [19,25]
are shown as functions of temperature (upper panel). A solid line
shows the result of the polynomial fit to the Ti data. In the bottom
panel, the available data on total hemispherical emissivity εtot for
Ti (symbols) [26–32] together with the aTb function fitting the
data (solid line) and approximations for UO2 (dotted line and
filled area) [33,34] are shown.

FIG. 1. The ratios of the beam densities according to Eq. (1)
at different σb values and respective values for the uniform
distribution as obtained with Monte Carlo simulations. Horizon-
tal bars for σb ¼ 0.1 and 0.3 cm correspond to the widths of
annuluses partitioning the target of a 0.5 cm radius. Beam loss
values εloss are indicated for the respective σb.
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2. Emissivity of target and backing

Heating power removed due to radiation emitted from
the target (backing) surface is estimated by the Stefan-
Boltzmann law as

Qrad ¼ σSBεtotFðT4
s − T4

0Þ; ð3Þ

where σSB is the Stefan-Boltzmann constant, εtot is the total
hemispherical emissivity, and F is the target (backing) area.
In Fig. 2, the available data on εtot for Ti [26–32] and
approximations for UO2 [33,34] are shown. Further, the
heating power removed from the Ti target backing was
estimated with εtot values obtained using the aTb function
fitting the data [27–32]. Fitted parameters a ¼ 0.039�
0.010 and b ¼ 0.269� 0.036 were obtained as the result
of the fit. For the estimates of the heating power removed
from the UO2 target, εtot ¼ 0.85� 0.05 recommended in
Ref. [33] was used.
In Fig. 3, the estimates of heating power removed due to

the radiation emitted from the Ti-backing foil and UO2

target are shown as functions of the temperature for the

uniform beam-density distribution and rb ¼ rt ¼ 0.5 cm.
As one can see, heat removal from the target surface is
3–5 times greater than the one from the backing due to the
lower emissivity of the latter.

3. Heat removal to gas

The estimate of heating power removed from a hot target
by ambient gas is not apparent. Different approaches were
used to estimate the heating power removed by rarefied gas
surrounding the target [7–9].
Cagarda considered the process of heat removal to

rarefied gas in the framework of the kinetic theory of
gases [7]. A final expression obtained by him is as follows:

QCag
gas ¼ 3v̄αpF

8Tgas
ðTs − TgasÞ; ð4Þ

where p is the gas pressure, v̄ is the mean molecular
velocity, Ts and Tgas are the temperatures of solid surface
and gas, respectively, and α is the accommodation coef-
ficient. The last is treated as a portion of the energy carried
away by gas molecules from a hot solid surface. Its value
depends on many factors and is varied within 0 < α < 1.
An empirical formula describing the dependence of αðTsÞ
was proposed in Ref. [35], which considers molecular
masses of gas and solid. Verification of this formula
for H2 and He gases was performed using the available
experimental data on α [36–47], including those used in
Ref. [35]. The results are shown in Fig. 4 for the specified
solid surfaces.
As one can see in the figure, the data follow a general

trend corresponding to the drop of the α value with the
solid surface temperature. Simultaneously, some excep-
tions occur for the data obtained in experiments with H2 on
Pt [41,42,47]. Thus, the data [41] below 600 K remarkably
deviate from similar ones [42,47] obtained later and from
the calculation with the SY formula [35] (see Fig. 4). The α
value obtained for He on Al [39] (not shown in the figure)
significantly exceeds those obtained in Ref. [44]. The SY
scaling reproduces the data for H2 on the “light” surfaces
(graphite, stainless steel, and SiO2) poorly, as one can see in
the figure. For further use, the H2 data were separately
considered for the light (C–SiO2) and “heavy” (Pt) surfa-
ces, whereas the He data were treated as a whole. The sets
of the data selected in this way were fitted with exponent
α ¼ a expð−bTsÞ, where a and b are fitting parameters.
For the weighted fitting procedure, 10% relative errors were
assigned to all the data points, except those, for which the
absolute errors in the α values were originally indicated
[38,40,47]. As the results of these fits, a and b parameter
values are listed in Table I.
With the accommodation coefficients thus obtained

and the use of Eq. (4) with Tgas ¼ ðTs þ T0Þ=2 and the
expression for mean molecular velocity v̄:

FIG. 3. Heating powers removed due to the UO2 target and Ti
backing thermal conductivity are shown as functions of temper-
ature in the upper panel (lines). In the bottom panel, similar
heating powers removed by radiation emitted from the target and
backing surfaces are shown by filled area and line, respectively.
See details in the text.
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v̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8RTgas=ðπMÞ

q
; ð5Þ

where R is the gas constant, andM is the molar mass of gas,
a power removed by the gas surrounding the target can be
estimated. The results of these estimates for H2 and He
rarefied gases at p ¼ 1 Torr are shown in Fig. 5.
Earlier, in the framework of the kinetic theory of gases,

Knudsen derived a similar expression for heating power
transferred from a hot surface to a cold gas [48], which can
be written as

QKn
gas ¼

γ þ 1

γ − 1

�
R

8πMTgas

�
1=2

αpFðTs − TgasÞ; ð6Þ

where γ is the ratio of specific heat capacities equal to 5=3
for monatomic gases (He) and 7=5 for diatomic gases (H2).
Equation (6) differs from Eq. (4) used with Eq. (5) by a
factor of ðγ þ 1Þ=½3ðγ − 1Þ�. The results of Eq. (6) appli-
cation for heating powers removed by He and H2 gases at
p ¼ 1 Torr are shown in Fig. 5. In these estimates, the
approximated accommodation coefficients with the param-
eters listed in Table I were used. Note that uncertainties in
both these estimates are mainly determined by the uncer-
tainties in the α values obtained with the data fit (see Fig. 4
and Table I). Their relative values increase from 6% to 16%
for He, from 10% to 26% for H2 on Ti, and from 18% to
46% for H2 on UO2, with the increase in the temperature
from 300 to 1500 K.
According to the kinetic theory of gases, a mean free

path of gas molecules corresponds to

sT (K)

FIG. 4. Data on accommodation coefficients for H2 on
graphite [36–38], Al [39], stainless steel (SS) [40], SiO2 [40],
and Pt [41–43] (upper panel), and those for He on Al [44], SS
[35,44–46], Ni [35], Pt [35,47], and UO2 [35] (bottom panel) are
shown by different symbols (He data used in Ref. [35] are marked
as [SY]). Respective lines show calculations with the empirical
SY formula [35] for specified solid surfaces and the results of
exponential function fitting the data.

