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High fidelity charged particle beam dynamics, especially if collisional, require specialized numerical
methods. The challenges include the ability to deal with very large particle numbers, long-range
electromagnetic forces, and vast spatial and timescales. We developed a novel algorithm to address these
challenges. The main characteristics of the algorithm are Strang splitting to separate near and far forces, the
fast multipole method to lower the computational cost of the far region, and the Simò integrator to capture
all close encounters efficiently in the near region. The algorithm is fully adaptive both in space and time,
while maintaining symplecticity to machine precision. Its performance is illustrated with two challenging
examples from nonlinear multiparticle beam dynamics, including the first electron cooling simulations
based on first principles.
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I. INTRODUCTION

Charged particle beams are ensembles of close-by
electrons or ions in directed motion. Their science and
applications underlie vast areas of science, technology, and
industrial processes [1]. Hence, it is important to be able to
accurately and efficiently model, simulate, and optimize
their behavior. The typical beam consists of a very large
number of particles, but much smaller than Avogadro’s
number. Most beams contain less than one trillion particles
and some contain just a few thousand. Also, particles
within beams interact through long-range Coulomb forces
and are subjected to externally imposed electromagnetic
fields. Moreover, the typical application of beams requires
understanding the qualitative and quantitative long-time
dynamical behavior, including low levels of beam loss to
their surroundings. Therefore, the associated numerical
methods are very challenging due to the large particle
numbers that interact pairwise, vast spatial and timescales
present in the dynamics, and maintenance of the sym-
metries present in the time-continuous system, the most
important being symplecticity.
The modeling and simulation of these complex systems

can take several forms, based on the level of accuracy needed
in the particular application. One way to categorize these
methods is based on whether the method is collision-less or

captures collisions. If warranted to use, the collision-less
methods are less challenging and can deal with larger
particle numbers and longer simulation times. The main
idea is to coarse-grain a distribution of particles to be
represented by their average fields. Then, this average field
can be applied to a test particle as a smooth external field.
Representatives of these methods are the Vlasov solvers,
which model the single-particle phase space distribution’s
propagation in time by the Vlasov equation [2], the particle-
in-cell (PIC) methods that solve the Poisson equation on a
mesh [3], the softenedN-body solvers, which use amodified
Coulomb force to reduce the effect of the artificial close
encounters [4], and the so-called basis function methods,
which model the beam distribution as a series in some basis
functions combined with the moment method [5]. These
methods are called collision-less mean-field methods. Both
the force computation and time stepping complexity are
reduced for these methods.
On the other hand, methods that accurately capture

collisions are much more challenging. Clearly, these
methods need algorithms that take into account particle-
to-particle interactions directly in full detail. If in addition
one would like to preserve the geometric features of the
time-continuous system in the discretization, the feat seems
almost impossible. Indeed, the well-known Hamiltonian
formulation of a single classical point-charge in external
electromagnetic fields that satisfy Maxwell equations
cannot be extended to a collection of relativistic, interacting
particles [6]. There may be workaround solutions by
reconsidering the self-fields as external, and approximating
the dynamics by an iterative step-wise solution of fields and
distribution advancement in time, respectively. Here, we are
interested in collisional methods, but we take a different
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approach, which works well for charged particle beams;
namely, we work in a boosted frame where the relative
motion is nonrelativistic [7]. This is often possible by the
very definition of particle beams, and it simplifies an
electrodynamics problem to a combined electrostatic prob-
lem accompanied by relativistic transformations. In this
approach, the straightforward Newtonian method is ideal,
where the particles interact merely by the Coulomb force.
Equivalently, the instantaneous scalar potential computa-
tion is sufficient to describe the dynamics.
To this end, the naive, direct, particle-to-particle method

is one solution. However, since it scales quadratically with
the number of particles [8], it is unfeasible for large particle
numbers. Modifications of some mean field methods are
available that more or less ad hoc capture some effects of
the collisions. Examples are the Boltzmann, Fokker-Planck
or Langevin approaches [9–11], the particle-particle par-
ticle-mesh (P3M) method and its variants [12], or the
analytical binary collision model [13]. While being the
most accurate method, indeed numerically exact, the direct
method is also the most inefficient. In order to capture the
collisional effects accurately and efficiently, new methods
were needed. Currently, there are several so-called fast
methods for force computation that scale better than
quadratically with the number of particles. Most of these
methods can be categorized as hierarchical space subdivi-
sion methods and include tree methods such as Barnes-Hut
[14], cluster methods [15], and methods that combine both
into fast multipole methods (FMM) [16]. The FMM
achieves linear scaling and offers the optimal solution
for the force computation, at least in the high accuracy
regime [17]. We developed a novel fully adaptive FMM
algorithm that is well suited to be incorporated in colli-
sional dynamics problems and that is also applicable to
softened Coulomb potentials [18].
However, choosing the optimal time stepping method is

still an outstanding issue, even if the force can be computed
efficiently at each moment in time. There is a vast literature
on numerical integrators [19], including for N-body prob-
lems [20], but how to pick the optimal integrator is still far
from clear [21]. Based on a theorem of Simò [22] and aided
by differential algebraic methods [23], we previously
developed a collisional numerical integrator, the Simò
integrator, with some provably optimal behavior [24].
This integrator is variable order and adaptive with auto-
matic selection of particle-by-particle optimal order and
time step to minimize computational cost given an a priori
user-selected tolerance for error. It also has dense output,
eliminating step rejection completely. The drawback of the
integrator is its quadratic scaling with the particle number.
Therefore, it is natural to try to combine the FMM for the

