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Virtual diagnostic (VD) is a computational tool based on deep learning that can be used to predict a
diagnostic output. VDs are especially useful in systems where measuring the output is invasive, limited,
costly or runs the risk of altering the output. Given a prediction, it is necessary to relay how reliable that
prediction is, i.e., quantify the uncertainty of the prediction. In this paper, we use ensemble methods and
quantile regression neural networks to explore different ways of creating and analyzing prediction’s
uncertainty on experimental data from the Linac Coherent Light Source at SLAC National Lab. We aim to
accurately and confidently predict the current profile or longitudinal phase space images of the electron
beam. The ability to make informed decisions under uncertainty is crucial for reliable deployment of deep
learning tools on safety-critical systems as particle accelerators.
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I. INTRODUCTION

Particle accelerators serve a wide variety of applications
ranging from chemistry, physics to biology experiments.
Those experiments require increased accuracy of diagnos-
tics tools to measure the beam properties during its
acceleration, transport, and delivery to users. Diagnostics
must keep pace with the advance of extreme beam con-
ditions and the increased experiments’ complexity, which
presents challenges to the current state-of-the-art [1,2].
Machine learning (ML) applications for accelerator diag-
nostics have been recently shown to improve beam stability
[3], identify glitchy accelerator components [4], perform
optics corrections and detect faulty beam position monitors
[5,6], and control in real-time by combining adaptive
feedback and ML [7].
Given readily available input data, virtual diagnostic

(VD) tools provide a shot-to-shot noninvasive measure-
ment of the beam in cases where the diagnostic has limited
resolution or limited availability [8–10]. VDs have the
potential to be useful in an experiment’s design, setup, and
optimization while saving valuable operation time. They
could also aid in interpreting experimental results, espe-
cially in cases in which current diagnostics cannot provide
necessary information.

Current VD provides predictive models based on train-
ing a neural network mapping between noninvasive diag-
nostic input to invasive output measurements [8,9,11]. This
type of mapping is known as supervised regression.
Previous work has demonstrated VD to predict the electron
beam current profile and longitudinal phase space (LPS)
distribution [12] along the accelerator using either scalar
controls [8] or spectral information [9] as the noninvasive
input to the VD. However, while current VD methods
provide mean prediction only, an essential component in
deploying the virtual diagnostic tool is to quantify the
confidence in the prediction, i.e., estimate an interval
presenting the uncertainty in prediction. A metric of
uncertainty and its reliable presentation provide a way of
making informed decisions, that becomes crucial in safety-
critical systems such as particle accelerators.
In general, there are two classes of uncertainty: epistemic

and aleatoric uncertainty [13]. Aleatoric, or statistical
irreducible uncertainty, is the uncertainty in the dataset
that arises from experimental error or inherent measure-
ment noise. Given the same set of inputs, we may observe
slightly different results. Epistemic uncertainty, also known
as systematic reducible uncertainty, is produced when the
model’s knowledge is limited or hindered, e.g., from
missing data. We aim to capture both types of uncertainty
in the VD tool and to incorporate them into the final
prediction. While the neural network can only make point
predictions about beam properties, we can use tools from
deep learning to better understand the uncertainty of the
predictions.
There are various ways to quantify uncertainty of

machine learning models for supervised regression prob-
lems. These include Bayesian model averaging approaches
such as Gaussian processes [14] and Bayesian neural
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networks (BNNs) [15], which learn distributions over the
parameters of the network. Compared to Gaussian proc-
esses, BNNs have the advantage that they can easily scale
to high dimensional inputs. However, BNNs are computa-
tionally expensive and require modifications to the training
procedure. Other non-Bayesian approaches widely used are
bootstrapping, ensembling [16,17] and quantile regression
[18,19]. Those non-Bayesian approaches are simple to
implement, could be easily parallelized to scale with large
amount of data, and yields high quality predictive uncer-
tainty estimates [20,21]. Ensembles are closely related to
Bayesian model averaging, and ensembles of neural net-
works can be seen as an ad hoc approximation of Bayesian
neural networks or Gaussian processes for specific archi-
tectures and training conditions [22–24]. When each
ensemble component is trained with random initialization
and a random data subset, the procedure is known as
bootstrap aggregation, or bagging. Bootstrapping is well
studied in the frequentist statistics literature and is closely
related to Bayesian statistics with certain priors [16,25,26].
In this paper, we apply deep learning tools to provide