TABLE I. Fitting parameters a and b for the exponent αðTsÞ ¼
a expð−bTsÞ reproducing the data shown in Fig. 4.

Data set a b × 104

H2 on C–SiO2 0.382� 0.035 6.56� 1.63
H2 on Pt 0.494� 0.080 19.1� 2.9
He on Al − UO2 0.520� 0.026 12.6� 1.0

FIG. 5. Heating powers removed from the UO2 target and Ti
backing (rt ¼ 0.5 cm) by rarefied H2 and He gases as functions
of surface temperature are shown in the upper panel and bottom
panel, respectively. Estimates dealing with the gas molecular
kinetic energy considerations, corresponding to Eq. (4) and
Knudsen’s formula of Eq. (6), along with the thermal conduc-
tivity, corresponding to Eq. (11) and the approximation [52], are
shown by respective lines.
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l̄ ¼ kBTgas=
� ffiffiffi

2
p

πd2p
�
; ð7Þ

where kB is the Boltzmann constant and d is the kinetic
diameter of a molecule. At p ¼ 1 Torr, T ¼ T0, and
assuming that d ¼ 2.827 and 2.551 Å for H2 and He
gases, respectively [23], we obtain l̄ ¼ 85.5 and 105 μm for
H2 and He, respectively. The characteristic length between
the target and surrounding cool surfaces is not determined
in our case (5≲ L≲ 25 mm), and the respective Knudsen
number Kn ¼ l̄=L is varied within 0.004≲ L≲ 0.016.
This region of Kn is close to the continuum regime.
Thus, there is some reason to consider heat removal by
gas regarding its bulk thermal conductivity. It was done in
Ref. [9], assuming a constant value for the coefficient
of thermal conductivity λgas ¼ 0.2 W=ðmKÞ for H2. This
value corresponds to the temperature of 350 K and pressure
of 1 atm [22,23,49]. At the same time, in several experi-
ments connected with the measurements of the heat
conductivity of gases confined to a gap between hot and
cold surfaces, a smooth drop in measured values deter-
mined by the heat conductivity of gas was observed with a
decrease in gas pressure [38–40,44,45,47].
One can take into account gas pressure with a simple

relationship using Kn (see, for example, Ref. [50] and
references therein):

λgas ¼ λ0gas=ð1þ 2βKnÞ; ð8Þ

where Kn is determined by Eq. (7) and L, λ0gas is the bulk
value of the coefficient of thermal conductivity (corre-
sponding to standard temperature and pressure), and β is
the coefficient characterizing the molecule-wall collision-
energy transfer efficiency (1.5 ≤ β ≤ 2.0), which is thus
different from accommodation coefficient α considered
above. Bearing in mind uncertainties in the Kn, heat
transfer can be estimated with the respective uncertainty
exceeding a factor 5 using Eq. (8).
More definitely, thermal conductivity for dilute gases can

be considered in the framework of kinetic theory with λgas
expressed through gas viscosity μ, as described in some
books (see, for instance, Ref. [23]):

λgas ¼
�
9γ − 5

4γ

�
μcp; ð9Þ

where cp is heat capacity at constant pressure and μ is gas
viscosity, which is calculated as

μ ¼ 2.6693 × 10−6ðMTgasÞ1=2=ðd2ΩμÞ; ð10Þ

where d is the effective collision diameter (in Å) and Ωμ is
the collision integral (dimensionless value). The last is
the tabulated function of ðkBTgas=ϵÞ, in which ðϵ=kBÞ is a
constant value for a specified gas, and ϵ corresponds to the

Lennard-Jones potential well depth (see Tables 11.2 and
11.3 in Ref. [23]). Thus using Eqs. (9) and (10) and the
data for Ωμ, λgas can be estimated. At high temperatures,
these values are somewhat lower than the tabulated data
[22,23,51] and approximations [49,52] for λgas at the
atmospheric pressure, as shown in Fig. 6.
With λgas values, one can estimate heating power

removed due to gas conductivity Qcnd
gas, using shape factor

S determined by heat transfer geometry. In our case, this
geometry may be approximated by a hot disk of radius rt at
temperature Ts, which is surrounded by the conductive gas
medium transferring heat to an infinite cold surface at
temperature T0. The cold surface is arranged parallel to
the disk at distance L from it. The exact solution of the
respective thermal conductivity equation is known as
S0 ¼ 4rtλgas if L ¼ 0, and S∞ ¼ 8rtλgas if L ≫ 2rt [22].
Bearing in mind uncertainties in the L value in our case
(5≲ L≲ 25 mm), an arbitrary estimate of S ¼ ffiffiffiffiffiffiffiffiffiffiffi

S0S∞
p

was

FIG. 6. Temperature dependencies of thermal conductivities
for dilute H2 and He gases (dotted lines) obtained using Eqs. (9)
and (10) [23] are shown (upper and bottom panels, respectively).
The tabulated data at the atmospheric pressure [22,23,51]
(circles) and those obtained with the elaborated approximations

]49,52 ] (lines) denoted as (HHT) and (IAEA), respectively, are
also shown for comparison.
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assumed. With this assumption, the heating power removed
due to gas thermal conductivity can be written as

Qcnd
gas ¼ 4

ffiffiffi
2

p
rtλgasðTs − T0Þ: ð11Þ

Temperature dependencies of Qcnd
gas thus calculated are

shown in Fig. 5 for H2 and He gases.
Heating power produced by a HI beam inside the target

and backing (in W) is the product of beam intensity Ib (in
pμA) passed through the target and backing and absorbed
beam energy ΔE (in MeV). In a steady-state condition,
this power is removed due to the summarized action of
(i) thermal conductivity of the target and target backing
according to Eq. (2), (ii) radiation emitted from the surfaces
of the target and backing according to Eq. (3), (iii) the
energy carried away by gas molecules according to Eqs. (4)
or (6), or as the result of gas thermal conductivity according
to Eq. (11), and (iv) heating storage in the target and
backing. The equality corresponding to the energy con-
servation can be written as

IbΔE ¼ Qcnd þQrad þQgas þQsto: ð12Þ

Note that the steady-state condition is achieved within a time
t ∼ 1 s, as shown in calculations below (see Sec. III A 1).
Evidently, in these conditions, storage componentQstoðTÞ ¼
cmðdT=dtÞ ¼ 0 (m is the mass of a target layer/target
backing and c is a heat capacity). Each term in the right part
of Eq. (12) is a function of target temperature T determined
by the beam intensity. Examples of the target temperature
estimates obtained with Eq. (12) are presented below for the
48Ca beam.