force computation with the Simò integrator for the time
stepping. Indeed, this is straightforward. However, it would
require an FMM call per smallest time step (the time step
associated with the particle that has the smallest time step at

each simulation time moment). The solution we propose is
to use splitting [19] to alleviate the problem. The splitting is
into the sum of two parts: near and far forces. The full
simulation is integrated with a second order accurate Strang
splitting [25] with a relatively long and constant time step.
The far part is solved exactly, with the approximate forces
given by the FMM. This is justified by the fact that
relatively large position changes of particles in the far
region modify the far fields little, and the differential
equations of the far region can be solved analytically.
This allows the reduction of the number of FMM calls by a
significant margin. By definition, particles from the far
region cannot have a close encounter with a given particle
in the allotted time. Particles in the near region are
integrated with the Simò integrator, and all possible close
encounters are captured. This piece of the solution cannot
be solved analytically exactly, but the error can be reduced
to machine precision. Since the motion of charged particles
in electromagnetic fields is Hamiltonian, another main
advantage of applying Strang splitting is the preservation
of symplecticity, a well-known geometrical property of the
time-continuous flow that needs to be preserved in long-
term simulations [19,26]. While there are many studies on
the use of symplectic integrators for beam dynamics such
as [27–32], it is exceedingly difficult to preserve symplec-
ticity with adaptive integrators [33] and practically impos-
sible for beams consisting of millions or billions of
particles. In addition, it is well-known from the theory
of splitting methods of symplectic integration that the
combination of exact and numerical flows do not produce
symplectic flows in general [19]. Hence, the numerical
piece of the solution needs to be solved to machine
precision, resulting in preservation of symplecticity of
the total solution to machine precision. The total computa-
tional cost is reduced by a significant factor in this process.
According to this discussion, splitting is still necessary for
an efficient algorithm regardless of symplecticity. For
applications where maintaining symplecticity is not essen-
tial, the accuracy of the Simò integrator can be set to lower
than machine precision and give solutions that are not
symplectic.
In this paper, we present our collisional numerical

method, as described above, that we termed: particles’
high-order adaptive dynamics (or PHAD). Our preliminary
work toward the development of PHAD was presented
in [34–37]. The main components of PHAD are: the Strang
splitting method, the fast multipole method, and the Simò
integrator. The resulting algorithm is an accurate and
efficient collisional simulation of charged particle beams
in external electromagnetic fields that is symplectic to
machine precision and is provably the best in reaching an
a priori set error level with minimized computational cost.
We also illustrate its performance with applications to
ultracold multibeamlet dynamics and the first electron
cooling simulations based on a microscopic approach.
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In the remaining sections of the paper, we describe the main
components of the PHAD algorithm: the splitting method
in Sec. II; the fast multipole method and the long-range
interactions in Sec. III; the Simò integrator and short-range
interactions in Sec. IV; and the algorithm’s implementation
in Sec. V. We also provide several challenging examples
taken from beam physics in Sec. VI; we finally conclude
with a brief summary in Sec. VII.

II. EQUATIONS OF MOTION
AND SPLITTING METHOD

The motion of the charged particles in a beam is
governed by the Coulomb force that arises from their
mutual interactions (self-force) and Lorentz force of the
external electromagnetic forces that guide and accelerate
the beam in particle accelerators. Each particle in the beam
experiences a force that is the sum of the self Coulomb
force and the external Lorentz force.
Assuming that the longitudinal motion of the charged

particle beam is along the z-direction and that the particles

motion could be relativistic, the particles are observed to
move at a velocity vz ¼ βc in the laboratory (lab) frame. In
this frame, the external electromagnetic forces are given
and can be computed for an individual particle independ-
ently from other particles’ positions. In the beam rest frame,
the particles are regarded as stationary and the magnetic
field is practically zero. Therefore, to derive the equations
of motion, we calculate the electrostatic self-forces in the
rest frame and use the Lorentz transformation to transform
them to the lab frame to be combined with the external
forces.
For a particle i of charge qi and mass mi, the resulting

equations of motion for position and momentum are

_xi ¼
cðpxiiþ pyijþ pzikÞ

ðm2
i c

2 þ p2
xi þ p2

yi þ p2
ziÞ1=2

ð1Þ

and

_pi ¼ qi

�
1

4πϵ0

XN
j¼1
j≠i

qjððxi − xjÞiþ ðyi − yjÞjþ γ2ðzi − zjÞkÞ
γ½ðxi − xjÞ2 þ ðyi − yjÞ2 þ γ2ðzi − zjÞ2�3=2

þ Eþ vi × B

�
; ð2Þ

where γ is theLorentz relativistic factor, c is the speed of light
invacuum, ϵ0 is thevacuum permittivity, andE andB are the
external electric andmagnetic fields, respectively. A detailed
derivation of the equations of motion is provided in [37].
Since the equations of motion (1) and (2) deal with very

small quantities such as particles’ charges and masses, we
scale the equations by some physical quantities in order to
preserve numerical stability. We define the charge factor
ni ¼ qi=q where q is the elementary charge, and the mass
factor fi ¼ mi=m with m being the proton’s mass. For the

other variables, we employ the accent “^” to denote a scaled
variable throughout as follow: t̂ ¼ tc, p̂i ¼ pi=mc, and
v̂i ¼ vi=c. Therefore, we arrive to the following scaled
equations of motion