confidence intervals for virtual diagnostic predictions. We
compare the predicted uncertainty learned by multiple
ensemble methods as well as quantile regression using
experimental data from the Linac Coherent Light Source
(LCLS) at SLAC National Lab [27]. We evaluate the
robustness of the ensemble methods to provide accurate
mean predictions as well as reliable uncertainty estimation.
The paper is organized as follows: in Sec. II we first

present the VD architecture. Then we discuss metrics to
evaluate the reliability of the prediction to be used online on
the particle accelerator. In Sec. III we demonstrate the
methods and compare them on two experimental datasets
from LCLS; 1D current profiles and 2D longitudinal phase
space images. The 1D current profile is a projection of the
LPS image. Finally, in Sec. IV we discuss reweighing the
datasets, and other neural network architectures to improve
the results.

II. METHODS

In this section we first present the virtual diagnostic (VD)
neural network architecture and the datasets. We then
present various ensemble and quantile methods to quantify
the uncertainty. Last, we present the metrics used to
evaluate the accuracy of the VD’s mean prediction and
uncertainty.

A. VD architecture and dataset

High brightness beam linacs typically operate in single-
pass, multistage configurations where a high-density elec-
tron beam formed in the rf gun is accelerated and
manipulated prior to delivery to users in an experimental
station. An example of such a facility is the LCLS XFEL at
SLAC where the electron beam traverses through an

undulator, and emits coherent x-ray pulses. Typically,
longitudinal phase space (LPS) is destructivelymeasured by
an X-band transverse deflecting cavity (XTCAV) [1,28]—
as shown in Fig. 1.
In this paper we used two experimental datasets: 2D LPS

images or 1D current profiles, measured at the XTCAV, as
the outputs, and the corresponding spectral information, as
can be collected by IR spectrometer, as an input. The 1D
current profile is a projection of an LPS image. The outputs
have been centered and cropped about their region of
interest as in Ref. [8]. Examples of the inputs and outputs
are shown in Fig. 2. Both datasets contain 4,046 shots and
were randomly shuffled and split 80% for training and
validation, and 20% for testing. We then normalized all
output profiles and images. The outputs shown in the paper
are all normalized.
The neural network (NN) architecture we used is a fully

connected feed-forward NN composed of three hidden
layers (200, 100, 50) with rectified linear unit activation
function. Other network architectures are discussed in
Sec. IV. For training we used a batch size of 32, 500
epochs and the Adam optimizer with a fixed learning rate of
0.001 [9]. Training the NNs with a Gaussian likelihood,

FIG. 1. Schematic of a generic, linac-driven light source.
Reproduced from [9].

FIG. 2. Example of VD input of spectrum in (a) and corre-
sponding outputs; either 1D current profiles in (b), or images of
longitudinal phase space (LPS)—examples of which are shown in
(c) and (d) for two different spectra input.
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i.e., to minimize the standard mean squared error (MSE)
loss function on a training set, yields symmetric uncertainty
intervals. To introduce asymmetric uncertainty intervals
relative to the mean value, we trained on quantiles of data as
described in Sec. II B. The open source Keras and
TensorFlow libraries were used to build and train the
NN module [29,30].

B. Uncertainty quantification methods

Various ways exist to estimate an interval presenting the
uncertainty in the neural network prediction. In what
follows, we describe a few ensemble methods, wherein a
collection of various neural networks is combined together.
In this case, the variance of the ensemble is an estimate of
the uncertainty. We then describe quantile regression to
predict multiple quantiles of the data. We also applied the
popular MC dropout technique [31]. However, we observed
a degraded mean prediction and inaccurate uncertainty
bounds compared to ensembling across the entire dataset.
Further improvement could combine ensembles and MC
dropout but this is beyond the scope of this paper.