C. Target temperature

Calculations were done for a typical case innate to
experiments on the synthesis of SHN, in which the 48Ca
input energy of 256.3 MeV (nearby the fusion barrier of the
48Caþ 238U reaction) was used in front of the 0.71 mg=cm2

Ti backing and 0.5 mg=cm2 UO2 target. ΔE, in that case, is
13.9 MeV [53]. The uniform distribution of the beam
density throughout the target area (rt ¼ 0.5 cm) was
assumed. Heating powers removed to rarefied H2 and
He gases were estimated with Eqs. (6) and (11). The
results are shown in Fig. 7 and compared with the
calculation assuming the radiation cooling only [5,8,11].
As one can see, the last approaches to the estimates with
Eq. (12) at high temperatures (T > 1200 K) using the gas
cooling component according to Eq. (6), due to its
reduction. Such temperatures correspond to the beam
intensities Ib > 1 pμA when radiation cooling becomes a
primary way of heat removal.
One has to mention that the calculations mentioned

above for the time-dependent radiation cooling [5,8,11] can
be done within the assumption of constant values for the
emissivity and specific heat capacities for Ti and UO2,

which is not fulfilled in a broad region of temperatures. The
present calculation was done using the values at 800 K.
At beam intensity Ib ≲ 0.5 pμA, heat removal provides
acceptable target heating (T ≲ 1000 K), which does not
exceed the Tαβ value corresponding to the change in the Ti
crystal structure (see Fig. 7). This temperature can be
considered as a limiting (safe) one for a target. For an actual
beam distribution with the narrow Gaussian-like shape,
the beam density at the beam axis (target center) is several
times higher than the one for the uniform density (see
Fig. 1), for which these beam-intensity dependencies
were obtained.
Using the radial beam-density distribution shown in

Fig. 1 and bearing in mind relatively large time of heat
diffusion (see Sec. II A), the radial temperature distribution
for the target can be estimated as the one composed from
temperatures obtained for separate annuluses dividing the

FIG. 7. Temperatures of a stationary target (0.5 mg=cm2 UO2

on 0.71 mg=cm2 Ti backing) as functions of 48Ca beam intensity
for the uniform beam-density distribution throughout the target
area (rt ¼ 0.5 cm) surrounded by dilute H2 or He gases.
Estimates of heat removal to gas obtained with Eq. (6) and
Eqs. (9)–(11) are designated as QKn

gas and Qcnd
gas (respective lines).

These estimates are compared to the calculations based on
radiation cooling only [5,8,11] (circles connected by solid lines).
The temperature of the α − β transition in the Ti crystal is shown
(horizontal line). The upper scale corresponds to the absorbed
energy of 13.9 MeV [53].
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target area. This was done in the calculations of heat
removal due to the thermal conductivity of the target
backing and target itself, starting with T0 at rt ¼ 0.5 cm
and using respective modifications in Eq. (2). Heat removal
to H2 gas due to its thermal conductivity was considered
with the appropriate modification of Eq. (11) and using
Eq. (9) for dilute gas. The estimates of heat removal from
the target annuluses due to radiation were done with the
respective areas entering Eq. (3).
Thus obtained distributions are shown in Fig. 8 for the

same parameters of the 48Ca beam as used for the uniform
beam-density distribution estimates shown in Fig. 7.
Similar dependencies (with higher values for the maximal
temperatures) were obtained with the use of Eq. (6),
describing heat removal to H2 according to Knudsen’s
formula, and with Eqs. (6) and (9) applied to He gas. As
one can see, narrow beam distributions (σb ¼ 0.1–0.2 cm)
at the beam intensity of 0.05 pμA lead to narrow temper-
ature distributions with the maximal temperatures

exceeding Tαβ. At low beam intensity (0.01 pμA), similar
distributions may be considered safe ones for the target.
Note that these estimates do not contradict the safe value of
the beam intensity (∼0.03 pμA) obtained in preparation
experiments with stationary Er and Yb oxide targets and
48Ca beam, which are carried out during the SHN synthesis
campaigns [1].
The following section will consider the effects of target

rotation and beam wobbling on temperature distributions
throughout the target surface.

III. TARGET ROTATION AND BEAM WOBBLING
EFFECTS ON TARGET TEMPERATURE

In general, it seems to be evident that target rotation and
beam wobbling smear a beam spot throughout a larger target
area, thereby enabling a smaller beam density on average.
The issue is to choose the speed of rotation and central radius
Rc of the rotating target wheel. As for the beam wobbler,
the respective key parameters are the amplitude of beam
deviation from the beam axis on the target surface and
frequency of the wobbler.

A. Effect of target rotation

1. Uniform beam-density distribution

Previous calculations of the temperature for rotating targets
[5,8,11] were considered in the condition of vacuum sur-
roundings. Constant values for the emissivity and specific
heat capacities of Ti and UO2 were assumed. These assump-
tions are not fulfilled in a broad region of temperatures.
Calculations were performed for a rectangular beam shape
and uniform beam-density distribution throughout a beam
spot (target) area. Examples of such calculations as a function
of time are shown in Fig. 9 that demonstrates variations in the
target temperature with the beam intensity, angular velocity,
and central radius of the rotating target wheel.
These calculations were performed with the same

parameters of the 48Ca beam and target as in previous
cases (Sec. II C). The presence of a circular diaphragm
with the rd ¼ 0.5 cm radius in front of the rotating target
determined the beam density and pulse duration in the
calculations. The temperatures thus obtained correspond to
any point of central-circle radius Rc or a target annulus for
the circular or square diaphragm of a respective size. The
parameters of the rotating targets considered in the temper-
ature calculations are listed in Table II.
As a result of such calculations, the mean temperature is

determined by the mean beam intensity depending on the
ratio ton=trev ¼ rd=ðπRcÞ (see the upper panel in Fig. 9)
and does not depend on the rotation velocity (see the
bottom panel in Fig. 9). At the same time, the differences
between maximal and minimal temperatures achieved for a
full revolution depend on the velocity of rotation (see
bottom panel in Fig. 9), in addition to the beam intensity.
Figure 10 demonstrates some generalization of these

FIG. 8. Radial temperature distributions are shown (different
symbols connected with respective lines) for a stationary target
surrounded by rarefied H2 under irradiation of 48Ca with the
beam-density distribution corresponding to σb ¼ 0.1–0.3 cm and
the intensity of 0.01 and 0.05 pμA (upper and bottom panels,
respectively). The radial beam-density distribution shown in
Fig. 1 and the estimates of heat removal to gas due to its thermal
conductivity were used in the estimates.