_xi ¼
p̂xiiþ p̂yijþ p̂zik

ðf2i þ p̂2
xi þ p̂2

yi þ p̂2
ziÞ1=2

; ð3Þ

and

dp̂i

dt̂
¼ qni

mc2

�
q

4πϵ0

XN
j¼1
j≠i

njððxi − xjÞiþ ðyi − yjÞjþ γ2ðzi − zjÞkÞ
γ½ðxi − xjÞ2 þ ðyi − yjÞ2 þ γ2ðzi − zjÞ2�3=2

þ Eþ cv̂i ×B

�
: ð4Þ

A. Strang splitting

In a beam consisting of N particles, there are 6N
equations to be solved. To write these 6N equations in a
more compact form, we define the vector

Y ¼ ½x1y1z1px1py1pz1…xNyNzN pxNpyN pzN �T

in R6N . The function F in the initial value problem (IVP)

�
_Y ¼ FðYÞ
Yð0Þ ¼ Y0

ð5Þ

is given by the right-hand sides of (3) and (4) above.
Our algorithm is based upon applying Strang splitting

[19, pp. 47–50] [25] to the equations of motion (5).
Theorem 1: (Strang splitting) Suppose the initial value

problems
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�
_y ¼ g½1�ðyÞ
yð0Þ ¼ y0

and

�
_y ¼ g½2�ðyÞ
yð0Þ ¼ y0

have exact solutions ϕ½1�
t ðy0Þ and ϕ½2�

t ðy0Þ for any choice of
y0 ∈ Rn. Then

ϕt ¼ ϕ½2�
t=2 ∘ ϕ½1�

t ∘ ϕ½2�
t=2ðy0Þ ð6Þ

is a second order approximation of the solution to the initial
value problem

�
_y ¼ g½1�ðyÞ þ g½2�ðyÞ
yð0Þ ¼ y0

:

For a fixed time step h, iterating (6) gives an approximate
solution

ϕ½2�
h=2 ∘ ϕ½1�

h ∘ ϕ½2�
h=2 ∘ ϕ½2�

h=2 ∘ ϕ½1�
h ∘ ϕ½2�

h=2 ∘ � � � ∘ ϕ½2�
h=2 ∘ ϕ½1�

h ∘ ϕ½2�
h=2 ∘ ϕ½2�

h=2 ∘ ϕ½1�
h ∘ ϕ½2�

h=2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k compositions of ϕ½2�

h=2∘ϕ½1�
h ∘ϕ½2�

h=2

ðy0Þ ð7Þ

at time t ¼ kh. However, the differential equations may be split in different ways at each time step. We employ an additional
superscript to indicate different splittings

ϕ½2;k�
h=2 ∘ ϕ½1;k�

h ∘ ϕ½2;k�
h=2 ∘ ϕ½2;k−1�

h=2 ∘ ϕ½1;k−1�
h ∘ ϕ½2;k−1�

h=2 ∘ � � � ∘ ϕ½2;2�
h=2 ∘ ϕ½1;2�

h ∘ ϕ½2;2�
h=2 ∘ ϕ½2;1�

h=2 ∘ ϕ½1;1�
h ∘ ϕ½2;1�

h=2 ðy0Þ: ð8Þ

In order to employ Strang splitting to the IVP in (5)
according to Theorem 1, the right-hand sides of (3) and (4)
must be expressed as sums. The right-hand side of (3) may
be expressed as the sum of

_x½1�
i ¼ p̂xiiþ p̂yijþ p̂zik

ðf2i þ p̂2
xi þ p̂2

yi þ p̂2
ziÞ1=2

ð9Þ

and

_x½2�
i ¼ 0: ð10Þ

We choose to express the right-hand side of (4) as a sum
which depends upon how our algorithm partitions the

configuration space. Described in Sec. III, we used the
fast multipole method (FMM) to partition the space
containing the N particles into boxes (or cubes). Each
box and all those adjacent to it form a neighborhood. In the
FMM, expansions are calculated for each neighborhood
that give the fields at each point within the neighborhood
due to the particles outside the neighborhood. To make use
of this expansion, the sum over particle indices on the right-
hand side of (4) may be split among those indices inside
and outside the neighborhood containing the particle i.
Throughout, we denote the indices of particles inside the
neighborhood whose central box contains particle i by Ni,
and the indices of particles outside that neighborhood by
Nc

i . With this notation, (4) is expressible as the sum of

dp̂½1�
i

dt̂
¼ qni

mc2

�
q

4πϵ0

X
j∈Ni
j≠i

njððxi − xjÞiþ ðyi − yjÞjþ γ2ðzi − zjÞkÞ
γ½ðxi − xjÞ2 þ ðyi − yjÞ2 þ γ2ðzi − zjÞ2�3=2

þEþ cv̂i ×B

�
ð11Þ

and

dp̂½2�
i

dt̂
¼ qni

mc2
q

4πϵ0

X
j∈Nc

i

njððxi − xjÞiþ ðyi − yjÞjþ γ2ðzi − zjÞkÞ
γ½ðxi − xjÞ2 þ ðyi − yjÞ2 þ γ2ðzi − zjÞ2�3=2