1. Ensemble methods

Deep ensembles are ensembles of neural networks, each
initialized differently and optimized to converge independ-
ently of the others. Reference [20] has shown empirically
that explicit ensembling can result in improved uncertainty
estimates when they used large neural networks with
nonconvex loss surfaces. Deep ensembles are closely
related to Bayesian neural networks and Gaussian proc-
esses. For example, Ref. [24] has recently shown that with a
small adaptation to their training procedure, deep ensemble
components can be interpreted as draws from a Gaussian
process posterior with a certain kernel.
We investigated three ways of generating this ensemble:

using random initialization of the NN parameters, using a
random subset of the data (e.g., k-fold cross validation),
and bagging (e.g., using both). The predicted current
profile for a test shot I⃗predicted ¼ M−1PM

m¼1
⃗ipredicted;m

is the mean prediction of M neural network predictions
⃗ipredicted;m. The uncertainty is manifested as the standard
deviation of the neural network predictions

σ⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M−1 PM

m¼1ð⃗ipredicted;m − I⃗predictedÞ2
q

.

a.Random parameters initialization
Random initialization of the neural network parameters

(e.g., weights) is a promising approach for improving
prediction accuracy [32] and uncertainty [20]. It has been
recently shown that random initializations explore entirely
diverse solutions in function space [33] rather than collapse
to the same solution [22]. Popular initializations used in
many applications are the He and Glorot uniform distri-
butions [34,35]. Those initializations often lead to quick
and reliable convergence during training. However, to

create a more diverse ensemble of neural networks, a
random normal initialization has the potential to reduce the
amount of near identical solutions. Here, we initialized all
NN parameters as independent and identically distributed
random variables from N ð0; 0.05Þ when training on the
same predetermined training/validation data split. Glorot
uniform is used for initialization in all other parts of
this paper.

b.K-fold cross validation
Rather than using the same training/validation split for

each NN in the ensemble, we randomly select a subset of
the data. We fixed the seed for a Glorot uniform distribution
for all ensemble components. We split the training dataset
into K partitions for K neural networks. Using a different
partition for validating each model would yield a global
model that can generalize better since it has been trained/
validated usingmany subsets of the same data. This is amore
responsible way to validate models for ensembles [36].

c.Bagging
Bootstrap AGGregatING (bagging) is an ensemble

method that trains each NN on a different ‘bag’ of data.
Each bag randomly (with replacement) contains n0 out of n
possible data points where n0=n is typically ∼60%. All
ensemble components are initialized with a different Glorot
uniform seed, resulting in a NN model with both random
subsampling of the data and random initialization. Bagging
is a method commonly used to reduce variance and avoid
overfitting [37]. Figure 3(a) shows an example of the
measured current profile (normalized) I⃗measured, its mean
prediction I⃗predict and the uncertainty (�2σ⃗) of bagging with
16 ensemble components.

2. Quantile regression

Neural networks can be trained to predict multiple
quantiles of the data [18] by using a tilted loss function

LðζtjτÞ ¼
�
τζt if ζt ≥ 0

ðτ − 1Þζt if ζt < 0
ð1Þ

where ζt ¼ Imeasured;t − Ipredicted;t for each time index t. The
average loss over the entire shot of length T is
T−1PT

t¼1 LðζtjτÞ. In practice, a separate NN is used to
predict each quantile. Each is trained using the tilted loss
function but with a different τ value corresponding to the
desired quantile, 0.5 being the median prediction.
Figure 3(b) shows 19 quantiles between 0.05 and 0.95.

When plotting multiple quantile lines at once, we can gain
better insight into where the ground truth may lie. We used
the median quantile (τ ¼ 0.50) for calculating the MSE of
the prediction.
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C. Metrics for Evaluation

In order to compare different approaches to quantify
uncertainty, we need to have a way to evaluate the desirable
characteristics of the uncertainty. Those metrics of the
predictive uncertainty quality will be used in real-time
during the machine operations as well to indicate the
validation of the VD’s prediction. We used a custom
accuracy metric to evaluate the model’s performance in
capturing the ground truth. At each time index (t) in the
shot, we check whether the measured ground truth value
(Imeasured;t) was within an upper Iupper;t and lower Ilower;t
prediction bounds. We then weight it by the measured value
to penalize the near-zero noise while focusing on important
features in the signal. The prediction accuracy of a shot
with a length T is defined as:

Accuracy ¼
P

T
t¼1 αt · I

2
measured;tP

T
t¼1 I

2
measured;t

ð2Þ

where αt ¼ 1ðIlower;t < Imeasured;t < Iupper;tÞ. Unless other-
wise stated, for a symmetric loss function we used bounds
of Iupper;t; Ilower;t ¼ Ipredicted;t � 2σt where σt is predictive
standard deviation at time t. For the tilted loss function, the
NN predictions using τ ¼ 0.05 and τ ¼ 0.95 were used for
Ilower and Iupper respectively. We chose to use �2σ of the
ensembles and 0.90 (0.95-0.05) of the quantiles for these
calculations because we wanted to capture ≥90% of the
uncertainties correlated with each method.