R. N. SAGAIDAK PHYS. REV. ACCEL. BEAMS 24, 083001 (2021)

083001-8



dependencies for rotation target wheels with Rc ¼ 6, 12,
and 25 cm. As one can see, wheels with the largest Rc,
which rotate at the highest velocity, are preferable from
the point of view of their capability to withstand thermal
loads corresponding to maximal HI beam intensities.
Simultaneously, poor availability of target materials in
sufficient quantity regarding heavy actinides, along with
the problems of radiation protection connected with their
high radioactivity, restrict the employment of such target
wheels in experiments.

2. Normal-like beam-density distribution

With simple calculations/simulations, one can show that
the beam pulse resulting from rotation corresponds to the

uniform density distribution in the rotation (x) direction and
keeps its form in the perpendicular (y) direction for a
realistic normal-like beam-density distribution. In Fig. 11,
y distributions are presented for σb ¼ σy ¼ 0.1–0.3 cm
compared with the uniform one cut by the 1 cm annulus
width of the rotating target. Note that beam losses εloss, in
that case, are lower than those for the respective stationary
target (see Fig. 1).
Further estimates of temperature distributions are con-

sidered below, similarly to the one for a stationary target,
i.e., in steady-state conditions with beam distribution
widths σb ¼ σy ¼ 0.1–0.3 cm, but with the beam intensity
corresponding to mean value hIbi ¼ Ibton=trev.

B. Effect of beam wobbling

The effect of beam wobbling is below considered using
the example of a device installed in the beam line of the
FLNR high-current cyclotron DC280. The wobbler is
installed at a certain distance from the rotating target
and provides sinusoidal beam oscillations of the respective
amplitude and frequency on the target surface. In experi-
ments, the amplitude is adjusted to provide beam losses at
the level not exceeding (10–15)% of the beam intensity
measured against the switched-off wobbler. Since the

FIG. 9. Time-dependent temperature variations for a rectangu-
lar beam shape and uniform beam-density distribution are shown
(different lines). These are the results of calculations (similar to
Refs. [5,8,11]) for rotating targets with different central radii Rc,
angular velocities ω, and beam intensities Ib.

TABLE II. Parameters of the rotating targets.

Rc (cm) ω (rpm) Note

6 1680 Used earlier [1]
12 750 1200 1500 In use with 242Pu and 243Am
25 750 1200 1500 In project

FIG. 10. Mean temperatures and differences between maximal
and minimal temperatures as a function of 48Ca beam intensity for
rotating target wheels with different central radii Rc and angular
velocities ω.
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operation of the wobbler is not synchronized with target
rotation, the spreading effect produced by the wobbler
within a beam pulse depends on the velocity of rotation and
oscillation frequency. Device performance is illustrated
with calculations of the YpðtÞ position for the “point”
beam (σb ¼ 0) on the target surface at the amplitude of
beam deflection Aw provided by the wobbler:

YpðtÞ ¼ Aw sinf2πfw½tþ Nrevðtrev − tonÞ�g; ð13Þ

where fw is the deflection frequency andNrev is the number
of full revolutions of the target wheel.
The examples of calculations are shown in Fig. 12. They

were done for f ¼ 500 Hz, 20 complete revolutions of the
target wheel, the beam pulse determined by the 1 cm arc of
the circle radius Rc ¼ 12 cm, and the angular velocities
of 750 and 1500 rpm. As we can see, within 17 and 15
revolutions at the velocity of 750 and 1500 rpm, respec-
tively, the beam trajectories cover the target annulus area in
a regular way. With the increasing number of revolutions,
subsequent trajectories are approached to those from
previous revolutions. Similar calculations for the target
with Rc ¼ 6 cm at ω ¼ 1500 rpm show, as one could
expect, the same picture as obtained with Rc ¼ 12 cm at
ω ¼ 750 rpm (the left panel in Fig. 12). For the same
target at ω ¼ 750 rpm, two times higher trajectory density
is obtained, comparing with the picture observed at
ω ¼ 1500 rpm. In the case of a large target wheel with

Rc ¼ 25 cm, 55 complete revolutions have to be done in
order to achieve a uniform trajectory density throughout
the same area.
In MC simulations with finite beam width, these numbers

of revolutions would be sufficient to get an idea of the beam-
density distribution providing pulse heating during the target
rotation and beam wobbling. Such simulations were per-
formed for the target with Rc ¼ 12 cm at the velocities of
750 and 1500 rpm, beam widths σb ¼ 0.1–0.4 cm, and
wobbling amplitudes Aw ¼ 0.1–0.5 cm. In Fig. 13, the
results of such simulations for σb ¼ 0.2 cm, Aw¼0.4 cm,
and ω ¼ 1500 rpm are shown for example.
In Fig. 14, beam-density distributions integrated over Xp

within the 1 cm arc length for the target with Rc ¼ 12 cm
are shown for different Aw, σb ¼ 0.1 and 0.2 cm. These
distributions, along with MC simulations, similar to those
shown in Fig. 13, were used for the estimates of beam
losses caused by diaphragms installed in front of the target
for the different Aw, ω, and σb values.
In Fig. 15, the values of beam losses resulting from

MC simulations are shown for different beam widths,
wobbling amplitudes, and diaphragms installed in front
of the rotating target with Rc ¼ 12 cm, for ω ¼ 750 and
1500 rpm. As one can see, the Aw dependencies obtained
for the same beam widths and different velocities are close
to each other, despite the different beam trajectories drawn
by the wobbler on the target surface (see Fig. 12).

FIG. 11. Normal beam-density distributions throughout the
target surface in the direction perpendicular to the rotating
direction, for σb ¼ σy ¼ 0.1–0.3 cm, resulting from simulations
(symbols connected by lines). Beam losses εloss (in %) corre-
sponding to the beam cut by the 1 cm annulus width of the
rotating target are indicated for the respective values of σb. The
beam distributions are compared to the uniform distribution
assumed in the time-dependent temperature calculations consid-
ered in Sec. III A 1 (straight solid lines).

