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In order to explore physics in theEUV to soft x-ray region,we havedesigned amachinewhich is capable of
accelerating a ∼250 pC electron bunch to an energy of ∼1 GeV. The front end of the CLARA (Compact
Linear Accelerator for Research and Applications) system at Daresbury Labs will be used as an S-band
injector of ∼180 MeV=c, sub-ps FWHM, ∼250 pC electron bunches into the XARA (X-Band Accelerator
forResearch andApplication) system.A rf feasibility studyhas been carried out for a structure operating in the
2π=3 mode at a frequency of 11.9942 GHz which is fed by a SLED klyston setup. The average cell of this
structure has an iris radius of hai ¼ 3.2 mm and a shunt impedance of hRsi ¼ 106.55 MΩ=m. A high target
gradient of 80 MV=m for a single-bunch operation of the linac is necessary due to spatial constraints at
DaresburyLabs.Wehave also implementedGaussian detuning of the linac in order to future-proof the project
for potential multibunch operation of the machine. After combining the rf study with an analysis of the
uncoupled long-rangewakefield and the short-range transverse wakefields, the optimal structure parameters
are outlined as a compromise between the shunt impedance, electrical breakdown rate and wakefields in the
structure.As novel designswill be tested using this free-electron laser (FEL) an increasedbeamchargemaybe
useful. Therefore a beamdynamics study via the particle tracking codeELEGANThas been performed to assess
how the beamquality evolveswhile traveling through theXARA rf structures for different bunch charges and
beam offsets. These simulations reveal how the bunch is disturbed for varying bunch charges and offsets and
givean initial indication of howsensitive the beamparameters (beamcentroid position, emittance,RMSbeam
size, etc.) are to thewakefields generated inXARA.An analytical formulation of the beammotion as it travels
through the XARA linac has been utilized to calculate the emittance growth. This allows for comparison
betweenanalytical andnumerical simulationof thebeamdynamics togiveconfidence in the results.Thebeam
dynamics study shows that for a bunchchargeofQb ¼ 250 pCand abeamoffset ofCx ¼ σz=2 ¼ 0.253 mm,
thenormalizedemittancegrowth at the endof theXARAlinac isΔϵNx=ϵNx ∼ 270%.Thismaybemitigatedby
the design of a magnetic lattice which would include kickers to recenter the beam on the electrical axis of the
structure, reducing the effect of the wakefields on the bunch. Currently it is probable that a maximum bunch
charge of ∼250 pC will be utilized for this machine; however a future design of a magnetic focusing lattice
may allow higher charges to be viable and will reduce the emittance growth.
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I. INTRODUCTION

The Compact Linear Accelerator for Research and
Applications (CLARA) facility at Daresbury Laboratory
is a project with the aim to become a Free Electron Laser
(FEL) test facility. When complete, CLARA will produce
an electron beam of up to 250 MeV=c, ∼250 pC charge
bunches of femtosecond order length [1]. The XARA
concept is to offer a potential upgrade to the existing
CLARA system to create a compact accelerator capable of
producing a ∼1 GeV=c electron beam which could then be
used to test an increased range of novel acceleration
techniques. With the XARA upgrade the FEL would be
able to generate attosecond light pulses in the EUV to soft
x-ray region for use in future studies of ultra-fast dynamics
[2]. The CLARA project is currently supported up to phase
2 which will provide the 250 MeV=c beam and the full
energy beam extraction (FEBE) line which will enable user
experiments and technology demonstrations utilising the
electron beam directly. Outlined in the UK XFEL Science
Case [3], CLARA phase 3 includes the addition of the FEL
line which would be used to demonstrate novel FEL
schemes for later implementation in the UK XFEL. The
CLARA front-end of phase 2 can be used as an S-Band
injection line (sans linac 4) to the proposed XARA system
and XARA can be considered as an alternative or future
upgrade to the existing facility. This S-band injector will
provide a ∼180 MeV=c (not the full ∼250 MeV=c due to
the removal of linac 4), sub-ps FWHM, ∼250 pC electron
beam which can be accelerated by an X-band linac. This
would enhance the momentum of the electron beam that
could be extracted by the FEBE line to ∼600 MeV=c. Only
a ∼600 MeV=c beam can be extracted by the FEBE line
instead of the full ∼1 GeV=c beam due to space limitations
in the accelerator hall causing the point of beam extraction
to be before the end of the XARA linac system. The front-
end of CLARA (consisting of the gun and first linac) has
been commissioned with a 2.5 cell, 10 Hz repetition (rep)
rate gun, while a 1.5 cell, 400 Hz rep rate cavity will be
commissioned soon [4]. Phase 2 of the CLARA facility,
consisting of linacs 2, 3 and 4, an X-band linearizer and
variable bunch compressor is currently being assembled
and will be commissioned in the next few years.
This preliminary rf design of an X-band linac structure

for XARA is based on that of the CompactLight [5] and
EuPRAXIA@SPARC_LAB [6] projects, with 3 or 4
modules each supplied by one or two 50 MW X-band
klystrons, a low loss waveguide and a SLAC energy
doubler (SLED) type pulse compressor [7]. Two options
have been proposed for XARA, a single bunch and a
multibunch operation. The single bunch regime requires a
very high accelerating gradient of ∼80 MV=m to ensure a
beam momentum of ∼1 GeV=c can be achieved within 3
modules. Due to the space available for the XARA project,
the gradient will be prioritized even if two klystrons are
required over one. The multibunch regime will require a

longer rf pulse or shorter cavities to reduce the filling time
of the structure. The short wavelength required for an
X-band structure gives rise to strong geometric wakefields
due to the transverse size of the structure decreasing to
support a traveling wave of the correct phase velocity.
Therefore the irises are located closer to the beam, increasing
the strength of the wakefields [8]. These transverse wake-
fields can strongly deteriorate the quality of the beam.To this
end, linacswith both linear andGaussian tapered irises down
the structure have been considered in order to reduce the
magnitude of the wakefields. It is also possible to reduce
further the wakefields by widening the iris thickness in a
future design. Variation of the iris thickness down the
structure results in a detuning of the synchronous frequency
of the lowest dipole modes. This causes a decoherence
in the transverse wakefields and thus a suppression of their
amplitude [9–11]. This option has not been explored in this
study as multibunch operation is not currently planned for
theXARA system. However, if long-range transversewakes
prove problematic in the future, the design could expand to
include tapering of the iris thickness.
In this paper a base rf design for the XARA X-band linac

has been outlined which operates at a frequency of
11.9942 GHz in the 2π=3 mode. First, the single cell
parameters have been calculated via High Frequency
Structure Simulator [12] (HFSS) electromagnetic simula-
tions and interpolated over a range of iris radii. This allows
the gradient profile along the structure to be found using the
electric fields produced by a SLED pulse as well as
determining if the structure exceeds given breakdown limits.
This is done for multiple lengths of structure and tapering.
Once the behavior of the iris radii down the linac is known,
the long-range wakefields are calculated via summation of
synchronous parameters, i.e. parameters of modes which
interact with and are “synchronous” with the beam. The
short-range wakefields are calculated via a field-matching
techniquewith complex frequency.To assess howdestructive
the short-range wakefields are on the quality of the beam,
beam dynamics simulations are carried out via the ELEGANT

particle tracking code [13] as the beam travels through a full
rf structure where the desired final beam energy is achieved.
Manual calculations of the Twiss parameters of the beam are
carried out using the final phase space and compared to
output found by ELEGANT to good agreement. These results
are then compared to an analytical description of emittance
dilution due to short-range wakefields acting on bunches of
short lengths. Together, these studies allow for restrictions to
be placed on the amount of charge within an accelerated
bunch in consideration of an allowed emittance dilution over
the whole structure.

II. SINGLE CELL STUDY

A. Monopole mode

The EuPRAXIA structure [14] as shown in Fig. 1 has
formed a starting point in the design of the X-band
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structure. During the design of the geometry, the main
considerations were to maximize the shunt impedance per
unit length R0 and minimize the modified Poynting vector
[15] normalized to the average accelerating gradient
squared Scmax=E2

acc which will allow for a higher gradient
while reducing the breakdown rate. The initial design
selects an average radius of hai ¼ 3.2 mm for the structure.
Simulations were carried out via ANSYS HFSS [12] to
calculate the 2π=3 mode of the cell for a range of iris radii
a, adjusting the cell radii b such that the operating mode
frequency ω=2π ¼ 11.9942 GHz is synchronous with the
beam. The operational 2π=3 mode was chosen as a
compromise between the cell length due to space limita-
tions and a high group velocity which is required for

efficient acceleration of the beam [16]. Initially, simulations
were done to establish optimal values for the cell rounding
radius r0 and the ratio of the elliptical radii r1=r2 with their
effects on R0 and Scmax=E2

acc given in Figs. 2 and 3
respectively. The values r0 ¼ 2.5 mm and r1=r2 ¼ 1.3
were chosen as a compromise to maximize and minimize
R0 and Scmax=E2

acc respectively. Once the values for r0 and
r1=r2 are decided, dispersion relationships for a range of
iris radii a are calculated. The corresponding cell radii b are
calculated to tune the cell frequency to the operating
frequency. The following cell parameters can be found
via HFSS: the quality factorQwhich characterizes rf losses
in the cavity, the group velocity vg, the R0 and Scmax=E2

acc.
The monopole dispersion which describes the coupling
between the rf cell and the beam is defined as [17,18]

ω ¼ ωπ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ cosϕ

p ; ð1Þ

where ω ¼ 2πf is the angular frequency with f being the
frequency and ϕ is the phase advance of a cell. The
frequency of the π=2 mode ωπ=2 and the coupling κ are
given by

ωπ=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω2

0ω
2
π

ω2
0 þ ω2

π

s
; ð2Þ

κ ¼ ω2
π − ω2

0

ω2
0 þ ω2

π
; ð3Þ

where the frequencies of the 0 and π modes can be
calculated via most electromagnetic simulation programs,
where in this case HFSS has been used. The monopole
dispersion relations are shown in Fig. 4 for rf cells with a
range of a. As the beam moves through the cavity, it will

FIG. 2. The shunt impedance per unit length R0 and the
normalized modified Poynting vector Sc=E2

acc as a function of
the cell rounding radius r0 for iris radius a ¼ 3.2 mm.