: ð12Þ

Thus, the splitting our algorithm employs is F ¼ F½1� þ F½2�,
whereF½1� is given by the right-hand sides of (9) and (11), and
F½2� is given by the right-hand sides of (10) and (12).
Note that F½1� depends on the particles whose positions

are near particle i, while F½2� depends on the particles whose
positions are relatively far from particle i. For this reason,
we call _Y ¼ F½1�ðYÞ and _Y ¼ F½2�ðYÞ the near and far

equation, respectively. To apply Strang splitting, several
initial value problems of the form

�
_Y ¼ F½1�ðYÞ
Yð0Þ ¼ Y0

and

�
_Y ¼ F½2�ðYÞ
Yð0Þ ¼ Y0

ð13Þ

must be solved at discrete values of t.
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A very important implication of the splitting method
described above is related to the preservation of geometric
properties of the time-continuous system. From the point of
view of an arbitrary particle within the charged particle
beam, the full problem can be described as a Hamiltonian
system with an explicitly time-dependent Hamiltonian. The
time-dependence comes from the self-fields, which are not
known a priori, and possibly the externally prescribed
electromagnetic fields. The coordinates used, position and
mechanical momenta, are canonical in regions of vanishing
vector potential. We can make the assumption that the
dynamics’ endpoints are in such regions in order tomake the
dynamics symplectic. Otherwise, the canonical momenta
should be used instead of themechanical momenta, but even
in this case the symplectic flow will be merely sandwiched
between two simple kick maps that do not alter the
characteristics of the dynamics. It is well-known that
discretization with a relatively large, constant time step of
this flow in general preserves important properties of the
continuous system over long-time integrations by not
introducing nonphysical effects and having an effective
Hamiltonian close to the exact one. Splitting methods are
one way of performing symplectic integration with all the
advantages described above. However, all components of
the splitting must be symplectic in order for their compo-
sition to maintain the advantages. In our case, there are two
component maps. One can be evaluated exactly, giving
exactly symplectic maps by construction. The other com-
ponent is not possible to solve exactly in closed form and it is
difficult to approximate numerically efficiently with sym-
plectic integrators. Therefore, we chose to develop the most
efficient general integrator that allows us to attain numerical
precision and hence numerical symplecticity with a mini-
mum of computational effort. These developments are
summarized in the following sections.

III. FAST MULTIPOLE METHOD AND THE
LONG-RANGE INTERACTIONS

The celebrated fast multipole method (FMM) was
developed in 1987 by Greengard and Rokhlin [16,38]. It
allows for an efficient computation of the Coulomb
potential of discrete charges that can be evaluated at the
location of a test charge. Our particular choice of the FMM
is due to some of its main properties [17] that makes it the
most suitable for our PHAD algorithm. The FMM can
achieve the best possible asymptotic scaling in terms of
runtime and memory which is linear with the number of
particles. It has a tunable, high accuracy with a guaranteed
priori error bounds. Moreover, it has a high arithmetic
intensity that allows for efficient parallelization now and in
the exascale era. Another feature important for PHAD is the
structure of the FMM that can be efficiently combined with
a time propagator for dynamics simulations. To be effi-
ciently combined with the Simò integrator, we have
employed our fast multipole method that is described in

detail in [37,18]. It is an adaptive multilevel FMM method
using a Cartesian coordinate system with optimal data
structures. One of its key features is that the translation
operators are treated as function compositions through the
use of Differential Algebra.
Our adaptive multilevel FMM uses an octree type data

structure to partition the spatial domain—each box is
subdivided into eight children. The adaptivity of the FMM
is achieved by subdividing each box (parent) into child boxes
when the number of particles it contains exceeds a specified
value q, which we call the clustering parameter. These
subdivisions are done after scaling the space containing
the entire particle distribution into a unit cube, the root box.
Considering the root box to be at level l ¼ 0, the eight
congruent boxes resulting from the first subdivisionwill be at
level l ¼ 1 and so on for the following subdivisions. Any
boxes that do not contain any particles are discarded.
In the FMM context, sources and targets refer to the set

of charged particles that generate the electric potential and
the set of particles (locations) where this potential is
evaluated, respectively. The collection of a target box
and the boxes at the same level that share a side or a
vertex with it (its neighbors) is called a neighborhood. At
the same level, any two boxes that are separated by at least
one box are regarded as well separated. The interaction list
of a target box does not include its own neighbors but it
includes the child boxes of the neighbors of its parent.
Computationally, the subdivisions are described by an

octree type data structure where a collection of boxes form
a tree if they are linked by parent-child relationships. The
D-tree is a rooted tree that describes the hierarchy between
parent and child boxes containing targets. On the other
hand, the C-trees describe the hierarchy between boxes
containing sources, the interaction lists of the target boxes.
The C-trees are formed by removing the root box (level
l ¼ 0) and the l ¼ 1 boxes from the D-tree; the boxes of
each C-tree must contain at least one source. Hence, the
root box for each of these trees is its level l ¼ 2 box. The
process of selecting the D-boxes makes them appropriately
fall into a single tree, while the process of selecting the
C-boxes usually results into a set of disconnected trees.
Since the collection of trees of the same type is called a
forest, a C-forest is formed by the collection of the C-trees
while there is no D-forest. We refer the reader to [37] for
visual illustrations of the FMM subdivisions and data
structure.
The electric potential generated by a source particle at