FIG. 12. Beam trajectories within the beam pulse correspond-
ing to the 1-cm arc of the circle radius Rc ¼ 12 cm, as calculated
for the “point” beam (σb ¼ 0) and the 0.2 cm amplitude of beam
deflection produced by the wobbler on the target surface. The
calculations were done for the target velocities of 750 and
1500 rpm, and 20 complete target wheel revolutions (the number
of revolutions is indicated in squares). Thus obtained trajectories
are shown by five different lines (from solid to dash-dotted ones)
of the same color. Trajectories obtained after 17 and 15
revolutions (shown by dotted lines) at the velocity of 750 and
1500 rpm, respectively, are approaching those obtained for the
previous target wheel revolutions.
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Within the same simulations, quantitative estimates
of the nonuniformity of the beam density over the target
surface were obtained in the case of a square diaphragm of
1 × 1 cm, which cut the same square on the target annulus.
This characteristic was obtained as the ratio of the standard
deviation to the average value for the number of events
collected in 0.1 × 0.1 cm cell. The results are shown in
Fig. 16 for the rotating target with Rc ¼ 12 cm, at ω ¼ 750

and 1500 rpm. As one can see, the values of the non-
uniformity thus obtained for σb ¼ 0.2–0.3 cm approach to
zero with the increase in the wobbling amplitude.
Figures 16 and 15 joint viewing shows that the least

nonuniformities of the beam density on the target surface
and minor beam losses are achieved at Aw ¼ 0.3–0.4 cm
for beam widths σb ¼ 0.1–0.2 cm. That is in qualitative
accordance with the respective Yp distributions, which are
close to the uniform beam-density distribution, as shown in
Fig. 14. Further estimates of the rotating target temperature
could be done similarly to those performed for the sta-
tionary target (see results in Fig. 7), i.e., in steady-state
conditions, but for the beam intensity corresponding to the
mean value hIbi ¼ Ibton=trev.

C. Target temperature for rotating target
and beam wobbling

As in previous cases, estimates of the temperature for
rotating targets were done for the 48Ca input energy of

FIG. 13. The result of 3 × 104 MC simulations for beam width
σb ¼ 0.2 cm and wobbling amplitude on the target surface
Aw ¼ 0.4 cm is shown for the rotating target with central radius
Rc ¼ 12 cm and rotating velocity ω ¼ 1500 rpm (left panel). The
same distribution reduced to the number of events collected by the
0.1 × 0.1 cm cell and subsequently smoothed is shown in the right
panel as a contour map. Frames corresponding to the circular and
square diaphragm of respective sizes are shown in the left panel.

FIG. 14. Beam-density distributions integrated over Xp within
the 1-cm arc length for the target with Rc ¼ 12 cm are shown for
the indicated velocity ω, wobbling amplitude Aw (in cm), and
beam widths σb (symbols connected by lines). These distributions
are compared to the uniform distribution with the unit beam-
density probability. Straight lines at Yp ¼ �0.5 cm correspond to
the annulus width of the rotating target, which determines beam
losses εloss indicated in %.

FIG. 15. Beam losses derived with MC simulations for beam
widths σb ¼ 0.1–0.3 cm, andwobbling amplitudesAw¼0–0.5 cm
as applied to the rotating target with Rc ¼ 12 cm, for the velocities
of 750 and 1500 rpm (upper and bottom panels, respectively), and
different diaphragms installed in front of the target (symbols
connected by lines). Data correspond to the square and circular
diaphragm of the size of 1 × 1 cm and 1 cm in diameter designated
as (sq.) and (circ.), respectively. Straight solid lines corresponding to
the 15% beam loss are shown in both panels for orientation.

EFFECTS OF BEAM WOBBLING AND TARGET … PHYS. REV. ACCEL. BEAMS 24, 083001 (2021)

083001-11



256.3 MeV in front of the 0.71 mg=cm2 Ti target backing
and 0.5 mg=cm2 UO2 target. The uniform beam-density
distribution throughout a target area was assumed, which
could be approximately reached for Aw ¼ 0.4 cm, and
σb ¼ 0.1 and 0.2 cm as shown in Figs. 12–14. In that
cases, the respective mean-weighted densities of 0.969�
0.024 and 0.859� 0.016 are slightly less than the unit
corresponding to the uniform distribution. These reductions
were neglected in further considerations. As well as in the
case of rotating targets under radiative cooling only
(Sec. III A 1), mean temperatures thus estimated corre-
spond to the steady-state regime which is established
throughout the rotating target area.
Some additional details were further considered. Thus,

one should take into account that the square diaphragm
of 1 × 1 cm provides minor beam losses for the rotating
target. As a consequence, in Eqs. (3) and (6), for the heating
power removed by radiation and dilute gas, respectively,
area F should correspond to the square area.
For the estimates of heating powers removed due to

the thermal conductivity of the target material and target
backing as well as those of dilute gas, which were
expressed with Eqs. (2) and (11), respectively, other
formulas, corresponding to the “rectangular geometry”
of heated elements [22] were applied in considering these
processes:

Qcnd ¼
2½5.7þ b=ð2aÞ�

ln½3.5L=ðb1=4a3=4Þ� λDðTs − T0Þ; ð14Þ

Qcn1
gas ¼

2πbλgas
lnð4b=aÞ ðTs − T0Þ; ð15Þ

Qcn2
gas ¼

πbλgas
lnð4b=aÞ ðTs − T0Þ: ð16Þ

Eq. (14) was used instead of Eq. (2) for the
estimates of heating powers removed due to the thermal
conductivity of the Ti target backing and UO2 target itself.
In Eqs. (14)–(16), a and b are the lengths of rectangle sides
corresponding to a ¼ b ¼ 1 cm in our case; L is the
distance from central radius Rc (target surfaces) to a cold
(surrounding) target frame. The relations of L ¼ a=2þ 0.2
and L ¼ a=2 were assumed for the estimates of heating
powers removed due to the thermal conductivity of the Ti
backing and UO2 target, respectively. The heating power
removed due to gas thermal conductivity was estimated

as Qcnd
gas ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qcn1

gasQcn2
gas

q
that implies yielding Eq. (15) if

L > 2a and Eq. (16) if L ¼ 0 [22]. It is similar to
considering the heating power removed by the thermal
conductivity of gas surrounding a stationary target with
the use of Eq. (11), taking into account uncertainties in
the L value.
As well as in consideration of heat transfer in a steady-

state condition for the stationary target using Eq. (12), the
power released inside the rotating target and target backing
is removed from them by the combined action of (i) thermal
conductivity of the target and target backing, (ii) radiation
emitted from the surfaces of the target and backing, and
(iii) gas, due to the energy carried away by gas molecules or
gas thermal conductivity. In Fig. 17, temperatures of the
rotating targets with different central radii Rc are shown in
the same way as was done for the stationary target of a
0.5 cm radius (see Fig. 7). As in the previous case,
estimates of heating power removed to rarefied H2 and
He gases surrounding the rotating target were performed
with Knudsen’s formula using Eq. (6), with Eqs. (15)
and (16) as described above when heat removal due to the
thermal conductivity process was considered.
Comparing Figs. 7 and 17, the benefits of rotating targets

over stationary ones are clearly seen from the point of view
of reducing a thermal load. Nevertheless, there is an issue
requiring attention when these estimates are compared.
The heat transfer estimates due to the Ti backing and
UO2 target’s thermal conductivity were obtained, assuming
that their cooling edges have the room temperature
T0 ¼ 293.15 K for the stationary target and rotating ones.
This condition seems to be better fulfilled for the stationary
target, since it could be installed on a massive copper
target holder cooled by cold water. Simultaneously, sepa-
rate target cells, consisting of a rotating target annulus,

FIG. 16. The same as in Fig. 15, but for the beam nonun-
iformities resulting from the MC simulations for the square
diaphragm of 1 × 1 cm. See details in the text.
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suffer from a less effective heat removal to their frames
since the target wheel is made of light material (usually it is
a duralumin disk of 2 mm of thickness), which rotates
without any forced cooling. Consequently, the temperatures
at the edges of a target annulus may not differ so much from
the mean temperature of the target. Below this circum-
stance is considered in more detail.