FIG. 3. The shunt impedance per unit length R0 and the
normalized modified Poynting vector Sc=E2

acc as a function of
the elliptical iris radii ratio r1=r2 for iris radius a ¼ 3.2 mm.

FIG. 1. The general geometry of the cell design with parameters
labeled. The electron beam travels from left to right along the
z-axis, i.e. r ¼ 0.
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excite in principle an infinite number of modes. However, it
will strongly excite the mode which is synchronous with
the speed of light. This mode is excited coherently while all
other modes of the dispersion relation will constructively
and destructively interfere as they all have different phase
velocities. The synchronous mode is indicated by the
intersect between the dispersion relation and the “light
line” (LL) which represents the phase velocity of light. This
synchronous mode is coherently excited and all of the
modes superimpose to give a much stronger effect than any
of the other modes which average to zero [17,18]. In this
design, all cells are tuned such that operating 2π=3 mode
intersects the LL. The cell parameters are found using the
HFSS fields calculator using the following definitions [14]:

Vacc ¼
Z

Lc

0

Ez exp

�
iωz
βc

�
dz; ð4Þ

W ¼ ϵ0
2

Z
Vc

jEj2dV ¼ μ0
2

Z
Vc

jHj2dV; ð5Þ

Q ¼ ℜðωÞ
2ℑðωÞ ; ð6Þ

R0 ¼ QjVaccj2
ωWLc

; ð7Þ

Scmax

E2
acc

¼ maxðℜðSÞ þ 1
6
ℑðSÞÞ

ðVacc=LcÞ2
; ð8Þ

where Vacc is the accelerating voltage per period, Lc is the
cell length, Ez is the axial electric field parallel to the beam,
z is the direction parallel to the beam motion, β ¼ v=c
where v is the beam velocity and c is the speed of light in a
vacuum,W is the stored electromagnetic energy in the cell,
Vc is the cell volume, ϵ0 is the permittivity of free space, μ0

is the permeability of free space and S is the Poynting
vector. Equation (5) shows that the time-averaged electrical
stored energy per period is equal to the time-averaged
magnetic stored energy per period for an rf cavity at
resonance. For this study, it is assumed that β ¼ 1.
Using these definitions along with the monopole dispersion
relations, the cell parameters are calculated and are shown
in Figs. 5 and 6. The values for the single cell with a ¼
3.2 mm are given in Table I.
In this paper both linear and Gaussian tapering of the iris

radii will be considered to maximize the shunt impedance
per unit length R0 which describes the ability of an rf cell to
support the voltage necessary to accelerate the beam
efficiently. However, this also has an effect on the strength
of the geometric wakefields in the structure described by
the behavior of the dipole modes.

FIG. 4. The accelerating monopole dispersions for the base
XARA cell for varying iris radii where the operating 2π=3 mode
is tuned to 11.9942 GHz. The light line (LL) which represents the
phase velocity of light is shown in dashed red.

FIG. 5. The shunt impedance per unit length R0 and Q factor of
the single cell tuned to 11.9942 GHz in the 2π=3 mode as a
function of cell iris radius a.

FIG. 6. The maximum modified Poynting vector normalized to
the square of the accelerating electric field Sc=E2

acc and group
velocity vg=c of the single cell tuned to 11.9942 GHz in the 2π=3
mode as a function of iris cell a.
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B. Dipole modes

Electromagnetic simulations have been carried out in
HFSS to calculate the 0 and π mode frequencies of the
lowest dipole mode for the rf cells. This allows the
dispersion relation of the dipole modes to be calculated
via Eq. (1). The dipole dispersions are presented in Fig. 7.
While the monopole dispersions of the rf cells intersect
with the LL at phase advance ϕ ¼ 2π=3, the same is not
true of the dipole modes. Hence the dipole modes interact
with the beam at different phase advances and frequencies
which depend on the iris radii a of the cell. To describe how
the dipole modes that will interact with the electron beam
are distributed along the structure, the synchronous
frequencies are found as a function of the iris radii as
shown in Fig. 8. A cubic interpolation of these values allow
the synchronous frequencies to be found for intermediate
values of the iris radii.

To understand the mode spectrum of the deflecting
modes the kick factors Ks of the synchronous dipole
modes are calculated in HFSS [12] and corroborated by
the code TRANSVRS [19]. This is done by studying how the
accelerating voltage Vacc;nðrÞ falls off with transverse
offset r from the electrical axis of the cell. The longitudinal
loss parameter and the transverse kick factor are related
by [17]

kjj;nðrÞ ¼
jVacc;nðrÞj2

4Wn
; ð9Þ

Kn ¼
c

2Lc

Rs;n

Qn
¼ kjj;nc

ωnr2Lc
; ð10Þ

where for mode n, kjj;nðrÞ is the longitudinal loss factor, Kn

is the transverse kick factor,Wn is the total energy stored in
the cell, Rs;n is the shunt impedance andQn is the Q-factor.
The main parameters of the lowest dipole modes are given
in Table II.

TABLE I. Optimized rf structure parameters for a representa-
tive single cell with a ¼ 3.2 mm.

Parameter Value

Iris radius a (mm) 3.2
Cell radius b (mm) 10.454
Iris thickness t (mm) 2.0
Cell length Lc (mm) 8.332
hai=λ 0.128
r0 (mm) 2.5
r2 (mm) 1.0
r1=r2 1.3
R0 (MΩ=m) 106.55
vg=c (%) 1.81
Quality factor Q 7034
Scmax=E2

acc (W=μm2=ðMV=mÞ2) 3.74 × 10−4

FIG. 7. The lowest dipole mode dispersion relations for a range
of iris radii a where the light line (the modes that are synchronous
with the beam) is shown with a dotted line. The synchronous
dipole frequencies are shown as black dots.

FIG. 8. The synchronous dipole frequencies as a function of the
cell radii a. The dots are values found via HFSS simulations and
the solid line is the cubic fit.

TABLE II. The iris radii a, cell radii b, synchronous dipole
frequency ωs=2π and the synchronous dipole kick Ks for seven
fiducial cells of the XARA X-band structure. Intermediate values
can be interpolated using this table.

Cell
label a (mm) b (mm)

ωs=2π
(GHz)

Ks
(MV=ðpCmmmÞ)

A 2.0 10.157 18.360 106.0
B 2.5 10.258 17.905 89.4
C 3.0 10.392 17.375 77.9
D 3.5 10.555 16.812 64.9
E 4.0 10.749 16.268 52.4
F 4.5 10.969 15.779 41.5
G 5.0 11.220 15.344 32.5
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III. NUMERICAL OPTIMIZATION OF
STRUCTURE

A. SLED parameters

In a constant gradient (CG) structure, the profile of the
accelerating electric field is constant along the structure.
Typically, in order to have a closed form of the solution, both
R andQ are constant along z. However, the SLED type pulse
compressor produces a nonflat rf pulse, leading to a non-
constant gradient profile [7]. To calculate accurately the
gradient profile of the structure, a numerical optimization
scheme is utilized via Wolfram Mathematica [20] to inter-
polate the rf parameters along the structure. The SLED
system consists of two main components: a 180 degrees
phase shifter and two overcoupled cavities of Q-factor Q0,
which store the incoming rf power, on the output side with a
3 dB coupler. The 3 dB coupler prevents any energy from
being reflected back toward the klystron. After the rf pulse is
phase shifted at time t1, the stored rf power is emptied from
the cavities and combined with the shifted incoming rf wave
to increase the power flow toward the accelerator. The total
length of the klystron pulse is given by t2 ¼ t1 þ tf where tf
is the filling time of the structure.
The SLED output pulse profile can be calculated by

considering the combination of the electric fields before the
klystron phase switch at t1, between the klystron switch and
the end of the pulse at t2, and after the klystron pulse [14].
The resulting pulse profile is shown in Fig. 9.
As a guideline, the effective shunt impedance Rs of a CG

structure is considered.

Rs

Rs;c
¼ ð1 − expð−2τsÞÞ

�
γ expð−Qτs=QlÞ

×
1 − ðexpð−2τsÞÞ1−Q=2Ql

ð1 −Q=2QlÞð1 − expð−2τsÞÞ
− ðα − 1Þ

�
2

; ð11Þ

γ ¼ α

�
2 − exp

�
−
t1ω
2Ql

��
; ð12Þ

α ¼ 2Q0=Qe

1þQ0=Qe
; ð13Þ

τs ¼
1

2

Z
Ls

0

ω

vgðzÞQðzÞ dz; ð14Þ

where Rs;c is the shunt impedance of a single cell (which is
assumed constant) and Q0 is the unloaded quality factor of
the overcoupled SLED cavities which has been set to
180,000, Qe is the external SLED quality factor, Ql ¼
Q0=ð1þQ0=QeÞ is the loaded SLED quality factor and τs
is the section attenuation [7]. It is worth noticing that the
effective shunt impedance is a sole function of τs and Qe.
The numerical tool implements Eqs. (11) to (14) to find the
optimum value for Qe, an example of which is shown in
Fig. 10. Once the optimalQe is found, the optimal τs can be
discovered, as shown in Fig. 11. Once the optimal values
for Rs, τs, and Qe are found, the optimal structure length
can be found by Ls ¼ vgQτs=ω and the filling time by
tf ¼ 2Qτs=ω [14]. R0 and Q are taken constant along the
structure where the single cell parameters with hai ¼
3.2 mm are used. The optimal parameters of such a
constant gradient structure are given in Table III.
After one filling time, the distribution of the accelerating

gradient along the structure is given by [21,22]

Gðz; t ¼ tfÞ ¼ G0½tf − τðzÞ�gðzÞ; ð15Þ

G0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωR0ð0Þ

vgð0ÞQð0ÞPk

s
Eoutðtþ t1Þ; ð16Þ

FIG. 9. The output rf pulse profile from the SLED system
which increase the power flow toward the accelerator. The
klystron is phase shifted by 180 degrees at time t1 and the total
length of the klystron pulse is given by t2.