Since the measured ground truth will not be available
when operating themachine in real-time, in order to discern a
good prediction from a poor prediction we correlate between
the mean squared error between the measured and predicted
values—MSE ¼ T−1PT

t¼1 ðImeasured;t − Ipredicted;tÞ2—for a
vector length of T and the maximum predicted uncertainty
σmax ¼ maxfσ⃗g. A positive correlation indicates that the
model can accurately inform which predictions have low vs
high uncertainty before seeing the ground truth. If choosing
to retain/reject predictions in practice, a retention curve can
be used to set a proper threshold for deployment; we retain
(and predict) shots with maximum standard deviation per
shot smaller than a given threshold.

III. RESULTS

In this section, we evaluate the methods described in
Sec. II B with the metrics discussed in Sec. II C on the 1D
current profiles. Next, we apply those techniques to the 2D
LPS image dataset. Finally, we discuss problems that are
unique to the images and how they can be relieved.

A. 1D current profiles

Before exploring the quantified uncertainty using the 1D
current profile dataset, we first found the ensemble method
which yielded the best MSE on the mean prediction.
Figure 4 shows the MSE vs ensemble size for the three
ensemble methods. Bagging has a better MSE than random
initialization and performs slightly worse than the K-fold
ensemble for small ensemble size. Since bagging with 16
ensemble components yielded the smallest MSE, we
evaluated this model’s performance using the correlation
plot and retention curve described in section II C.
Figure 5 shows retention curve, which can be used to set

a rejection threshold for deployment of the VD. Here,
MSEθ is the average MSE for all test shots with σmax lower
than a given threshold θ displayed on the color bar. The
Retentionθ on the x-axis describes the percentage of test
shots we retain vs reject in the process of choosing a
threshold θ. If a VD shot prediction yields a σmax higher
than the set θ value, we ignore the prediction.

FIG. 3. Normalized measured current profile (red) of shot #729
and its prediction (blue) using (a) bagging with 16 ensembles and
with �2σ uncertainty interval, and (b) quantile regression with
90% uncertainty interval.

FIG. 4. MSE vs ensemble size for three ensemble methods:
Random initializations (red), K-fold cross validation (green),
bagging (blue) with standard deviation from five runs.
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The retention curve is helpful for balancing the rejection/
threshold trade-off for a specific use case and is comparable
to a receiver operating characteristic (ROC) curve used for
binary classification tasks [38]. In our case, we see a
desirable positive correlation between MSEθ and
Retentionθ. In deployment, the retention curve can be
interpreted as follows: if the experimental conditions can
tolerate shots with averaged MSEθ ≤ 2e-5, by choosing
θ ¼ 1.97e-2, we can retain 80% of the shots and yield a low
MSEθ of 1.85e-05.
Over the entire test set, the average MSE of bagging with

16 ensemble components was 3.65e-05 with an accuracy of
0.452 using �1σ and 0.706 using �2σ for computing α in
Eq. (2). The average MSE for quantile regression method
(using τ ¼ 0.50) was 4.05e-05. Accuracy was 0.973 using
quantiles 0.05-0.95 and 0.648 using quantiles 0.25–0.75.
Figure 6(a) shows a test shot and the predicted uncertainty
from the bagging ensemble (�2σ) and the 90% of the
quantiles to represent epistemic and aleatoric uncertainty
respectively [39].
In order to evaluate the robustness of the model we use it

to predict an out-of-distribution (OOD) sample. This means
that the test shot has a different probability distribution than
the training dataset [40]. Therefore, it is expected that the
model would manifest higher prediction uncertainty. In
particle accelerators, shifts in the distribution could come,

for example, from a different operation mode or slow drift
over time. In those cases, it is critical to have reliable
predictive uncertainty. As an example, we compare a
prediction of a test shot with the same distribution as the
training dataset [Fig. 6(a)], and a prediction for an out-of-
distribution input from a different operation mode of the
accelerator [Fig. 6(b)]. The spectrum inputs to the VD are
shown in Fig. 6(c). It is evident that the �2σ interval from
the ensembling method captures most of the uncertainty in
the measured OOD shot.
This shows that the VD can identify out-of-distribution

shots, wherein the quantiles and ensemble predict abnor-
mally large uncertainty ranges, and these shots can be
rejected. Previous works suggest that we can treat the
predictive standard deviation from ensembles as epistemic
uncertainty [20], and quantile regression as doing maxi-
mum likelihood with an asymmetric Laplace distribution,
hence capturing aleatoric uncertainty [41]. Further develop-
ment of this technique would allow users to know whether
the predicted uncertainty comes from lack of useful data, or
variation within that training data.