1. Effect of thermal conductivity on target temperature

Estimates of the total heating power removed from
rotating targets using Eq. (12) show that the contribution
of the target and backing thermal conductivity into the
summarized value of heat removal is not significant. For
example, increasing target temperature from 400 to 1000 K
leads to decreasing the relative contributions of the thermal
conductivity process from 3.1% to 1.1%, irrespective of the
target radius. Bearing in mind minor heat removal from the
edges of the rotating target annulus, as was above men-
tioned, one may assume that the temperatures of both
circumferences of smaller and larger radii R1 and R2 are the
same and equal to the mean temperature determined by
the total heating power released into and removed from the
target. With this assumption, the temperature distribution
over the target annulus width could be obtained by the
solution of the differential equation:

d2T
dr2

þ 1

r
dT
dr

¼ −
Qcnd

λV tar
; ð17Þ

whereQcnd is the heating power that could be only removed
due to thermal conductivity, i.e., applying Eq. (14) and

V tar is the target volume. This equation is analytically
solved using boundary conditions determined as TðR1Þ¼
TðR2Þ¼Tm, where Tm is the mean temperature corre-
sponding to the total heating power removed from the
target, as shown in Fig. 17. Such boundary conditions
simplify the calculations within this approach. However,
unfortunately, more reliable conditions cannot be estab-
lished because of difficulties in determining the (contact)
conductivity at the edges of the target backing.
In Fig. 18, temperature distributions thus obtained are

shown for the rotating targets with Rc ¼ 6, 12, and 25 cm,
and the beam intensity varied within 0.5–20 pμA. Targets
are surrounded by rarefied H2. Thermal conductivity
coefficients corresponding to respective Tm values were
used in the estimates. The largest temperature excess
over the mean value at r ¼ Rc is not as significant as
one could expect. It is 42 K for the relatively small target
with Rc ¼ 6 cm and the beam intensity of 20 pμA.

IV. SUMMARY

The effects of target rotation and beam wobbling on
the temperature load produced by an intense HI beam
were quantitatively considered. The study is motivated by
extending investigations on the synthesis and properties of
SHN. These nuclei are produced in the complete-fusion
reactions induced by HI projectiles on actinide target nuclei
with extremely low cross sections caused by the reaction
mechanism. More intense HI beams of 48Ca and heavier
projectiles are needed to obtain a sufficient number of SHN
decay events to establish their properties. Increasing the
intensity of HI beams increases the heating power released

FIG. 17. The same as in Fig. 7, but for the rotating targets with central radii Rc ¼ 6, 12, and 25 cm.
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inside the targets and target backings used in experiments.
A permanent thermal load may restrict the durability of
targets and, as a consequence, the duration of experiments.
The way to increase the durability of targets is to use

rotating targets with large irradiated areas and pulse
temperature loads. The specific heating load is essentially
decreased in such targets due to spreading a high power
released inside the relatively small target and target backing
thicknesses. At present, the rotating targets of actinide-
oxide material deposited on the Ti backing are used in
experiments on the synthesis of SHN in laboratories
worldwide. Unfortunately, an increase in sizes (areas) of
a rotating target is limited by an available amount of heavy-
actinide target materials and radiation safety considera-
tions. One more problem that cannot be entirely solved
with target rotation is a narrow beam distribution which
produces enhanced beam density in the vicinity of the
circumference of a central radius of the target annulus.
The way to solve this problem is using beam wobbling that
spreads a beam in the direction perpendicular to the
direction of target rotation.
In the conditions of gas-filled recoil separators used in

experiments on the synthesis of SHN, a rotating target
operates in the atmosphere of rarefied H2 or He gases. A
heating power released inside the target and target backing
can be removed due to the processes of (i) the target and
target backing thermal conductivity transferring heat to the
target frames, (ii) radiation emitted from the surfaces of
the target and target backing, and (iii) heat transfer to gas
surrounding the target.

Each of the heat removal processes was initially con-
sidered for a stationary target and a uniform beam-density
distribution throughout the target area. In the framework of
this consideration, temperature dependencies for the ther-
mal conductivity coefficient and hemispherical emissivity
of Ti have been obtained, which are based on available
experimental data. The treatment of heat removal to gas has
been led to empirical dependencies for the accommodation
coefficients of H2 and He molecules on heated Ti and UO2

surfaces, which are also based on available experimental
data. Thus obtained, the temperature dependencies were
used for the estimates of heat transfer to gas according to
the models of heat transfer to the kinetic energy of gas
molecules. The estimates based on the thermal conductivity
of dilute gas and gas at atmospheric pressure were also
performed when considering the heat transfer to gas.
For example, this approach was applied to the stationary

target of a 0.5 cm radius and 48Ca beam with the uniform
beam-density distribution and input energy of 256.3 MeV.
The total energy absorbed by the Ti backing and UO2 target
itself is 13.9 MeV in that case. The results have shown that
heating powers removed from the target in the frameworks
of different approaches are about the same (differ from each
other within a factor of ∼2) at temperatures T ≲ 800 K.
Above this temperature, the estimates corresponding to
the heat transfer to the kinetic energy of gas molecules
show some decrease in heating power removed due to
respective decrease in the accommodation coefficients.
Such behavior contrasts with the one corresponding to
the gas thermal conductivity, which gradually increases