ðx0; y0; z0Þ and evaluated at a target point ðx; y; zÞ is of the
form

Vðx; y; zÞ ¼ q
4πϵ0

1

kx − x0k
¼ q

4πϵ0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2 þ γ2ðz − z0Þ2

p :
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Assuming that there are a set of sources Nc
i in a given box,

their electric potential at the center of the box ðx0; y0; z0Þ is

Vðx0; y0; z0Þ
¼ q

4πϵ0

X
j∈Nc

i

njffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj − x0Þ2 þ ðyj − y0Þ2 þ γ2ðzj − z0Þ2

q :

Using differential algebra (DA), described in
Appendix A, the multipole expansion of this potential at
the center of the box ðx0; y0; z0Þ can be easily calculated
and has to be performed only once at the highest level. The
best-known DA engine in accelerator physics is COSY
INFINITY [39]; we used it as the basis for our imple-
mentation and performance tests. In the framework of DA,
the multipole expansion of the potential is represented by a
truncated Taylor series that converges if the distance
between the source and the target r ¼ kxj − x0k is larger
than the box’s side length. We introduce the following DA
variables

dx ¼
x − x0
r2

; dz ¼
z − z0
r2

;

dy ¼
y − y0
r2

; dr ¼
1

r
; ð14Þ

which have to be small in order for the expansion to be
valid in a region far from the neighborhood of the box. The
potential becomes

Vðx; y; zÞ ¼ qdr
4πϵ0

X
j∈Nc

i

njffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kxj − x0k2d2r − 2ðxj − x0Þ · d

q
¼ q

4πϵ0
drVm; ð15Þ

where d ¼ ðdx; dy; dzÞ and the multipole expansion of the
potential is described by Vm.
Once the octree subdivisions are performed and the data

structuring is done, the FMM performs an upward pass and
a downward pass to translate the multipole expansion Vm.
In the upward pass, the multipole expansion of the potential
is calculated at the center of each box at the highest level in
each C-tree. Moving these expansions toward the root of
each C-tree is accomplished by recursively applying the
multipole-to-multipole (M2M) operator T M2M which trans-
lates Vm centered in the child box to the multipole
expansion V 0

m centered in the parent box. By the use of
DA, this translation is computed as the composition:
V 0
m ¼ Vm ∘ T M2M. At each subsequent level, the translated

multipole expansions from each child box are summed to
give the total multipole expansion of their parent box.
Recursive application of the M2M operator is performed
until all expansions have been collected at level l ¼ 2 for
each C-tree.
The downward pass starts from level l ¼ 2 to the highest

level through the D-tree. At each successive level, the
accumulated V 0

m is translated to a well-separated box at
the same level (interaction list) via the multipole-to-local
(M2L) operator T M2L to get V 0

l, computed as the compo-
sition: V 0

l ¼ V 0
m ∘ T M2L. This expansion V 0

l is added to the
box’s existing local expansion. Next, the total local expan-
sion of a box is translated to its child boxes in the D-tree.
Using the local-to-local (L2L) operator T L2L, this trans-
lation is achieved via the composition: Vl ¼ V 0

l ∘ T L2L.
Recursive application of the L2L operator is performed
through the D-tree until the highest level is reached.
Additional description and illustration of the FMM oper-
ators can be found in [37,18].
As a result of the hierarchical subdivision and the

categorization of the computational domain, the contribu-
tions to the electric potential is divided into near and far
regions. The near region contains potential contributions
from the neighborhood boxes, and the far region includes
contributions from the interaction list boxes. The electric
field is calculated as the gradient of the potential
E ¼ −∇VðxÞ, and thus the far field local expansions
can be evaluated at each target point after the translation
of all local expansions to the highest level of the D-tree.
This is called the local-to-point (L2P) evaluation and it is an
elementary operation in DA. At the end of the downward
pass, all the contributions to each particle from the multi-
pole expansion of the far region is calculated. Then, the
field at each target is modified by adding the point-to-point
(P2P) field evaluations due to the sources in the neighbor-
hood of the target (or the regular pairwise field of the near
region).
In PHAD, the FMM is employed specifically in the

computation of the far forces, as described above (hence the
P2P operator is skipped). The far equation is exactly
solvable as the spatial components ðxi; yi; ziÞ are constants,
and hence the full solution is a kick. Indeed, the exact
solution of the components of the far equation (10) and (12)
are

x½2�
i ¼ x0

i ð16Þ

and

p̂½2�
i ¼ p̂0

i þ t
q2ni

4πϵ0mc2
X
j∈Nc

i

njððxi − xjÞiþ ðyi − yjÞjþ γ2ðzi − zjÞkÞ
γ½ðxi − xjÞ2 þ ðyi − yjÞ2 þ γ2ðzi − zjÞ2�3=2

; ð17Þ
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respectively. Thus, the only hurdle in solving the far equation is computing the expansion of the electric field vector

ẼNc
i
¼ q2ni

4πϵ0mc2
X
j∈Nc

i

njððx0i − x0jÞiþ ðy0i − y0jÞjþ γ2ðz0i − z0jÞkÞ
γ½ðx0i − x0jÞ2 þ ðy0i − y0jÞ2 þ γ2ðz0i − z0jÞ2�3=2

ð18Þ

for each particle i. The fast multipole method clears this
hurdle with an effort on the order of OðNÞ flops [16].