FIG. 10. The effective shunt impedance per unit length Rs of a
CG structure as a function of the external SLED quality factorQe.
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gðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
vgð0Þ
vgðzÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0ðzÞQð0Þ
R0ð0ÞQðzÞ

s

× exp

�
−
1

2

Z
z

0

ω

vgðz0ÞQðz0Þ dz
0
�
; ð17Þ

τðzÞ ¼
Z

z

0

1

vgðz0Þ
dz0; ð18Þ

where Pk is the klystron output power, Eout is the electric
field output from the SLED system and τ is the signal delay.
Due to the nonflat pulses from the SLED system, the

analytical CG formulas are an approximation. Also, these
formulas allow for the optimal length of the structure to be
calculated, although for real accelerators there are often
space limitations. Therefore it becomes apparent that a tool
is needed to calculate the main rf parameters for a fixed
length. This has been done for both structures where the iris
variation through the structure is linear with a fixed
tapering angle θ and a structure where the tapering is
Gaussian with a fixed standard deviation σ and frequency
spread Δω.

B. Linear taper

The simplest method of varying the iris radii along the
structure is a linear taper where the average radius is fixed

at hai ¼ 3.2 mm. The gradient profile (15) is calculated for
a range of radius tapering angle θ and structure lengths Ls
and are illustrated in Fig. 12. The structure parameters for
each cell in the structure are found by an interpolation of
the plots shown in Figs. 5 and 6. The modified Poynting
vector [15] is calculated by multiplying the square
of the peak electric field E2

outðt ¼ 0Þ by the normalized
Scmax=E2

acc as the pulse travels through the structure. As the
electrical breakdown is related to the maximum electro-
magnetic fields in the structure, it is important to consider
the maximum modified Poynting vector. Sc is a parameter
that describes a model of the electrical breakdown trigger in
which the field emission currents from potential breakdown
sites cause local pulsed heating. The Sc takes into account
both active and reactive vector power flow on the surface
structure [15]. Sc as a function of the iris tapering angle θ is
shown in Fig. 13. The main restriction on the gradient in
accelerator structures is the vacuum rf breakdown.
The generally accepted breakdown limit parameters for
an X-band structure are for a breakdown rate (BDR) of 10−6

breakdowns per pulse per meter (bpp/m), Sc and the pulse
length tp should not exceed 4 W=μm2 and 200 ns respec-
tively [15]. In order to guarantee good performance of the
accelerator, the parameters must be kept under these
thresholds guided by the scaling law

S2ctp
BDR1=5 ¼ const: ð19Þ

The maximum modified Poynting vector of the structure
and its corresponding breakdown limit for a range of

FIG. 11. The shunt impedance per unit length of a CG structure
as a function of the section attenuation τs.

TABLE III. Optimal CG structure parameters using analytical
expressions (11)–(14).

Parameter Value

Rs [MΩ=m] 380.54
Filling time tf [ns] 129
Qe of SLED 22207

FIG. 12. The accelerating gradient after one filling time as a
function of z for Ls ¼ 0.5 m for a range of tapering angles θ. Theffiffiffiffiffiffi
Pk

p
is chosen such that the average gradient hGi ¼ 80 MV=m.
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structure lengths are illustrated in Fig. 14. The effective
shunt impedance of the structure can be found using the
gradient profile [14]:

Rs ¼
1

LsPk

�Z
Ls

0

G0ðtf − τðzÞÞgðzÞdz
�

2

; ð20Þ

where Pk is the input klystron power. By comparing
Figs. 14 and 15, it can be seen that increasing the length
of the structure increases the effective shunt impedance and
therefore the coupling to beam while sacrificing an increase

in the probability of breakdown. Additionally, a longer
structure requires an larger amount of power input as can be
seen in Fig. 16. The power is dissipated as it travels through
the structure therefore for a longer structure the input power
must also be increased to compensate for the dissipated
power. Increasing the length of the structure generally
increases the amount of rf power needed to accelerate the
beam, however fewer structures are required in order to
achieve the required energy of the beam. It is possible
through the scaling law (19) that if a lower value of Sc is
required due to heating effects or requiring a different
structure length, it may be achieved through either chang-
ing the pulse length of the klystron or by accepting a higher
breakdown rate.

FIG. 13. The modified Poynting vector as a function of z for
varying tapering angles θ.

FIG. 14. The peak value of the modified Poynting vector as a
function of the tapering angle θ for varying structure lengths.

FIG. 15. The effective shunt impedance per unit length for
varying structure lengths Ls as a function of tapering angle θ.

FIG. 16. The power per structure as a function of θ for varying
structure lengths.
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C. Gaussian taper

While choosing a linear tapering of the linac iris radii
may be acceptable in terms of achieving the desired
gradient without exceeding the set breakdown limits, dipole
bands which have not been detuned may result in large
wakefields which degrade the beam quality. To this end, a
study to reduce the strength of these wakefields has been
carried out by considering a Gaussian taper for a range of
standard deviations of the frequency distribution down the
linac σ and frequency spreadΔω. For a given σ andΔω, the
distribution of the dipole frequencies is given by

dn
dω

¼ A exp

�
−
ðω − ω̄Þ2

2σ2

�
; ð21Þ

A ¼ ðN − 1Þ
�Z

ωN

ω1

exp

�
−
ðω − ω̄Þ2

2σ2

�
dω

�−1
; ð22Þ

where A is a normalization constant, N is the number of
cells. ω̄ is the average dipole frequency of the structure
which is decided by hai, and ω1 ¼ ω̄ − Δω=2 and ωN ¼
ω̄þ Δω=2 are the dipole frequencies of the first and last
cells respectively. Once the σ and Δω are decided, the
numerical optimization tool interpolates the rf parameters
across the structure similar to the linear tapered case. Note
that as the distribution of frequencies is Gaussian, the
dipole frequency ωðnÞ=2π as a function of the cell number
n is given as an error function. The reversed relationship is
then found and interpolated as shown in Fig. 17.

Repeating the use of the numerical optimization tool, the
gradient, Scmax, Rs, and Pks are calculated for a range of
Gaussian structures with σ ¼ ½0.3; 1.1� GHz and Δω=2π ¼
½1; 2.5� GHz given in Figs. 18–21. Fig 19 shows the
maximum modified Poynting vector as a percentage varia-
tion from the breakdown limit with valuesΔScmax < 0 being

FIG. 17. The dipole frequency ωðnÞ=2π as a function of
the cell number n reversed and interpolated with L ¼ 0.5 m
and Δω=2π ¼ 1.5 GHz.

FIG. 18. The gradient profile of a structure with Gaussian
tapered irises. The gradient is given for a range of σ where the
Δω=2π ¼ 1.5 GHz, L ¼ 0.5 m and hGi ¼ 80 MV=m for this
example.

FIG. 19. The percentage variation of the maximum modified
Poynting vector over the structure from the breakdown limit
described by Eq. (19). A positive value signifies that Scmax
exceeds the limit and a negative value is within the limit. ΔScmax
is given for a range of Δω where L ¼ 0.5 m and hGi ¼
80 MV=m for this example.
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below the allowed breakdown limits. Calculating ΔScmax
yields the allowed values of σ for a given frequency
spread Δω.
It can be seen in Fig. 19 that a larger frequency spread

leads to a significant increase of breakdown in the structure
due to the maximum iris radius in the structure increasing.
The structure also becomes less efficient with larger
frequency spreads for a given structure length as shown
by a reduction in the effective shunt impedance in Fig. 20.
This would suggest that in terms of breakdown and rf
efficiency a lower frequency spread is beneficial and would
be preferred. It can be seen in Fig. 21 that generally the
power input required for a Gaussian tapered structure is
lower than for a linear tapered structure. However, for a

structure with a larger frequency spread Δω, the iris radii
tapering tends toward a linear tapering as σ increases.
Therefore, the power input required tends toward that of the
linear tapering which can be seen by comparing the curve
for Δω=2π ¼ 2.5 GHz in Fig. 21 against the curve for
L ¼ 0.5 m in Fig. 16.