FIG. 18. Temperature distribution across the width annulus for the rotating targets with central radius Rc ¼ 6, 12, and 25 cm (panels
from left to right) at the beam intensity varied within 0.5 − 20 pμA (different lines). The pedestal temperatures for each distribution
correspond to the mean values shown in Fig. 17 for rarefied H2 (dashed lines in the figure panels), at which gas thermal conductivity
values were used in the estimates of respective heating power removal.
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with the temperature. At T ≳ 1000 K, this heating power
becomes comparable with the one corresponding to the
radiation cooling, the dominant way of target cooling at
high temperatures. Within these estimates, 48Ca beam
intensities up to 0.5 pμA could be considered safe for a
stationary target irradiated by the beam with the uniform
beam density.
For an actual beam distribution with a narrow Gaussian-

like shape, and the beam density exceeding by several times
the uniform density at the beam axis (target center), the
temperature distribution along the target radius was esti-
mated for separate annuluses dividing the stationary target
area. Respective modifications of formulas for heating
powers removed due to the thermal conductivity of dilute
gas and radiation emission were used in the estimates.
Narrow beam-density distributions (σb ¼ 0.1–0.2 cm),
with the same parameters of 48Ca beam as used for the
estimates using the uniform beam density, lead to narrow
temperature distributions with the maximal temperatures
exceeding the temperature of crystal transition Tαβ in Ti at
the beam intensity of 0.05 pμA. Similar distributions may
be considered safe for the target at a lower beam intensity
(0.01 pμA). These estimates do not contradict the safe
value for the 48Ca beam intensity (∼0.03 pμA) established
in preparation experiments with stationary Er and Yb oxide
targets [1].
Target rotation leads to the pulse heating of the same area

on a target annulus with a respective rise and fall with a
time. Such behavior depends on the size of a beam spot in
the direction of rotation or a diaphragm installed in front of
the target, angular velocity, and central radius Rc. For the
uniform beam density and assuming that radiation is the
only way of heat removal from the target, the temperature
as a function of time could be presented explicitly as
showing a sawtooth dependence. For the fixed Rc and beam
intensity Ib, the amplitude of temperature variations (a
difference between maximal and minimal temperatures)
in the steady-state condition decreases with increasing
the rotation velocity. The amplitude of pulsed temper-
ature increases with increasing Ib and decreasing Rc.
Simultaneously, the mean temperature corresponding to
the steady-state condition is independent of the rotation
velocity for the fixed Rc and mean beam intensity. The
last is determined by the relationship hIbi ¼ Ibton=trev ¼
Ibd=ð2πRcÞ, where ton and trev are the transit time of the
beam spot (diaphragm with characteristic size d) size and
the time of complete target revolution, respectively.
Using beam wobbling allows one to achieve a quasiuni-

form beam-density distribution throughout the surface of
the rotating target. That was shown with calculations
and MC simulations for the targets with different central
radii and angular velocities. From the point of view
of the least beam losses and nonuniformity of the beam
density, the best results were achieved for relatively
narrow beam-density distributions corresponding to width

σb ¼ 0.1–0.2 cm at wobbling amplitude on the target
surface Aw ¼ 0.3–0.4 cm. For the steady-state condition,
the mean temperature as a function of Ib was estimated in
the same way as was done for a stationary target irradiated
by the beam with the uniform beam density and mean
intensity hIbi. As the results of these estimates, a condi-
tionally dangerous temperature, corresponding to the α − β
transition in the crystal structure of Ti, is achieved at the
48Ca beam intensities exceeding 30, 70, and 130 pμA for
the rotating targets with Rc ¼ 6, 12, and 25 cm, and He as
surrounding gas. The upper limits for thus obtained
intensities depend upon how the heat transfer to rarefied
H2 or He gas is estimated.
Onewould think that the present approach can be applied

for any combination of heavy ion projectile interacting with
any target and target backing to estimate a thermal load on
them. These estimates are necessary either for a stationary
and rotating target in assessing their durability over
prolonged experiments.

[1] Yu. Ts. Oganessian and V. K. Utyonkov, Rep. Prog. Phys.
78, 036301 (2015).

[2] K. Subotic, Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V.
Lobanov, F. Sh. Abdullin, A. N. Polyakov, Yu. S.
Tsyganov, and O. V. Ivanov, Nucl. Instrum. Methods Phys.
Res. Sect., A 481, 71 (2002).

[3] G. G. Gulbekian, S. N. Dmitriev, Yu. Ts. Oganessian, B. N.
Gikal, I. V. Kalagin, S. L. Bogomolov, I. A. Ivanenko,
N. Yu. Kazarinov, G. N. Ivanov, and N. F. Osipov, in
Proceedings of the 21st International Conference on
Cyclotrons and their Applications, Zurich, Switzerland,
2016, p. 278, http://accelconf.web.cern.ch/AccelConf/
cyclotrons2016/.

[4] V. I. Zagrebaev and W. Greiner, Nucl. Phys. A944, 257
(2015).

[5] J. L. Yntema and F. Nickel, in Experimental Methods in
Heavy Ion Physics, edited by K. Bethge, Lecture Note of
Physics Vol. 78 (Springer, New York, 1978), p. 206.

[6] J. O. Lilijenzin, Lawrence Berkeley Laboratory Report,
Technical Report No. LBL-1912, 1973.

[7] P. Cagarda, Ph.D. Thesis, Comenius University, Bratislava,
2002.

[8] R. N. Sagaidak, Phys. Part. Nucl. Lett. 14, 747 (2017).
[9] N. Yu. Kazarinov, G. G. Gulbekian, and V. I. Kazacha,

Phys. Part. Nucl. Lett. 15, 319 (2018).
[10] D. Kaji, K. Morimoto, A. Yoneda, H. Hasebe, A. Yoshida,

H. Haba, S. Goto, H. Kudo, and K. Morita, Nucl. Instrum.
Methods Phys. Res. Sect., A 590, 198 (2008).

[11] D. Marx, F. Nickel, G. Münzenberg, K. Güttner, H. Ewald,
W. Faust, S. Hofmann, H. J. Schött, and W. Thalheimer,
Nucl. Instrum. Methods Phys. Res., Sect. A 163, 15
(1979).

[12] C. Stodel, F. Pellemoine, R. Hue, F. Lutton, C. Marry, and
J.-F. Libin, Nucl. Instrum. Methods Phys. Res., Sect. A
613, 480 (2010).