IV. THE SIMÒ INTEGRATOR AND THE
SHORT-RANGE INTERACTIONS

An N-body numerical integrator can approximately
solve the components of the near equation appearing in
(9) and (11). General N-body numerical integration meth-
ods face efficiency limitations due to close encounters as
Coulomb forces change rapidly. Aiming to accurately
resolve close encounters with high efficiency, we devel-
oped the Simò N-body numerical integrator. A detailed
description of the Simò integrator was published in [24]
and we include here a short summary of it. The framework
of the Simò integrator consists of two main components.
The first component is an adaptive, variable order integrator
with dense output; the second component is a strategy for
an optimal selection of the particle-by-particle order and
time step size.
For the first component we have developed a Picard

iteration-based integrator [40] which is based on the Taylor
method and uses Picard iterations to generate Taylor
polynomials of the solution. The Taylor method straight-
forwardly provides a variable order, adaptive scheme
giving high precision solutions. In addition, this integrator
is implemented using the DA techniques in COSY
INFINITY. In this context, evaluating a function in DA
gives its truncated Taylor series at once, and thus our Picard
iteration-based integrator is readily adaptable. Denoting the
nth Taylor polynomial of a function zðtÞ in t centered at
zero by T n

t;0½zðtÞ�, the following Theorem 2 provides the
theoretical basis of the integrator [40].
Theorem 2: For the initial value problem y0ðtÞ ¼

hðy; tÞ with y0 ¼ yð0Þ, let z ¼ ½yT t�T with z0 ¼ zð0Þ
and z0ðtÞ ¼ fðzÞ. Suppose z has a Taylor series centered
at 0 with nonzero radius of convergence ρ and t < ρ, then

T n
t;0½zðtÞ� ¼ z0 þ

Z
t

0

T n−1
s;0 ½fðT n−1

s;0 ½zðsÞ�Þ�ds: ð19Þ

Another main advantage of this integrator is that it gives
a high-order dense output directly. Since the solution is
expressed as a Taylor polynomial up to any order, the
polynomial can be evaluated at any time and the trajectory
of the particle can be fully traced within the interval ½0; ρ�,
and hence the dense output. Indeed, the order n may be
arbitrarily selected and it may be evaluated for any t in the
interval ½0; ρ� unlike other methods that allow evaluations at

only discrete points of time. These features are essential for
the efficiency of the N-body integrator where the N-body
dynamics requires varying the time step frequently, espe-
cially when close encounters are present.
For the second component, we employed a unique

strategy proposed by Simò [22] to determine each particle’s
optimal order p and optimal time step hs. Simò’s theorem,
Theorem 3 [22], imposes two requirements for the optimal
selection of p and hs in order to achieve a given accuracy:
minimizing the computational cost and a tolerance of the
truncation error [22,41].
Theorem 3: Suppose that the Taylor expansion of the

function yðtÞ has the radius of convergence ρðtÞ around
some given initial conditions, and that the Taylor coef-
ficients yk satisfy A1 < ρkjykj < A2 for some fixed real
numbers A1 and A2 with 0 < A1 < A2. Then, a given
relative error εr can be achieved at each step when the error
tends to zero by the optimal time step size

hs ¼
ρ

expð2Þ : ð20Þ

The corresponding optimal order guarantees the required
relative error bound εr and is given by p ¼ − 1

2
ln εr. As

described in [24], we determine the optimal order using a
different approach that is based on the estimation of the
remainder of the Taylor series within its convergence
interval. Once the estimated remainder term at the optimal
time step hs satisfies the user’s required accuracy at a given
order, that order is set to the optimal order p. Moreover, the
optimal selection of hs and p is performed for each particle
at each time step. Additional characteristics of the Simò
integrator are detailed in [24] and a short overview is given
in Appendix B.
In PHAD, the Simò integrator is employed in the

computation of the near dynamics, as described above.
The near equation, contrary to the far equation, is not
exactly solvable. Indeed, the Simò integrator is used to
numerically approximate (up to machine precision) the
solutions of (9) and (11). It will capture all close encoun-
ters, without skipping any collisions or degrading the
accuracy of the solutions. Here, we also capture the effects
of external fields.

V. IMPLEMENTATION AND PARALLELIZATION
OF THE ALGORITHM

Our PHAD algorithm is illustrated in Fig. 1 and it
works through the compositions described by (8).
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The first exact solution to the far equation, ϕ½2;1�
h=2 ðY0Þ, is

approximated according to (16) and (17) using the first
FMM evaluation. In order to capture all collisional effects,
the time step of PHAD has to be chosen such that it is
smaller than any timescale relevant to the specific appli-
cation. Next, the first numerical solution to the near

equation, ϕ½1;1�
h ∘ ϕ½2;1�

h=2 ðY0Þ, is computed using the Simò
integrator. While doing this, the Simò integrator may on a
particle-by-particle basis take several appropriate subti-
mesteps of h (an example is illustrated in Fig. 2) and
utilize different orders.
Afterwards, each composition ϕ½1;j�

h is computed
using the Simò integrator, and each pair of compositions

ϕ½2;jþ1�
h=2 ∘ ϕ½2;j�

h=2 may be computed using a single FMM
evaluation, as long as γ changes little between time steps.
The reason this is possible is that the particle positions
remain fixed through these compositions of solutions to the
far equation. However, the FMM-based splitting may be

different for ϕ½2;j�
h=2 and ϕ½2;jþ1�

h=2 . This observation sometimes
makes a certain reconciliation process necessary.