IV. GEOMETRIC WAKEFIELD ANALYSIS

A point particle with charge q that moves parallel to the
axis of the linac with offset x and velocity c, will feel a
potential xqeWðsÞ due to leading particle of charge qe
which is a distance s ahead of the trailing particle. The
dipole wakefield is defined by

WðsÞ¼ 2
X
n

Kn sin

�
ωns
c

�
exp

�
−

ωns
2cQn

�
; s> 0; ð23Þ

where Kn;ωn=2π and Qn are the kick factors, frequencies
and quality factors of the nth dipole mode of the structure
[23]. It should be noted that there is no explicit dependence
on the radial offset r in Eq. (23) as the kick factor defined
by Eq. (10) removes the radial offset dependence which
originates from the accelerating voltage VaccðrÞ. In this
study, the Q values for the structure allow the exponential
factor in (23) to be set ≈1. For a small distance s behind the
leading charge, the wakefield is approximately given by

WðsÞ ≈
Z

∞

−∞
KðωÞ dn

dω
sin

�
ωs
c

�
dω; ð24Þ

where KðωÞ is the kick factor as a smooth function of
frequencyω. It can be seen that Eq. (24) is given by the (sine)
Fourier transform of the quantity Kdn=dω. Deciding the
distribution of the frequencies in the structure is important as
it decides the initial fall-off of the transverse wakefield. The
wakefield can be shown to fall off as WðsÞ ∼ sincðΔωs=cÞ
and WðsÞ ∼ expð−2πσs=cÞ2 for a linear and Gaussian
tapering respectively where sincðxÞ ¼ sinðxÞ=x.

A. The uncoupled wakefield

In reality, the cells of the linac structure are connected
electronically and magnetically through the irises.
However, as a first order method the cells are considered
to be isolated from each other, i.e., “uncoupled.” The
uncoupled wakefield of a structure with N cells is given by

WUðsÞ ¼
2

N

XN
m

KðmÞ
s sin

�
ωðmÞ
s s
c

�
; ð25Þ

where the wake is summed over N cells and KðmÞ
s and

ωðmÞ
s =2π are the kick factors and frequencies of the dipole

mode which is synchronous with the beam for cell m [23].
This takes advantage of the approximation that if the

FIG. 20. The effective shunt impedance of the structure as a
function of σ for a range of Δω where L ¼ 0.5 m and hGi ¼
80 MV=m for this example.

FIG. 21. The klystron power per structure for a range of Δω
where L ¼ 0.5 m and hGi ¼ 80 MV=m for this example.
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tapering down the structure is gradual and composed of
many cells then the wakefield is locally described by the
synchronous parameters. The kick factors are generally
linear with the synchronous frequency, as shown in Fig. 22.
Knowledge of both the synchronous kick factors and

frequencies allow the uncoupled wakefield to be calculated
by summation for a given distribution of the irises in the
structure. However for larger structures this can require
many intermediate calculations to take place to yield the
wake. This can be time consuming if a structure is being
designed with consideration of minimizing the wakefield.
To allow for rapid computation, analytical solutions of the
uncoupled wakefield for both linear and Gaussian tapered
structures have been derived.

B. Analytical expression

1. Linear taper

The immediate fall-off of the wakefield is given by the
Fourier transform of the quantity Kdn=dω, i.e. for small s.
Therefore,Kdn=dω is recentered around the origin to allow
for more straightforward algebra as shown in Fig. 23.
The Fourier transform is then found as

W̃ðsÞ ¼
Z

∞

−∞
GðωÞ exp

�
−
2πiωs
c

�
dω; ð26Þ

GðωÞ ¼
�
mlωþ cl jωj ≤ Δω=4π
0 jωj ≥ Δω=4π

ð27Þ

whereml¼½GðΔω=4πÞ−Gð−Δω=4πÞ�=ðΔω=2πÞ is the gra-
dient of Kdn=dω and cl¼½GðΔω=4πÞþGð−Δω=4πÞ�=2¼
Gð0Þ. Integration by parts and use of exponential identities
yields the result

W̃ðsÞ ¼ clΔω
2π

sinc

�
Δωs
2c

�

þ i
mlΔωc
4π2s

�
cos

�
Δωs
2c

�
− sinc

�
Δωs
2c

��
; ð28Þ

where c is the speed of light and W̃ðsÞ is known as the
complex wakefield. The part of the wakefield that the
bunch experiences is ℑfW̃ðsÞg. The maximum excursion
of the envelope of the wake is given by ŴLðsÞ ¼ jW̃ðsÞj
which can be easier to interpret and gives information about
the maximum value of the wakefield. A comparison of the
transverse wakefields calculated via the summation method
(25) and the analytical expression (28) is illustrated
in Fig. 24.
The summation of the kicks of each cell in the

θ ¼ 0.1 degrees, L ¼ 0.5 m structure are given by
ð2=NÞPn Kn ¼ Ŵðs¼ 0Þ ¼ 147.51 MV=ðpCmmmÞ and
149.38 MV=ðpCmmmÞ for the summation and analytical
wakes respectively. It should be noted that the wakefields
found by the summation and the analytical expression do not

FIG. 22. The dipole kick factors of the single cell as a function
of the synchronous frequency of the cell. The dots are values of
the kick factors calculated via HFSS for cells A-G of the XARA
structure given in Table II. The solid line is a linear fit to the data.

FIG. 23. The profile of the quantityKdn=dω for a linear tapered
structure which is to be Fourier transformed to find the wakefield.

FIG. 24. A comparison of the transverse wakefields calculated
via the summation method (25) and the analytical expression (28)
for a linear tapered structure of θ ¼ 0.1 degrees and L ¼ 0.5 m.
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yield the exact same result. This is due to the fact that a
continuousFourier transformessentially calculates thewake-
field of a infinite structure with a fixed frequency spread. It
can be shown that if an artificially large number of points are
used in the summation (25), the Fourier Transform will
become continuous and tend toward the solution given by the
analytical expression. The difference between the twowakes
ΔŴðsÞ is shown in Fig. 25 for θ ¼ 0.04 degrees and
θ ¼ 0.12 degrees.
While the analytical expression does not yield the exact

wakefield, it gives a good representation and has the benefit
of being in a closed form and requires fewer calculations
allowing for more rapid computation.

2. Gaussian taper

An example of the quantityKdn=dω for a Gaussian taper
is shown in Fig. 26.
Again, in order to make this derivation more straightfor-

ward, theKdn=dω has be recentered around the origin such
that:

dn
dω

¼ A exp

�
−
1

2

�
ω

σ

�
2
�
; ð29Þ

where A is given by Eq. (22). The kick factors are linearly
dependent KðωÞ ¼ mgω=2π þ cg=2 where mg is the gra-
dient of the linear fit and cg will be twice the central kick
2Kðω ¼ ω̄Þ (remembering that the recentred intersect is the
central frequency). The problem is then set up as:

GðωÞ ¼
� ðmgωþ cg=2ÞA exp ð−ω2=2σ2Þ jωj ≤ Δω=4π
0 jωj ≥ Δω=4π

ð30Þ

The Fourier transform is given by:

W̃ðsÞ ¼
Z

∞

−∞
GðωÞ exp

�
−
2πiωs
c

�
dω: ð31Þ

After some algebra we find that the Fourier transform can
be written as

W̃ðsÞ ¼ Amg exp

�
−
2σ2π2s2

c

��
σ2
�
− exp

�
−
1

2
y22

�
þ exp

�
−
1

2
y21

��
−

ffiffiffiffiffiffi
2π

p
σ3πis
c

�
erf

�
y2ffiffiffi
2

p
�
− erf

�
y1ffiffiffi
2

p
���

þ A
cg
2
exp

�
−
2σ2π2s2

c

�
σ

ffiffiffiffiffiffi
2π

p

2

�
erf

�
y2ffiffiffi
2

p
�
− erf

�
y1ffiffiffi
2

p
��

; ð32Þ

where y1;2 ¼ 1
σ ð∓ Δω

4π þ 2σ2πis=cÞ. However, there needs to be a normalization enforced to satisfy the physical constraint that
at s ¼ 0, the analytical wake Wg must be given by

FIG. 25. The difference of the transverse wakefields calculated
via the summation method (25) and the analytical expression (28)
for θ ¼ 0.04 degrees and θ ¼ 0.12 degrees and L ¼ 0.5 m. Note
that a restricted list of θ values have been used to make the
behavior easier to interpret.

FIG. 26. The profile of the quantity Kdn=dω for a Gaussian
tapered structure which is to be Fourier transformed to find the
wakefield.

M. S. SULLIVAN et al. PHYS. REV. ACCEL. BEAMS 24, 082001 (2021)

082001-12



Wgð0Þ ¼
2

N

X
n

Kn: ð33Þ

It is worth noting that the constant cg ¼ 2Kðω̄Þ ¼
ð2=NÞPn Kn is twice the average kick over the structure.
Therefore, the analytical wake is given by

WgðsÞ ¼
2

N

X
n

Kn

				 W̃ðsÞ
W̃ð0Þ

				 ¼ cg

				 W̃ðsÞ
W̃ð0Þ

				: ð34Þ

The power of the analytical expression given in Eq. (32) is
that it is a explicit function of the frequency spread Δω and
theGaussian standard deviation σ, which allows for thewake
to be calculated for a range ofΔω and σ straightforwardly. A
comparison of the summation and analytical wakes for a
Gaussian structure is shown for σ ¼ 0.3 GHz, Δω=2π ¼

1.5 GHz and L ¼ 0.5 m in Fig. 27, with the difference
ΔŴðsÞ given in Fig. 28.
It can be shown that for a range of Δσ ¼ ½0.1; 1.2� GHz,

Δω=2π ¼ ½0.3; 2.5� GHz, the analytical expression agrees
well with the summation for small values of s, however the
uncoupled wakefield itself is only valid for small values of
s. This is due to the coupling between adjacent cells
becoming more important as a larger distance behind the
leading bunch is considered. In this study, the bunches are
far enough apart such that any long-range wakefields
excited by the leading bunch are assumed to have dissi-
pated by the arrival of the next bunch. This range of validity
allows the initial fall-off of the uncoupled wakefield and
short-range behavior to be well described by the analytical
structure for both the linear and the Gaussian structures.
This is powerful as a design tool as for a required initial
falloff, the corresponding tapering angle θ or σ and Δω can
be found straightforwardly and used as a guideline or base
design.
For the CLARA multibunch operating scheme, the

bunch-to-bunch spacing is 120 ns or 36 m [24] which is
outside the range of validity of this study. However in order
to future proof this design where shorter bunch spacing
may be possible, the wakefield will be investigated for
small s. Reviewing Figs. 19–21, a Gaussian structure with
σ ¼ 0.5 GHz and Δω=2π ¼ 1.5 GHz for a length of L ¼
0.5 m gives a good compromise between the rf efficiency,
the breakdown limit and the initial fall off of the geometric
transverse wakefield. The parameters for this optimal
structure are given in Table IV.