B. 2D LPS images

We used similar architecture to train ensembles with 2D
longitudinal phase space images. The average MSE of the
entire dataset is 6.714e-04, and the accuracy with �1σ is
0.291, and with �2σ is 0.538. The accuracy of the image
predictions was calculated using Eq. (2) evaluated across an
additional dimension:

Accuracy ¼
PT;E

t;e¼1 αt;e · L
2
measured;t;e

PT;E
t;e¼1 L

2
measured;t;e

ð3Þ

where αt;e ¼ 1ðjLmeasured;t;ej < Lpredicted;t;e � 2σt;eÞs.
Figure 7 shows two examples of shots in the test set. The

panels from left to right show the measured LPS image, the
difference between the measured and predicted, the accu-
racy metric [Eq. (2)], and the prediction uncertainty (σ).
The blue and red colors on the difference panel indicates
the positive and negative differences of the predicted LPS

FIG. 5. Retention curve with the threshold (θ) set by σmax to
evaluate the bagging ensemble method. When a retentionθ½%� of
the predictions are accepted, MSEθ indicates the VD performance
on that specific prediction subset.

FIG. 6. Comparison of (a) test shot in the same distribution as the training set, and (b) out-of-distribution (OOD) test shot. The
uncertainty intervals are predicted with an ensemble model of bagging with 16 components and 90% quantiles (dashed). The spectra of
both shots are compared in (c).
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respectively. The red mask on the accuracy panel indicates
regions where the measured value falls within the predicted
uncertainty.
The two examples show predictions with translational

error (shot #762 in 7a) and shape error (shot #789 in 7b)
with corresponding MSEs of 2.737e-4 and 1.096e-3. We
classified a prediction as one with translational error when
the positive and negative differences are shifted with
respect to each other. For the translation error in shot
#762, shifting the mean prediction up by a single pixel
brings a 85.0% decrease in MSE and a 41.8% increase in
accuracy. In order to determine how to shift the prediction,
the “center of mass” of the prediction and the ground truth
are calculated and then translated to match. In Sec. IV, we
further discuss ways to leverage the spatial connectivity in
these images to reduce such errors.

IV. DISCUSSION

In this section we discuss two techniques aiming to
improve the LPS image neural network predictions. First
we present the concept of a transposed convolution which
can leverage the spatial connectivity in each data sample to
produce better predictions. Then we present a specific
“bottleneck” NN architecture that was applied and the
insights derived from it.

A. Transposed convolutions

Transposed convolutions are a mathematical operation
that allow for the upscaling of data. Filters are trained to
learn features which are then projected on to a feature map
larger than the input. Transposed convolutions can be
especially useful in regression tasks where the output

involves important features and connectivity [42]. The
2D outputs of the LPS image dataset are essentially images
rather than vectors of unrelated measurements. Therefore, it
makes sense to model architectures better fit for image
generation which take advantage of the structured nature of
the output. If we train filters to learn specific features in the
dataset (tails, curves, bright spots, etc.), the NN model
would be better equipped to handle the dataset at hand.

B. Bottleneck architecture

Bottleneck-shaped architecture is a NN design in which
the number of neurons in the middle layer is smaller than in
the other layers. The number of neurons per layer gradually
decrease from the input to the middle layer, and then
gradually increase from the middle layer to the output. The
first part serves as an encoder or compressor which
condenses essential information, and the second part serves
as a decoder. The middle layer allows for the input to be
recorded as an N dimensional vector. This embedding
vector can be viewed as a representation of the instance in
thoseN dimensions, with similar data points having a small
distance between them, and distinct ones being very
distant. Bottleneck architectures can reduce over-fitting
by decreasing the system complexity [43].
The encoder was a dense NN with layers of size 256,

128, and an embedding dimension of N ¼ 64. The decoder
had transposed convolution layers of 8 2 × 2 filters, 8 4 × 4
filters, and 16 16 × 16 filters. Using this architecture, we
trained a NN which achieved a negligibly improved
average MSE of 8.833e-4. Nevertheless, a strength of
the bottleneck architecture is its ability to condense
information about the input and output relation into a
single vector. In a high dimensional space, we expect that