A. Splitting reconciliation

Reconciling the current splitting with the previous
splitting boils down to computing the total field contribu-
tion of the particles outside the neighborhood containing
particle i in the previous FMM using the current FMM
partitioning. This is accomplished by adding the field
contribution of particles which were outside the neighbor-
hood containing particle i but now are inside the neighbor-
hood containing particle i and subtracting the field
contribution of particles which were inside the neighbor-
hood containing particle i but are now outside the neigh-
borhood containing particle i to the potential of particles
now outside the neighborhood. The process may be seen
visually in Fig. 3.
This process of reconciliation is more efficient than

naively comparing all particle indices outside the neighbor-
hoods containing particle i at the previous and current time
step. All that is needed are the indices of the particles in the
same neighborhood as particle i given by the previous and
current FMM partitioning. Denote the sets of indices of the
neighborhood containing particle i at time steps j and jþ 1
by Ni and N�

i , respectively. At time step jþ 1, the FMM
computes an expansion of the field

FIG. 2. An example showing the distribution and frequency of
the time steps of a particle taken by the Simò integrator as
subtimesteps of a PHAD time step h ¼ 1.7 ns.

FIG. 1. A flow chart of the PHAD algorithm.
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ẼN�c
i
ðx; y; zÞ ¼ q2ni

4πϵ0mc2
X
k∈N�c

i

nj½ðx − x0kÞiþ ðy − y0kÞjþ γ2ðz − z0kÞk�
γ½ðx − x0kÞ2 þ ðy − y0kÞ2 þ γ2ðz − z0kÞ2�3=2

;

which is valid for locations within the same box as particle
i. We use that Nc

i is the disjoint union of N�c
i nðNinN�

i Þ and
N�

i nNi. Since N�c
i ∩ ðNinN�

i Þ ¼ NinN�
i also, we may

compute the fields from the previous splitting via

ẼNc
i
ðx; y; zÞ ¼ ẼN�c

i
ðx; y; zÞ − ẼðNinN�

i Þðx; y; zÞ
þ ẼðN�

i nNiÞðx; y; zÞ; ð21Þ

where the fields ẼðNinN�
i Þ and ẼðNinN�

i Þ are computed
directly. Figure 3 also shows the reconciliation process
with sets labeled.
The current neighborhood N�

i is constructed using sets
output from the FMM. Specifically, the ordered set Ni and
unordered set N�

i nNi are combined by first applying a
quicksort [42,43] to N�

i nNi and then merging the two
ordered sets using a single pass. Once the far equations are
solved, N�

i is stored as Ni. After the first time step, the
ordered sets NinN�

i and N
�
i nNi are constructed by compar-

ing Ni and N�
i element by element.

B. Parallelization of the Simò integrator

Since the computational time of the Simò integrator is
quadratic with the total number of particles N, its perfor-
mance decreases significantly for large N. Thus, the
parallel implementation of the Simò integrator code makes
more practical simulations with relatively large N. We
implemented the Simò integrator in COSY INFINITY,
which integrates a set of MPI commands with the
COSYScript and easily constructs parallel loops. The
parallel performance depends on the communication,
synchronization, and the data/tasks distribution between
the processors.

In the Simò integrator, the nested loops used for the
computation of Coulomb forces in (11) requires the largest
number of operations NðN − 1Þ ≈ N2, and hence their
parallelization is the main key to enhance the efficiency
of the Simò integrator code. Due to the use of time bins, the
first loop spans only a fraction of particles at each step
(except for the first step) as explained in Appendix B.
Therefore, parallelizing this loop is not so efficient because
the communication overheads will quickly take over as the
number of processors P increases, in addition to the second
loop taking a long time to span all N − 1 particles. On the
other hand, it is more efficient to parallelize the second loop
and distribute N − 1 computations over P processors with
effective communications.
To illustrate, we compared the computational times of

the parallel Simò integrator simulation of 104 particles
when parallelizing only the first loop and when parallel-
izing only the second loop used for the force computation.
The results are shown in Fig. 4 where it is clearly more
efficient to parallelize the second loop. Some other loops
over N were also parallelized including the evaluation loop
where the positions and momenta of the particles are
updated in parallel.

C. Parallelization of PHAD

In this section, we compare three different parallelization
strategies, which we refer to as the unbalanced, balanced,
and parallel Simò strategies. Their main differences are in
how they compute solutions to the near equations for
neighborhoods N1; N2;…; Nk. For the unbalanced strategy
using P processors, each process j solves the near equa-
tions for neighborhoods Nj; NjþP; Njþ2P;… using a serial
Simò integrator. The balanced strategy is similar to the
unbalanced strategy except that each process is assigned

FIG. 3. Field contributions of outside particles (left) are now due to field contributions of particles now outside minus inside to outside
particles plus outside to inside particles (right). Particles that were in Ni are now in N�c

i minus NinN�
i , union N�

i nNi.
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neighborhoods which have a similar number of
particles. Specifically, each process j solves the near
equations for neighborhoods NσðjÞ; NσðjþPÞ; Nσðjþ2PÞ;…,
where σ is a permutation of indices 1 through k such that

jNσð1Þj ≤ jNσð2Þj ≤ � � � ≤ jNσðkÞj. In the parallel Simò strat-
egy, each neighborhood’s near equations are solved sequen-
tially using a parallel Simò integrator which updates
particle positions and momentum in parallel. Figure 5
gives which of two processes would compute solutions to
the near equations for particles with indices nij in neigh-
borhoodNi whereN1 andN3 contain three particles andN3

and N4 contain four particles.
For all the distributions we have examined, there is a