V. SHORT-RANGE TRANSVERSE WAKEFIELDS

A. The point-charge wakefield

The long-range transverse wakefields will only become
significantly problematic if multibunch operation of XARA
is used. However, initially only a single-bunch regime will
be utilized and therefore, knowledge of the short-range

FIG. 27. A comparison of the transverse wakefields calculated
via the summation method (25) and the analytical expression (28)
for a Gaussian structure of σ ¼ 0.3 GHz, Δω=2π ¼ 1.5 m
and L ¼ 0.5 m.

FIG. 28. The difference between the summation method (25)
and the analytical expression (28) for a Gaussian structure of
fixed Δω=2π ¼ 1.5 GHz and L ¼ 0.5 m, over a range of σ.

TABLE IV. Optimal overall parameters for the base design of
an X-band linac for the XARA upgrade.

Parameter Value

Ls [m] 0.5
Number of cells 60
σ [GHz] 0.5
Δω=2π [GHz] 1.5
a [mm] 3.88–2.51
Single cell R0 [MΩ=m] 92.81–121.32
Q 7101–6989
vg=c [%] 3.57–0.71
Scmax [A/V] 3.39
Breakdown limit [A/V] 5.02
Rs [MΩ=m] 369.68
Pks [MW] 8.66
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wakefield is critical for the XARA design process. In
reality, structure misalignments or orbit errors in the linac
will produce a growth in the projected emittance of the
beam due to the short-range wakefields and degrade the
quality of the beam. For an electron bunch with longi-
tudinal distribution λ at longitudinal position s, the trans-
verse kick is given by

VxðsÞ ¼ q
Z

s

−∞
Wxðs − s0Þxðs0Þλðs0Þds0; ð35Þ

where q is the charge of the bunch and x is the transverse
offset of the bunch [25]. The normalized kick along the
bunch, i.e., the bunch wake is

WxðsÞ ¼ q
Z

s

−∞
Wxðs − s0Þλðs0Þds0; ð36Þ

and the average kick over the entire bunch (the total bunch
kick factor) is given by

KxðsÞ ¼
Z

∞

−∞
WxðsÞλðsÞds: ð37Þ

For a perfectly conducting disk-loaded structure with
geometry given in Fig. 29, the high frequency longitudinal
impedance for large k is given by [26]

ZLðkÞ ¼
iZ0

πka2

�
1þ ð1þ iÞ αðη ¼ g=LÞL

a

ffiffiffiffiffi
π

kg

r �
−1
; ð38Þ

where k is the wave number, Z0 ¼ 120πΩ and αðηÞ can be
approximated by

αðηÞ ≈ 1 − α1
ffiffiffi
η

p
− ð1 − 2α1Þη; ð39Þ

where α1 ¼ 0.4648. The inverse Fourier transform of the
longitudinal impedance yields the short-range longitudinal
wakefield for small s:

WLðsÞ ≈
Z0c
πa2

ϕðsÞ exp
�

πs
4s00

�
erfc

�
πs
4s00

�
; ð40Þ

where ϕðsÞ is the step function, erfcðxÞ is the complex error
function and

s00 ¼
g
8

�
a

αðg=LÞL
�

2

: ð41Þ

The short-range longitudinal wake can be written in a
simpler form while retaining the leading order dependence
on s that is consistent with Eq. (38). The transverse short-
range wakefield can then be found as [26]

Wx ¼
2

a2

Z
s

0

WLðs0Þds0; ð42Þ

WxðsÞ ¼
4Z0cs00
πa4

ϕðsÞ

×

�
1 −

�
1þ

ffiffiffiffiffiffi
s
s00

r �
exp

�
−

ffiffiffiffiffiffi
s
s00

r ��
: ð43Þ

The short-range dipole wakefield can be calculated using
a computer code developed by K. Yokoya [27] which is
based on an impedance field matching technique by H.
Henke [28] and referred to as the complex frequency
domain (CFD) code in this paper. This code calculates
the impedance of a periodic structure shown in Fig. 29 with
the cell radii b → ∞ by field matching. In contrast to other
codes, this program finds the impedance along a contour in
the complex plane which is shifted by an amount ImðkÞ
above the real axis instead of along the real axis itself.
When the real k axis is used, the real part of the impedance
Rx is given by a sum of delta functions which results in a
spiky function. Similarly, the imaginary part of the imped-
ance Xx becomes a quickly varying function along the real
k axis. However when a contour in the complex plane is
used, both the real and imaginary components become
smoother functions of the frequency which are easier
to numerically Fourier transform via computer codes.

FIG. 29. The cell geometry used to calculate the short-range
transverse wakefield where all parameters have their usual
meanings. Region I is the beam pipe of the structure and region
II is the cell cavity for a < r < b and −L=2 < z < L=2.
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A disadvantage of this method, however, is that the inverse
Fourier transform yields a wakefield in the form
exp ðImðkÞsÞFðsÞ where for large s the function FðsÞ
becomes very small and no longer accurately represents
the short-rangewakefield. This limits the range of s that can
practically be computed for a given value of ImðkÞ.
To demonstrate the results of the CFD code, the real and

imaginary parts of the impedance for the mid cell of the
XARA structure with a ¼ 3.208 mm, b ¼ 10.456 mm,
g ¼ 6.332 mm and L ¼ 8.332 mm are shown in Fig. 30.
The transverse wakefieldWx can be found by the inverse

Fourier transform of the impedance via

WxðsÞ ¼
2c
π

Z
∞

0

RxðkÞ sin ðksÞdk; ð44Þ

which is analytically independent of the value chosen for
ImðkÞ. Eq. (44) can also be written in terms of the
imaginary part of the impedance Xx by use of the
Kramers-Kronig relation, both of which are calculated in
the impedance code to ensure accuracy and consistency.
The transverse short-range wakefield of the XARAmid cell
has been calculated from the both Rx and jXxj in Fig. 30
and is given in Fig. 31.
Also shown in Fig. 31 is the analytical short-range

wakefield as calculated by Eq. (43) which approximates the
numerical result well near the origin and up to a range of
∼0.2 mm. However in order to produce the behavior of the
wakefield for a large number of cells, it becomes useful to
create a fitted wakefield function which is accurate
over a valid range of geometrical parameters. First, the
impedance code is used to calculate the wakefield results
for cells within a parameter range 0.34 ≤ a=L ≤ 0.69 and
0.54 ≤ g=L ≤ 0.89. These results are then used to find a
fitted function of the same form as the asymptotic, short-
range solution [25]:

WxðsÞ ¼
4Z0cs0
πa4

ϕðsÞ

×

�
1 −

�
1þ

ffiffiffiffiffi
s
s0

r �
exp

�
−

ffiffiffiffiffi
s
s0

r ��
; ð45Þ

where the new fitting parameter is given as

s0 ¼ μ
aβgγ

Lδ ; ð46Þ

where μ, β, γ, δ are parameters to be found. Results of the
CFD code for the cell parameter range and Eq. (46) with
μ ¼ 0.169, β ¼ 1.80, γ ¼ 0.3335, δ ¼ 1.13 are shown in
Fig. 32. It can be seen by this fit that the transverse short-
range wakefield is strongly dependant on the iris size a but
weakly dependant on the cell gap g, causing a larger
wakefield as the iris size reduces as expected. This also
suggests that the wakes can be modified with changes to the
cell gap but would only be useful for fine tuning due to the
weak dependence.
The fitted parameter s0 can be seen in Fig. 32 to agree

better with results for cells with smaller values of a=L
suggesting that values a=L ≥ 0.69 may be outside of the
range of validity of this study. This limitation may be
explained by noting that the analytical form of the short-
range wakefield is valid for high frequency where higher
order terms have been neglected [25]. It can also be noted
that the values of μ, β, γ, δ can be altered to force agreement
between the numerical results and the fitted results for a
different range of g=L and may be more useful depending
on which value of g=L is being used in the cell design.

FIG. 30. The real Rx and absolute value of the imaginary
jXxj parts of the transverse impedance of the mid cell of the
XARA structure as calculated by the numerical CFD code
for ImðkÞ ¼ 0.5 mm−1.