FIG. 7. 2D longitudinal phase space (LPS) measurements with (a) translational error and (b) shape error examples.
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similar shots would aggregate close to each other, and
distinctly different shots would be distant from one another.
In order to visualize this, we used the t-SNE clustering

algorithm [44] on all the embedding vectors for shots in the
test set. After investigating multiple parameter values, we
used a perplexity of 30, a learning rate of 200, and observed
that the algorithm converged after 1000 iterations. Figure 8
shows a visualization of the latent space of these vectors
using two components. The maximum current for each shot
is shown in color bar. The six examples shown illustrate
that shots are grouped by shape and maximum current in
the latent space.

V. CONCLUSIONS

In this paper we presented several deep learning
approaches to incorporate uncertainty in the virtual diag-
nostic (VD) tool. Deep learning models such as neural
networks have great predictive power, but they often suffer
from over-fitting and provide over-confident predictions.
Here, we compared three ensemble methods and quantile
regression as a way to provide accurate mean predictions as
well as correctly capturing confidence intervals.
Specifically, we considered a VD trained on non-invasive
spectral measurements of the electron beam to predict the
2D longitudinal phase space or a 1D current profile.
The UQ methods presented in the paper were shown to

be robust against out-of-distribution inputs by providing
un-confident predictions on data it was not trained with. In
comparison to a simple dense neural network, it was shown

that a more tailored architecture can be used to exploit
information about the data and offer better explanation
during inference. A principled approach to quantifying
uncertainty is crucial for the deployment of the virtual
diagnostic tool, especially for safety-critical systems as
particle accelerators.
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APPENDIX: REWEIGHTING THE CURRENT
PROFILE DATASET

Upon further analysis of the dataset, it became clear that
certain current profile features are under-represented. As a
result, the prediction of profiles with higher peak current
presents high MSE. Typically, using models trained on this
unbalanced data would be reasonable assuming nominal
usage of the machine. However, although we have fewer
examples of high peak shots, we would like to train the
model to give them equal importance as the lower peak
shots. Therefore, we weighted the output (current profile)
such that we gave instances with lower representation more
weight during training, and instances with overrepresented
samples less weight. Reweighting the data not only greatly
reduced the MSE for many shots with high peak shots, but
it also slightly reduced the overall MSE in other cases.
In order to determine the weight for each shot, we made a

100-bin histogram of Imax for all S ¼ P
100
i¼1 ni shots in the

training set. Denoting ni as the number of shots in the ith
bin, the weight of the shots in that bin is wi ¼ c · ðniÞ−0.5
with a normalizing constant c ¼ S · ðP100

i¼1 n
0.5
i Þ−1. We tried

other constants for the weighting power, but found that 0.5
as weighting constant performed the best. The overall MSE
of the test set was 4.601e-5 for the unweighted NN, and
4.478e-5 for the reweighted NN (both averaged over
5 runs).

[1] P. Craievich et al., Phys. Rev. Accel. Beams 23, 112001
(2020).

[2] B. Marchetti et al., Sci. Rep. 11, 3560 (2021).
[3] S. C. Leemann, S. Liu, A. Hexemer, M. A. Marcus, C. N.

Melton, H. Nishimura, and C. Sun, Phys. Rev. Lett. 123,
194801 (2019).

[4] C. Tennant, A. Carpenter, T. Powers, A. S. Solopova, L.
Vidyaratne, and K. Iftekharuddin, Phys. Rev. Accel. Beams
23, 114601 (2020).

FIG. 8. t-SNE clustering of the compressed vectors of the
bottleneck architecture for all test shots, with six LPS examples of
the outputs shown on the top. Notably, shots are grouped by
shape and maximum current in the latent space.

UNCERTAINTY QUANTIFICATION FOR VIRTUAL … PHYS. REV. ACCEL. BEAMS 24, 074602 (2021)

074602-7

https://doi.org/10.1103/PhysRevAccelBeams.23.112001
https://doi.org/10.1103/PhysRevAccelBeams.23.112001
https://doi.org/10.1038/s41598-021-82687-2
https://doi.org/10.1103/PhysRevLett.123.194801
https://doi.org/10.1103/PhysRevLett.123.194801
https://doi.org/10.1103/PhysRevAccelBeams.23.114601
https://doi.org/10.1103/PhysRevAccelBeams.23.114601


[5] E. Fol, R. Tomás, J. Coello de Portugal, and G. Franchetti,
Phys. Rev. Accel. Beams 23, 102805 (2020).