EFFECTS OF BEAM WOBBLING AND TARGET … PHYS. REV. ACCEL. BEAMS 24, 083001 (2021)

083001-15

https://doi.org/10.1088/0034-4885/78/3/036301
https://doi.org/10.1088/0034-4885/78/3/036301
https://doi.org/10.1016/S0168-9002(01)01367-5
https://doi.org/10.1016/S0168-9002(01)01367-5
http://accelconf.web.cern.ch/AccelConf/cyclotrons2016/
http://accelconf.web.cern.ch/AccelConf/cyclotrons2016/
http://accelconf.web.cern.ch/AccelConf/cyclotrons2016/
http://accelconf.web.cern.ch/AccelConf/cyclotrons2016/
http://accelconf.web.cern.ch/AccelConf/cyclotrons2016/
https://doi.org/10.1016/j.nuclphysa.2015.02.010
https://doi.org/10.1016/j.nuclphysa.2015.02.010
https://doi.org/10.1134/S1547477117050089
https://doi.org/10.1134/S154747711803010X
https://doi.org/10.1016/j.nima.2008.02.090
https://doi.org/10.1016/j.nima.2008.02.090
https://doi.org/10.1016/j.nima.2009.10.008
https://doi.org/10.1016/j.nima.2009.10.008


[13] K. Eberhardt et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 590, 134 (2008).

[14] E. Jäger, H. Brand, C. E. Düllmann, J. Khuyagbaatar, J.
Krier, M. Schädel, T. Torres, and A. Yakushev, J. Radioa-
nal. Nucl. Chem. 299, 1073 (2014).

[15] H. Folger, W. Hartmann, F. P. Heßberger, S. Hofmann, J.
Klemm, G. Münzenberg, V. Ninov, K.-H. Schmidt, H.-J.
Schött, W. Thalheimer, and P. Armbruster, Nucl. Instrum.
Methods Res. Sect., A 334, 69 (1993).

[16] M. Sohani and Y.W. Wilschut, Nucl. Instrum. Methods
Res. Sect., A 679, 25 (2012).

[17] A. Ghiorso, J. M. Nitschke, J. R. Alonso, C. T. Alonso, M.
Nurmia, G. T. Seaborg, E. K. Hulet, and R.W. Lougheed,
Phys. Rev. Lett. 33, 1490 (1974).
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J. Phys. D 30, 499 (1997).
[39] S. Vanapalli, B. Colijn, C. Vermeer, H. Holland, T.

Tirolien, and H. J. M. ter Brake, in 25th International
Cryogenic Engineering Conference and the International
Cryogenic Materials Conference, 2014; Phys. Procedia 67,
1206 (2015).

[40] F. W. Burkholder, Ph.D. Thesis, University of Colorado,
Colorado, 2011.

[41] W. B. Mann, Proc. R. Soc. A 859, 776 (1934).
[42] H. S. Gregory, Proc. R. Soc. A 866, 35 (1935).
[43] B. W. Burslow, Ph.D. Thesis, Imperial College of Science

and Technology, London, 1952.
[44] W. M. Trott, D. J. Rader, J. N. Castañeda, J. R.

Torczynski, and M. A. Gallis, AIP Conf. Proc. 1084,
621 (2008).

[45] D. J. Rader, W.M. Trott, J. R. Torczynski, J. N. Castañeda,
and T.W. Grasser, Measurements of thermal acco-
modation coefficients, Sandia Report, Technical Report
No. SAND2005-6084, 2005.

[46] C. H. Cho, T. K. Ghosh, R. V. Tompson, and S. K. Loyalka,
Transaction of the American Nuclear Society and Em-
bedded Topical Meetings and Decommissioning and
Spent-Fuel Management and Risk Management—Now
More than Ever, San Diego, California, 2003; T. Am.
Nucl. Soc. 88, 228 (2003), https://www.researchgate.net/
publication/281826840.

[47] H. Yamaguchi, M. T. Ho, Y. Matsuda, T. Niimi,
and I. Graur, Int. J. Heat Mass Transfer 108, 1527
(2017).

[48] IAEA Report No IAEA-TECDOC-949, 1997.
[49] M. Knudsen, Kinetic Theory of Gases (John Wiley and

Sons, New York, 1950).
[50] Handbook of Heat Transfer, 3rd ed., edited by W.M.

Rohsenow, J. P. Hartnett, and Y. I. Cho (McGraw-Hill,
New York, 1998).

[51] B. P. Jelle, A. Gustavsen, and R. Baetens, J. Build. Phys.
34, 99 (2010).

[52] H. J. M. Hanley, R. D. McCarty, and H. Intemann, J. Res.
NBS A Phys. Ch. 74A, 331 (1970).

[53] J. F. Ziegler, SRIM – The Stopping and Range of Ions in
Matter, available at http://www.srim.org, accessed: 2021-
04-28.

R. N. SAGAIDAK PHYS. REV. ACCEL. BEAMS 24, 083001 (2021)

083001-16

https://doi.org/10.1016/j.nima.2008.02.069
https://doi.org/10.1016/j.nima.2008.02.069
https://doi.org/10.1007/s10967-013-2645-1
https://doi.org/10.1007/s10967-013-2645-1
https://doi.org/10.1016/0168-9002(93)90529-Q
https://doi.org/10.1016/0168-9002(93)90529-Q
https://doi.org/10.1016/j.nima.2012.03.012
https://doi.org/10.1016/j.nima.2012.03.012
https://doi.org/10.1103/PhysRevLett.33.1490
https://doi.org/10.1063/1.5132738
https://doi.org/10.1063/1.5132738
https://doi.org/10.1016/j.jnucmat.2017.11.050
https://doi.org/10.1016/0029-554X(76)90395-5
https://doi.org/10.1016/0029-554X(76)90395-5
https://www.efunda.com
https://www.efunda.com
https://www.efunda.com
https://doi.org/10.1063/1.1698312
https://doi.org/10.1063/1.1698312
https://doi.org/10.1007/BF01380688
http://mi.mathnet.ru/tvt9819
http://mi.mathnet.ru/tvt9819
http://mi.mathnet.ru/tvt9819
https://doi.org/10.1006/jcht.1999.0576
https://doi.org/10.1006/jcht.1999.0576
https://www.engineeringtoolbox.com
https://www.engineeringtoolbox.com
https://www.engineeringtoolbox.com
https://www.iaea.org/publications/7965/
https://www.iaea.org/publications/7965/
https://www.iaea.org/publications/7965/
https://doi.org/10.1021/j100300a019
https://doi.org/10.1088/0022-3727/30/4/001
https://doi.org/10.1016/j.phpro.2015.06.191
https://doi.org/10.1016/j.phpro.2015.06.191
https://doi.org/10.1063/1.3076551
https://doi.org/10.1063/1.3076551
https://www.researchgate.net/publication/281826840
https://www.researchgate.net/publication/281826840
https://www.researchgate.net/publication/281826840
https://www.researchgate.net/publication/281826840
https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.100
https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.100
https://doi.org/10.1177/1744259110372782
https://doi.org/10.1177/1744259110372782
https://doi.org/10.6028/jres.074A.029
https://doi.org/10.6028/jres.074A.029
http://www.srim.org
http://www.srim.org
http://www.srim.org