FIG. 31. The transverse short-range wakefield calculated from
the impedances shown in Fig. 30 of the mid cell of the XARA
structure (solid). Also shown is the analytical short-range wake-
field as calculated by Eq. (43) (dashed).
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The fitted value of s0 can be used in Eq. (45) to yield the
wakefield for the valid ranges of a=L and g=L that have
been considered. Comparisons of these fitted wakes and
wakes calculated via the CFD code are given in Fig. 33 for
a=L ¼ 0.69, 0.57, 0.46, 0.34.
This has been repeated to observe the comparisons

between the CFD code and the fitted wakefields for cells
1, 15, 25, 30, 35, 45 and 60 of a Gaussian tapered structure
with L ¼ 0.5 mm, σ ¼ 0.5 GHz and Δf ¼ 1.5 GHz,

shown in Fig. 34 respectively. Plotting a comparison
between the numerical results and analytical formulation
allows a solid justification that the analytical fit of the short-
range transverse wakes is valid over the range of geomet-
rical parameters considered for the XARA cells. It is also
important that the analytical wake is accurate up to a large
enough distance s behind the leading bunch. This will
allow any bunch length considered for the XARA structure
to be convoluted with the wakefield without concerns about
errors stemming from the analytical fit.
In Fig. 34, the averaged values of the numerical wakes

and fitted wakes across the representative cells are also
plotted. To a good approximation, for the short-range wake
the averaged wake of the individual cells gives a good
representation of the wake of the whole structure. For this
structure, the averaged wake is approximately equal to the
wake of cell 35. However, for short structures where it is
found that the averaged wake does not accurately represent
the structure, a more sophisticated model of the short-range
wakefields is required [29]. For this study, it is assumed that
the averaged wake represents the structure to a reasonable
degree.

B. The bunch wakefield

The bunch wakefield has been calculated using the
simulation codes ABCI [30] and ECHO2D [31]. These
programs employ finite difference techniques to solve
Maxwell’s equations for a given geometry, returning the
wakefield for a given bunch traveling through the structure.
The transverse bunch wakefield W̃x is found from the
point-charge wakefield via [14]

FIG. 33. The short-range wakes calculated via the CFD code
(solid) and the fitted wakes (dashed) found by Eq. (45). The two
methods of yielding the wakes agree well over the considered
range of a=L.

FIG. 34. The short-range wakes for representative cells 1, 15,
25, 30, 35, 45 and 60 of a Gaussian tapered structure with
L ¼ 0.5 mm, σ ¼ 0.5 GHz and Δω=2π ¼ 1.5 GHz calculated
via the CFD code (solid) and the fitted wakes (dashed) found by
Eq. (45). The average wakes are also given.

FIG. 32. Results of a parameter study to calculate s0 for the
transverse wake by use of the CFD code for 16 points (dots)
chosen with in the ranges 0.34 ≤ a=L ≤ 0.69 and
0.54 ≤ g=L ≤ 0.89. Interpolation of these points are shown by
a solid line. A fit of Eq. (46) with μ ¼ 0.169, β ¼ 1.80,
γ ¼ 0.3335, and δ ¼ 1.13 are shown by dashed lines.
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W̃x ¼
1

Qb

Z
∞

0

Wxðs0Þλðs − s0Þds0; ð47Þ

where Qb is the bunch charge, Wx is the transverse point-
charge wakefield and λ is the longitudinal charge distri-
bution of the bunch which is taken to be Gaussian:

λðsÞ ¼ 1ffiffiffiffiffiffi
2π

p
σz

exp

�
−

s2

2σ2z

�
; ð48Þ

with σz the standard deviation of the bunch length.
Currently the CLARA Phase 2 machine is planned to
act as the S-band injector for XARA and provide a
∼250 pC, sub-ps FWHM electron bunch for the XARA
linac [2]. For a 1 ps FWHM bunch, the standard deviation is
given by σz ¼ 0.127 mm, therefore σz ¼ 0.1 mm is con-
sidered for calculations of the bunch wakefields in this
paper. The transverse bunch wakes with σz ¼ 0.1 mm for
cells A-G of the XARA design, as given in Table II, are
shown in Fig. 35 where the head and tail of the bunch is
given at s ¼ −0.4 mm and s ¼ 0.4 mm respectively.
To benchmark these results, simulations have been

carried out using the wakefield codes ACBI and
ECHO2D to calculate the bunch wake of Cell D of the
XARA design with σz ¼ 0.1 mm. Simulations were
repeated with increasing fine mesh until the results were
shown to not improve significantly when compared to the
amount of CPU time used to yield the result. It is worth
noticing that the impedance code used to produce the point-
charge wakes utilizes a field-matching technique [28]
which models the structure as infinitely periodic and then
calculates the short-range wake for the whole structure
which is then divided by the number of cells used. In order
to reproduce these results in ABCI and ECHO2D, an
increasing number of identical cells were modeled until the

accuracy of the results were shown to no longer be
computationally efficient. The short-range wake per cell
was calculated and comparisons between the impedance
code, ABCI and ECHO2D are shown in Fig. 36.
The results obtained from the CFD code, ABCI and

ECHO agree well with each other and with the CFD
method taking a factor of ≈20–30 less CPU time compared
to the other codes.

VI. SHORT-RANGE LONGITUDINAL
WAKEFIELDS

A. The point-charge wakefield

The real and imaginary parts of longitudinal impedance
RL and XL for the mid-cell of the XARA design as found by
the CFD code is shown in Fig. 37 for ImðkÞ ¼ 0.5 mm−1.
Following from the inverse Fourier transform of the

longitudinal impedance given in Eq. (40), the short-range
wake can be written more simply with the leading order of s
consistent with (38) up to the

ffiffiffi
s

p
term:

WLðsÞ ≈
Z0c
πa2

ϕðsÞ exp
�
−

ffiffiffiffiffiffi
s
s00

r �
: ð49Þ

Similar to the short-range transverse wake, a parameter
study can also be carried out for the longitudinal wake to
produce an analytical expression useful for design pur-
poses. Anticipating the analytical form

WLðsÞ ¼
Z0c
πa2

ϕðsÞ exp
�
−

ffiffiffiffiffi
s
s0

r �
; ð50Þ

a fit to the wake is found where s0 has the same form as
Eq. (46) but the exponents are now different. Again, wakes

FIG. 35. The short-range transverse bunch wakes for cells A-G
of the XARA design, as given in Table II, for a electron bunch
with σz ¼ 0.1 mm. The bunch wakefields were calculated using
the analytical fit of the transverse wakefields given by Eq. (45). It
can be seen that for decreasing iris radii, the transverse wakes
become stronger.

FIG. 36. A comparison of the short-range transverse bunch
wake for cell D of the XARA design as calculated by the
Complex Frequency Domain code (CFD) (solid blue), ABCI
(dashed green) and ECHO2D (dashed red). The Gaussian bunch
profile in arbitrary units is also shown (dashed, black).
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were calculated in the ranges 0.34 ≤ a=L ≤ 0.69 and
0.54 ≤ g=L ≤ 0.89 and fits were made to determine the
vales of μ, β, γ and δ. The results of these fits over the given
ranges are shown in Fig. 38 with μ ¼ 0.250, β ¼ 1.86, γ ¼
1.75 and δ ¼ 2.73 which have been chosen such that the
fits are more suited to the values of a=L and g=L for that of
the XARA design.
For the XARA structure, the iris radius of the mid cell

is a ¼ 3.208 mm giving values of a=L ¼ 0.385 and
g=L ¼ 0.760. It can be seen that the selection of the

parameter exponents have been prioritized to return a fit
which agrees well with the CFD code for these values of
a=L and g=L. However if the values of a or g need to be
changed in further designs, these fits are still valid and
useful. A comparison of the wakes found by the fits and the
results of the CFD code are given in Fig. 39 for the
representative cells of the XARA design.
It can be seen that the CFD code can return noisy results

for smaller iris radii, however this can be resolved by using
the fitted wake due to it being a smooth function.

B. The bunch wakefield

The short-range longitudinal bunch wakefield W̃L can be
calculated from the point-charge wake WL via

W̃L ¼ −
Z

∞

0

WLðs0Þλðs − s0Þds0: ð51Þ

The short-range longitudinal bunch wakefields for cells
A-G with a bunch of σz ¼ 0.1 mm are given in Fig. 40.
As with the transverse bunch wakes, the longitudinal

bunch wakes have been obtained using ABCI and
ECHO2D where similar limitations regarding meshing
and number of cells used apply. A comparison of the
longitudinal wakes of cell D found by the CFD code,
ABCI, and ECHO2D is given in Fig. 41.
A discrepancy arises when calculating the longitudinal

wake for cell D via ABCI when compared to the other two
methods. This is mostly likely due to the fact that ABCI
uses a fixed meshing scheme where the entire structure is
meshed before calculations take place. When a large
amount of cells is used to replicate the conditions of the
field-matching technique of the CFD code, the aspect ratio

FIG. 39. The longitudinal short-range wakes for the represen-
tative cells (cells 1, 15, 25, 30, 35, 45, and 60) are calculated via
the CFD code (solid) and the fitted wakes (dashed) found by
Eq. (50). Also shown is the average of the fitted wakes of the cells
which approximately represents the full structure.

FIG. 38. Results of a parameter study to calculate s0 for
the longitudinal wake by use of the CFD code for 16 points
(dots) chosen with in the ranges 0.34 ≤ a=L ≤ 0.69 and
0.54 ≤ g=L ≤ 0.89. Interpolation of these points are shown by
a solid line. A fit of Eq. (46) with μ ¼ 0.250, β ¼ 1.86, γ ¼ 1.75
and δ ¼ 2.73 are shown by dashed lines.

FIG. 37. The real Rx and absolute value of the imaginary jXxj
parts of the longitudinal impedance of the mid cell of the XARA
structure as calculated by the CFD code for ImðkÞ ¼ 0.5 mm−1.
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is stretched and it becomes more difficult to capture small
changes in geometry accurately. Due to ECHO2D using a
moving mesh frame that travels alongside the beam
position, this phenomenon does not arise in ECHO2D
and obtains a more accurate wake. It is possible to reduce
the discrepancy between the codes, however this was not
deemed efficient in terms of computational time.