[6] P. Arpaia, G. Azzopardi, F. Blanc, G. Bregliozzi, X. Buffat,
L. Coyle, E. Fol, F. Giordano, M. Giovannozzi, T. Pieloni,
R. Prevete, S. Redaelli, B. Salvachua, B. Salvant, M.
Schenk, M. S. Camillocci, R. Tomás, G. Valentino, F. Van
der Veken, and J. Wenninger, Nucl. Instrum. Methods
Phys., Res., Sect. A 985, 164652 (2021).

[7] A. Scheinker, A. Edelen, D. Bohler, C. Emma, and A.
Lutman, Phys. Rev. Lett. 121, 044801 (2018).

[8] C. Emma, A. Edelen, M. J. Hogan, B. O’Shea, G. White,
and V. Yakimenko, Phys. Rev. Accel. Beams 21, 112802
(2018).

[9] A. Hanuka, C. Emma, T. Maxwell, A. Fisher, B. Jacobson,
M. J. Hogan, and Z. Huang, Nat. Sci. Rep. Ochanomizu
Univ. 11, 2945 (2021).

[10] A. Sanchez-Gonzalez et al., Nat. Commun. 8, 15461 (2017).
[11] C. Emma, M. D. Alverson, A. Edelen, A. Hanuka, M.

Hogan, B. O’Shea, D. Storey, G. White, and V. Yakimenko,
in Proceedings of the 8th International Beam Instrumenta-
tion Conference (JACoW, Geneva, 2019), https://doi.org/
10.18429/JACOW-IBIC2019-THBO01.

[12] D. Marx, R. Assmann, P. Craievich, U. Dorda, A. Grudiev,
and B. Marchetti, Nucl. Instrum. Methods Phys. Res., Sect.
A 909, 374 (2018).

[13] A. Kendall and Y. Gal, What uncertainties do we need in
bayesian deep learning for computer vision?, arXiv:
1703.04977.

[14] C. E. Rasmussen, in Summer School on Machine Learning
(Springer, New York, 2003), pp. 63–71.

[15] D. J. MacKay, Bayesian methods for adaptive models,
Ph.D. thesis, California Institute of Technology, 1992.

[16] P. J. Bickel and D. A. Freedman, Ann. Statistics 9, 1196
(1981).

[17] B. Clarke, J. Mach. Learn. Res. 4, 683 (2003).
[18] L. Torossian, V. Picheny, R. Faivre, and A. Garivier, A

review on quantile regression for stochastic computer
experiments, arXiv:1901.07874.

[19] K. Sriram, R. Ramamoorthi, and P. Ghosh, Bayesian
Analysis 8, 479 (2013).

[20] B. Lakshminarayanan, A. Pritzel, and C. Blundell, in Adv.
Neural Inf. Process. Syst. (NeurIPS, San Diego, CA,
2017), pp. 6402–6413.

[21] T. G. Dietterich, in Multiple Classifier Systems (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2000) pp. 1–15.

[22] Y. Gal, Uncertainty in deep learning, Ph.D. thesis,
University of Cambridge, 2016.

[23] L. Smith and Y. Gal, Conference on Uncertainty in
Artificial Intelligence (2018).

[24] B. He, B. Lakshminarayanan, and Y.W. Teh, arXiv:2007
.05864.

[25] B. Efron, The Jackknife, the Bootstrap and other Resam-
pling Plans (SIAM, Philadelphia, PA, 1982).

[26] B. Efron and R. J. Tibshirani, An Introduction to the
Bootstrap (CRC Press, Boca Raton, FL, 1994).

[27] P. Emma et al., Nat. Photonics 4, 641 (2010).
[28] D. Marx, R. Assmann, P. Craievich, U. Dorda, A. Grudiev,

and B. Marchetti, Nucl. Instrum. Methods Phys., Res.,
Sect. A 909, 374 (2018).

[29] F. Chollet et al., Keras, https://keras.io (2015).
[30] M. Abadi et al., TensorFlow: Large-scale machine learning

on heterogeneous systems, (2015), software available from
tensorflow.org.

[31] Y. Gal and Z. Ghahramani, in Proceedings of The 33rd
International Conference on Machine Learning (PMLR,
New York City, NY, 2016), pp. 1050–1059.