VII. BEAM DYNAMICS SIMULATIONS

To assess the effects of the short-range wakefields of the
initial XARA design on a σz ¼ 0.1 mm electron bunch, the
average wakes were calculated to represent the structure.
These averaged wakes were then used in the beam

dynamics code ELEGANT to calculate how the beam quality
changes when traversing through the XARA X-band linac.
As the CLARA Phase 2 machine which is planned to be
used as an injector to the XARA upgrade is not yet
complete, the exact parameters of the beam that will enter
the linac are not known. For the purposes of this study,
initial beam parameters are estimated to be values which are
considered realistic but conservative. The initial beam
parameters are given in Table V. Both the emittance and
the centroid position of the bunch as it travels through the
linac are important quantities to have knowledge of as they
give information about how the quality of the beam
evolves. In extreme cases, the wakefields can disrupt the
beam to an extent where the beam can be kicked into the
walls of the structure and beam break up (BBU) occurs
where the beam is lost altogether [32]. However for the
XARA system the main mode of operation is single-bunch
and therefore short-range wakefields that dilute the emit-
tance of the bunch are of importance and it is assumed that
wakes dissipate in the time between bunches.
One concern of the XARA structure is its limitations in

terms of how much charge can be placed into a single
bunch before wakefield effects become significant. To
explore this issue, multiple ELEGANT runs have been carried
out with increasing bunch charge Q ¼ 0.25, 0.5 and 1 nC.
Additionally any misalignment in the structure or initial

offset in the bunch will give rise to wakefields that will
displace the beam transversely. To represent these effects,
initial offsets of the beam of Cx ¼ σx=2 and σx have been
chosen to see the effects on the beam position further
downstream.We also normalize the phase space coordinates
to dimensionless coordinates ðX;X0Þ ¼ ðx= ffiffiffiffiffiffiffiffiffi

βxϵx
p

; ðαxxþ
βxx0Þ=

ffiffiffiffiffiffiffiffiffi
ϵxβx

p Þ where x is the horizontal offset of the bunch,
x0 ¼ dx=dz is the angular divergence of the beam, ϵx is the
horizontal emittance of the bunch, αx is the horizontal Twiss
alpha function and βx is the horizontal Twiss beta function
[33]. The normalized emittance ϵn is found from the

FIG. 41. A comparison of the short-range longitudinal bunch
wake for cell D of the XARA design as calculated by the CFD
code (solid blue), ABCI (dashed green) and ECHO2D (dashed
black). The Gaussian bunch profile in arbitrary units is also
shown (solid black).

FIG. 40. The short-range longitudinal bunch wakes for cells
A-G of the XARA design for a electron bunch with σz ¼ 0.1 mm.
It can be seen that for decreasing iris radii, the longitudinal wakes
become stronger. The dashed black line shows the longitudinal
bunch profile in arbitrary units.

TABLE V. Initial beam parameters used for ELEGANT simu-
lations of the XARA design structure.

Parameter Value

Central momentum p0 [ MeV=c] 180
Bunch charge Qb [nC] 0.25, 0.5, 1
Twiss horizontal beta function βx [m] 25
Twiss vertical beta function βy [m] 25
Twiss horizontal alpha function αx 0
Twiss vertical alpha function αy 0
Macroparticles per bunch 10000
Electron bunch standard deviation σz [mm] 0.1
Normalized RMS horizontal emittance ϵnx [m-rad] 5 × 10−6

Normalized RMS vertical emittance ϵny [m-rad] 0.4 × 10−6

σx ¼
ffiffiffiffiffiffiffiffiffi
βxϵx

p ½mm� 0.506
σy ¼

ffiffiffiffiffiffiffiffiffi
βyϵy

p ½mm� 0.143
Horizontal centroid position Cx σx=2; σx
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emittance as ϵn ¼ βzγLϵ where βz ¼ v=c with v the beam
velocity and γL is the relativistic Lorentz factor. This
normalization of the phase space allows a unit circle to be
marked out in the phase space which represents the σx of the
initial beam, i.e., the RMS width of the beam. The trans-
formation to the coordinates ðX;X0Þ also transform the
ellipse in the ðx; x0Þ phase space, which represents the
emittance, to a unit circle. Circles representing 3σx and
5σx are alsomarked out so it can be seenmore clearly how the
profile of the beam changes in phase space. The Twiss
parametersα,β, γ of the final beamstate after passing through
the full structure can be directly calculated via phase space
statistics:

ϵx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihx02i − hxx0i

q
;

αx ¼ −
hxx0i
ϵx

;

βx ¼
hx2i
ϵx

;

γx ¼
hx02i
ϵx

; ð52Þ

where the moments of the phase space distribution are
given by

hxi ¼ 1

N

XN
i¼1

xi;

hx0i ¼ 1

N

XN
i¼1

x0i;

hx2i ¼ 1

N

XN
i¼1

ðxi − hxiÞ2;

hx02i ¼ 1

N

XN
i¼1

ðx0i − hx0iÞ2;

hxx0i ¼ 1

N

XN
i¼1

ðxi − hxiÞðx0i − hx0iÞ; ð53Þ

whereN is the number of particles used and parameters with
subscript i arevalues of the ith particle. TheTwiss parameters
given in Eq. (52) have been calculated manually from the
final phase space and have been compared to those output by
ELEGANT to good agreement.
The X-band linac section of XARAwill comprise 3 or 4

modules consisting of a high-power rf source of one or two
50 MW X-band klystrons, a low loss waveguide and a
SLED pulse compressor which feed into the X-band
structure. Assuming the use of 3 modules with 8 rf
structures each for a total of 24 structures, ELEGANT

simulations have been done to assess the beam quality
as it travels through the entire XARA system. Currently,
only the transverse wakes have been included in the
ELEGANT simulations. Longitudinal effects on the beam
caused by the longitudinal wakes are under investigation
and will be presented in future works. The normalized
phase space plots for the 24 cavity structure for beam
charge values Qb ¼ 0.25, 0.5 and 1 nC for beam offsets of
Cx ¼ σx=2; σx are given in Fig. 42.
The evolution of the beam quality parameters are shown

in Fig. 43. Assuming an average gradient of the structures
of hGi ¼ 80 MV=m and that a ∼180 MeV=c beam enters

FIG. 42. The normalized phase space ðX; X0Þ ¼
ðx= ffiffiffiffiffiffiffiffiffi

βxϵx
p

; ðαxxþ βxx0Þ=
ffiffiffiffiffiffiffiffiffi
ϵxβx

p Þ for beam charge values
Qb ¼ 0.25, 0.5 and 1 nC at a beam offsets of Cx ¼ σx=2; σx
after traveling through 24 rf structures. The normalized coor-
dinates transform the phase space ellipse to the unit circle. Also
plotted is the RMS beam width σx (solid black), 3σx (dashed
black), and 5σx (dot-dashed black).
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the XARA system, the design energy of ∼1 GeV=c is
achieved at s ≈ 10.25 m downstream from the start of the
XARA X-band linacs. This is a conservative design which
yields a higher than necessary beam energy but allows for
energy losses in a realistic setup. This will ensure that the
beam energy is achieved within 3 rf modules which is
important due to spatial limitations. This also allows the
possibility of reducing the average gradient while still
achieving the design beam energy if this becomes neces-
sary in future designs when considering other factors such
as breakdown rates or heating effects.
Plotted in red is the result of the ELEGANT simulation for

a bunch traveling through the linac but with the longi-
tudinal and transverse wakes neglected. This allows clear
comparison of how the wakes effect the bunches for various
charges against a reference bunch. Virtually all of the
particles in the bunch remain within 3σx of the initial beam
for all charges considered with a beam offset of Cx ¼ σx=2.
However as the offset is increased to σx, more of the bunch
falls out of 3σx of the initial beam, with a significant amount
of particles lying outside of 5σx for Qb ¼ 1 nC. We also
compare the RMS beam size σx, the change in the x centroid
of the bunch and the normalized emittance growth as the
beam traverses the rf linac in Fig. 43. For a bunch charge of
Qb ¼ 250 pC and an offset of Cx ¼ σz ¼ 0.253 mm, the
normalized emittance growth at the end of the linac is
ΔϵNx=ϵNx ¼ 270.8%. However, this is a design with no
magnetic lattice and aids as a starting point, upon which the
emittance growth can be reduced via a futuremagnetic lattice
design to alleviate the wakefields. A main part of the
magnetic lattice design would be to include corrector
magnets which would recenter the beam in the structure.
Recentering the beam as it travels through the structure
would significantly reduce the wakefields as misalignments
are one of themain contributors to the excitationof transverse
wakefields. Further alleviation of the wakefields could be
done by including focusingmagnetics in the magnetic lattice
design. It can be seen in Fig. 43(b) that the transverse wakes
move the centroid of the beam away from the initial position
of the beam in the direction toward the linac outer walls. As
the beam moves further from the electrical axis of the linac,
the transverse wakefields have an increasing effect on the
bunch. This highlights the importance of beam alignment
throughout the structure as centering the beam on the
electrical axis will reduce the strength of the transverse
wakefields.

VIII. ANALYTICAL EMITTANCE GROWTH

Alongside numerical techniques employed in the
ELEGANT code, an analytical formulation of the beammotion
can be used to calculate the emittance. In a continuous
approximation the transverse motion of a relativistic beam
traveling through a misaligned accelerator under the influ-
ence of short-range wakefields can be modeled by [32]

FIG. 43. Beam parameters as the beam travels through 24 rf
structures for beam charges Qb ¼ 0.25, 0.5 and 1 nC and beam
offsets Cx ¼ σx=2 and σx. Note that there are 0.4 m of drift space
before and after the linac with drift spaces of 2 cell widths
between structures and 10 cm between modules. The beam
energy is also shown on the top horizontal axis assuming an
average structure gradient of hGi ¼ 80 MV=m.
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1

γðz0Þ
∂
∂z0

�
γðz0Þ ∂

∂z0 xðz
0; s0Þ

�
þ κðs0Þ2xðz0; s0Þ

¼ ϵðz0Þ
Z

s0

−∞
wnðs0 − s01ÞFðs01Þ½xðz0; s01Þ − dcðz0Þ�ds01;

ð54Þ

γðz0Þ ¼ γ0ð1þGz0Þ; ð55Þ

where z0 ¼ z=L is the distancemeasured from the start of the
linac normalized to the linac length L; γðz0Þ is the energy
parameter along the linac in units of mc2; s0 ¼ s=lb is the
distance measured from behind the head of the bunch
normalized to the bunch length lb; Fðs0Þ ¼ Iðs0Þ=Imax;
Iðs0Þ and Imax are the instantaneous current and maximum
current of the uniform current distribution respectively; κ ¼
kL is the betatron focusing wave number k normalized to L;
wnðs0Þ is the normalized transverse wake function; dcðz0Þ is
the lateral displacement of the accelerating sections as a
function of location along the linac, ϵðz0Þ is thedimensionless
coupling strength between the beam and transverse wakes,
γ0mc2 is the energy at the start of the linac and G is the
distance required to double the energy. The coupling strength
can also be written as ϵðz0Þ ¼ γð0Þϵr=γðz0Þ where for short-
range wakes,

ϵr ¼
4πϵ0W0ImaxlbL2

γð0ÞIA
; ð56Þ

where IA ≈ 17 kA is known as the Alfvén current [34], ϵ0 is
the dielectric constant of the vacuum andW0 ¼ wðs0 ¼ 1Þ is
thewakefield amplitude. For an accelerated beam the general
solution of the equation of motion (54) is given by [32]

xðz0; s0Þ ¼ ψðz0Þ−1=4
X∞
n¼0

ϵnr

�
x0hnðs0Þjnðκ; χÞ

þ
�
x00gnðs0Þ þ x0

G
4
hnðs0Þ

�
inðκ; χÞ

�

− ψðz0Þ−1=4
X∞
n¼0

ϵnþ1
r fnþ1ðs0Þinðκ; χÞ � δcðχÞ;

ð57Þ

where ψðz0Þ ¼ γðz0Þ=γ0 with γðz0Þ ¼ γð0Þð1þ Gz0Þ;
δc ¼ ψ1=4dc; inðκ; χÞ and jnðκ; χÞ are defined in terms of
Bessel functions and circular functions [35,36]; inðκ; χÞ �
δcðχÞ is the convolution between in and δc and χ is given by

χ ¼ 2z0ffiffiffiffiffiffiffiffiffiffiffi
ψðz0Þp þ 1

: ð58Þ

In this study, it is assumed that both x0 and x00 are time
independent. Then fnðs0Þ ¼ gnðs0Þ ¼ hnðs0Þ and is defined
by the recursion relation [36]

hnþ1ðs0Þ ¼
Z

s0

−∞
hnðs01ÞFðs01Þwðs0 − s01Þds01; ð59Þ

with h0ðs0Þ ¼ 1. It is also assumed that x00 ¼ 0 and dc ¼ 0,
such that the solution given by Eq. (57) reduces to

xðz0; s0Þ ¼ ψðz0Þ−1=4
X∞
n¼0

ϵnrx0hnðs0Þ

×

�
jnðκ; χÞ þ

G
4
inðκ; χÞ

�
: ð60Þ

As the XARA beamline currently has no magnetic lattice, it
can be considered to have a focusing with an infinite
wavelength, orwith κ → 0. It can be shown that the functions
hn become negligible for higher orders which causes the sum
inEq. (60) to converge quickly. In this study, only terms up to
and including n ¼ 2 are considered. The normalized wake-
function wnðs0Þ is given by

wnðs0Þ ¼
wðs0Þ
W0

; ð61Þ

where wðs0Þ is the transverse wakefunction with normalized
coordinates which has been averaged over all cells. For very
short bunches the transverse wake can be considered linear
across the bunch, i.e., wnðs0Þ ¼ s0, however this will intro-
duces errors in the final results. The normalized wake for the
XARA structure and the linear wake are shown in Fig. 44.
Once thexðz0; s0Þ andx0ðz0; s0Þ are known the emittanceof the
bunch can be calculated via

FIG. 44. Comparison between the normalized transverse wake-
function for the XARA structure and the linear approximation of
the wake.
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ϵðz0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hxðz0; s0Þ2ihx0ðz0; s0Þ2i − hxðz0; s0Þx0ðz0; s0Þi2

q
;

ð62Þ

where the averages are now given by

hxðz0; s0Þi ¼
Z

1

0

xðz0; s0Þds0: ð63Þ

Comparisons between the ELEGANT tracking code and
the analytical formulation have been compared in Figs. 45
and 46 for an initial offset of σx=2 ¼ 0.253 mm, showing x
and x0 respectively at the end of the linac (z0 ¼ 1). The
resultant normalized emittance growth of the bunch is
shown in Fig. 47. The analytical results show generally
good agreement with the ELEGANT results with a ∼12%
difference in the calculated normalized emittance at the end
of the linac z0 ¼ 1. In the ELEGANT simulations a cutoff of
3σz was used, resulting in a bunch length lb ¼ 0.6 mm. The
discrepancies between the ELEGANT and analytical results
may be explained by the fact that a flat current profile and a
linear wakefield are assumed in the analytical model.
However due to the short bunch lengths when compared
to the length of the cells, these approximations are not
unreasonable and the analytical formulation gives a good
representation of the normalized emittance growth. This
gives good reliability for the ELEGANT simulations per-
formed for the XARA structure as similar results can be
achieved analytically with reasonable approximations.

IX. CONCLUSION

In this paper, a solid framework has been created to
create a base design for an X-band linac which would be
used in the XARA upgrade of the existing CLARA
accelerator. Optimizations of the effective shunt imped-
ance, the external quality factor of a SLED rf setup, and the
modified Poynting vector were done using a numerical tool
based on the physics of an output rf pulse traveling through
a structure. Both linear and Gaussian tapered irises were
considered with a Gaussian taper ultimately being chosen
as it creates a reduced wakefield which is beneficial for a

FIG. 45. Comparison of xðz0 ¼ 1; s0Þ between the ELEGANT

tracking code results and the analytical formulation for a bunch
which has traveled through the 24 rf structures of XARA. Shown
in red is the raw phase space of the bunch, a fit of which is given
in solid green. The analytical result is shown in blue.

FIG. 46. Comparison of x0ðz0 ¼ 1; s0Þ between the ELEGANT

tracking code results and the analytical formulation for a bunch
which has traveled through the 24 rf structures of XARA. Shown
in red is the raw phase space of the bunch, a fit of which is given
in solid green. The analytical result is shown in blue.

FIG. 47. Comparison of the normalized emittance growth
where ϵðz0Þ given by Eq. (62) between the ELEGANT tracking
code results and the analytical formulation for a bunch which has
traveled through the 24 rf structures of XARA. Shown in red is
the normalized emittance calculated via ELEGANT. The analytical
result is shown in blue.
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future potential multibunch regime. Wakefield analysis was
carried out by considering the uncoupled transverse wake-
field in the structure and studying the initial fall off. The
usefulness of an analytical expression for the linear and
Gaussian uncoupled wakefields was explored by consid-
ering the Fourier Transform of the quantity Kdn=dω. It was
found that these expressions can be useful for a range of
linear tapers, standard deviations and frequency spreads at
small distances, and allow for rapid calculation for the
uncoupled wakefield which will allow the wakefields of
future designs to be yielded quickly. An optimal design
with σ ¼ 0.5 GHz,Δω=2π ¼ 1.5 GHz and L ¼ 0.5 mwas
chosen as a compromise between these parameters. Once a
design had been decided, the short-range transverse and
longitudinal wakefields were calculated via an impedance
field-matching technique [28] and executed by a FORTRAN

code [27]. Fitted wakefield functions were found which
depend on the iris radii, cell gap and length of the
individual cells and is valid over a range of these param-
eters. The numerical and fitted wakes were then calculated
for 7 representative cells for an example XARA structure.
These results have been benchmarked by calculating the
bunch wakes via a convolution of the point-charge wake
with the Gaussian charge distribution of the bunch. The
bunch wakes were then compared to simulations carried out
in the wakefield simulation programs ABCI and ECHO2D
with good agreement for both the longitudinal and trans-
verse wakefields. The average wakes were also found for
the short-range wakefields, as the average wake of the
individual cells gives a good approximation of the wake-
field of the whole structure. The forms of the wakefields
found will be utilized in any future designs for the XARA
structure and will make the general design process more
straightforward. ELEGANT simulations were then carried
out to study how the beam properties evolve as a σz ¼
0.1 mm electron bunch travels through a single rf cavity
structure and a lattice of 24 rf cavities. These beam
dynamics simulations prescribe a bunch charge limit which
is restricted by an allowable emittance dilution. The
behavior of the bunch with offset also gives a limit to
the allowed misalignment of the rf structures of the XARA
machine. These ELEGANT results have been compared
to an analytical formulation of the emittance growth for
a bunch charge of Qb ¼ 250 pC and a beam offset of
Cx ¼ σz ¼ 0.253 mm, where results within ∼12% at the
end of the linac were achieved. The results do not agree
well before the end of the linac and this is potentially due to
a combination of the assumptions made by the analytical
description and the first-order techniques used by ELEGANT.
The normalized emittance growth at the end of the XARA
linac as calculated via ELEGANT is ΔϵNx=ϵNx ¼ 270.8%.
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