[32] S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and
D. Batra, Why m heads are better than one: Training a
diverse ensemble of deep networks, arXiv:1511.06314.

[33] S. Fort, H. Hu, and B. Lakshminarayanan, Deep ensem-
bles: A loss landscape perspective, arXiv:1912.02757.

[34] K. He, X. Zhang, S. Ren, and J. Sun, in Proceedings of the
2015 IEEE International Conference on Computer Vision
(ICCV), ICCV ’15 (IEEE Computer Society, New York,
2015), p. 1026–1034.

[35] X. Glorot and Y. Bengio, in Proceedings of the Thirteenth
International Conference on Artificial Intelligence
and Statistics, Proceedings of Machine Learning Re-
search, Vol. 9, edited by Y.W. Teh and M. Titterington
(PMLR, Chia Laguna Resort, Sardinia, Italy, 2010),
pp. 249–256.

[36] S. Raschka, Model evaluation, model selection, and algo-
rithm selection in machine learning, arXiv:1811.12808.

[37] D. Opitz and R. Maclin, J. Artif. Intell. Res. 11, 169–198
(1999).

[38] T. Gneiting and P. Vogel, Receiver operating characteristic
(roc) curves, arXiv:1809.04808.

[39] N. Tagasovska and D. Lopez-Paz, in Adv. Neural Inf.
Process. Syst. (NeurIPS, San Diego, CA, 2019).

[40] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S.
Nowozin, J. V. Dillon, B. Lakshminarayanan, and J. Snoek,
Advances in neural information processing systems,
arXiv:1906.02530.

[41] Tishby, E. Levin, and S. Solla, in International 1989 Joint
Conference on Neural Networks (IEEE, Piscataway, NJ,
1989), pp. 403–409, Vol. 2.

[42] V. Dumoulin and F. Visin, A guide to convolution
arithmetic for deep learning, arXiv:1603.07285.

[43] G. Perin, I. Buhan, and S. Picek, IACR Cryptol. ePrint
Arch. 2020, 58 (2020).

[44] S. Arora, W. Hu, and P. K. Kothari, in Proceedings
of the 31st Conference On Learning Theory, Proceedings
of Machine Learning Research, Vol. 75, edited by S.
Bubeck, V. Perchet, and P. Rigollet (PMLR, Stockholm,
Sweden, 2018), pp. 1455–1462.

CONVERY, SMITH, GAL, and HANUKA PHYS. REV. ACCEL. BEAMS 24, 074602 (2021)

074602-8

https://doi.org/10.1103/PhysRevAccelBeams.23.102805
https://doi.org/10.1016/j.nima.2020.164652
https://doi.org/10.1016/j.nima.2020.164652
https://doi.org/10.1103/PhysRevLett.121.044801
https://doi.org/10.1103/PhysRevAccelBeams.21.112802
https://doi.org/10.1103/PhysRevAccelBeams.21.112802
https://doi.org/10.1103/PhysRevAccelBeams.21.112802
https://doi.org/10.1103/PhysRevAccelBeams.21.112802
https://doi.org/10.1038/ncomms15461
https://doi.org/10.18429/JACOW-IBIC2019-THBO01
https://doi.org/10.18429/JACOW-IBIC2019-THBO01
https://doi.org/10.1016/j.nima.2018.02.037
https://doi.org/10.1016/j.nima.2018.02.037
https://arXiv.org/abs/1703.04977
https://arXiv.org/abs/1703.04977
https://doi.org/10.1214/aos/1176345637
https://doi.org/10.1214/aos/1176345637
https://doi.org/10.1162/153244304773936090
https://arXiv.org/abs/1901.07874
https://doi.org/10.1214/13-BA817
https://doi.org/10.1214/13-BA817
https://arXiv.org/abs/2007.05864
https://arXiv.org/abs/2007.05864
https://doi.org/10.1038/nphoton.2010.176
https://doi.org/10.1016/j.nima.2018.02.037
https://doi.org/10.1016/j.nima.2018.02.037
https://keras.io
https://keras.io
https://arXiv.org/abs/1511.06314
https://arXiv.org/abs/1912.02757
https://arXiv.org/abs/1811.12808
https://doi.org/10.1613/jair.614
https://doi.org/10.1613/jair.614
https://arXiv.org/abs/1809.04808
https://arXiv.org/abs/1906.02530
https://arXiv.org/abs/1603.07285