little difference in the performance between the unbalanced
and balanced strategies as can be seen in Fig. 6. On the
other hand, the parallel Simò integrator strategy seems to
have the lowest performance. However, this may be due to
the low maximum number of particles allowed in a
neighborhood, the q value, fixed at sixty for this numerical
experiment. For a larger sized neighborhood or a distribu-
tion in which there are significant differences in computa-
tional requirements between neighborhoods, the parallel
Simò integrator may overcome its higher communication
cost. Nonetheless, the memory required by our PHAD code
increases quickly when increasing the q value, and hence
we did not carry out the parallel Simò integrator strategy
tests with large q because we are bounded by the available
memory. Clearly, further optimization might be possible to
improve parallel efficiency, subject to available hardware
parameters.
The other main components of PHAD, the FMM and the

far equation integrator, are parallelized in a similar manner
to the unbalanced method. In the FMM, the local expan-
sions for Nj;NjþP; Njþ2P;… are computed by process j
and the far equation integrator computes the exact solution
of the far equations for these particles. The one difference
between the parallelization strategies for these components
of PHAD is that the indices of the neighborhoods are not
communicated across all processes for the last time step in
the unbalanced and balanced strategies since there is no
subsequent time step that requires the previous neighbor-
hoods. In the parallel Simò strategy, each process must have

FIG. 6. Average CPU times of different subprocedures for PHAD parallelization strategies with 49.9 × 103 particles, FMM order 6,
and clustering parameter q ¼ 60. The unbalanced and balanced strategies show CPU times for five time steps and the parallel Simò
strategy was ran for one time step.

FIG. 4. Comparison of the computational times of the parallel
Simò code when only one of the loops used for force compu-
tations is parallelized at a time, showing that it is more efficient to
parallelize the second loop.

FIG. 5. Diagram showing which process computes the near
integration for particle indexed nij for neighborhood Ni. The
absence of arrows between indices indicates communication
among processes.
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the full collection of neighborhood index lists for the
parallel Simò integrator.
Based on the computational time results of the three

parallelization strategies, and to abide by the limited
available memory, we chose to use the unbalanced paral-
lelization strategy for our applications.

VI. APPLICATIONS

A. Dynamics of beamlets

Here, we study the dynamics of beamlets, i.e., several
small beams that have parallel directions of motion and may
be used in different applications. It has been proposed that
beamlets may be employed as an alternative to the continu-
ous transfer (CT) extraction mode between the Proton
Synchotron to the Super Proton Synchotron [44]. Another
application of beamlets is in a cancer treatment called
intensity modulated radiation therapy (IMRT) [45]. In
addition, the system of beamlets allows the study of
Coulomb interactions within charge bunches, which is
important to understanding the cold charged particle sources
essential to producing high-intensity, high-brightness
charged particle beams [46]. For instance, nanometer sharp
tip emitters have been shown to produce ultracold electrons
[47], and thus our studies on the effect of Coulomb
interactions on electron beamlets provide important insights
for the development of ultracold, high-brightness electron
sources based on nanometer-scale sharp tip arrays [48,49].
We begin our applications with benchmarking PHAD

accuracy and comparing its efficiency to the Simò inte-
grator for one beamlets example. Then, we present other
examples of PHAD simulations to beamlets dynamics.

1. Comparison of PHAD and the standalone Simò
integrator simulations

The standalone Simò integrator is a direct N-body
numerical integrator that gives an accurate simulation of
the dynamics and has been previously benchmarked [24].
PHAD is proposed to give a comparable accuracy with
significant efficiency improvements. The computational
efficiency of both algorithms of PHAD and the standalone
Simò integrator depend on different factors. The common
factors between both algorithms are the number of particles
and the number of processors. While the number of
particles is set by the specific problem, the computational
time dependence on N is quadratic for the Simò integrator
and linear for PHAD (when the right PHAD parameters are
selected). Increasing the number of processors used by both
codes enhances their performances until the communica-
tion overheads take over and their performances start to
decline.
The specific feature that influences the speed of the

standalone Simò integrator is the number and type of time
bins as explained in Appendix B. For PHAD, the clustering
parameter q affects its performance where it plays a role

both in space by the FMM subdivision, and in time
stepping by the Simò integrator. Figure 7 shows how the
computational times of the FMM, the Simò integrator, and
PHAD depend on the clustering parameter q for a Gaussian
distribution of 105 electrons. The computational time of the
FMM decreases while that of the Simò integrator increases
as the q value increases. Since the computational time of
PHAD is mainly a combination of both the FMM and the
Simò integrator computational times, the q value has to be
chosen such that it minimizes the computational time of
PHAD. For the example in Fig. 7, PHAD computational
time increases and becomes almost equal to the computa-
tional time of the Simò integrator after q ¼ 200. In general,
selecting the right PHAD parameters allows to achieve a
computational time that is linear with N while maintaining
the accuracy requirements.
To benchmark PHAD accuracy against the stand alone

Simò and demonstrate the efficiency difference, we com-
pared the results and the computational times of a simu-
lation of beamlets using both PHAD and the standalone
Simò integrator. These simulations were performed using a
60-node CPU/GPU hybrid cluster called Gaea at Northern
Illinois University. The 60 nodes are connected via Full 1∶1
nonblocking InfiniBand and Ethernet switch connectors.
Each node is an HP SL380s G7 that has 2× Intel X5650
2.66 GHz 6-core processors, 72 GB RAM, and 4 × 500 GB
2.500 SATA disk drives (or 2 TB each node).
In this simulation, there are five beamlets symmetrically

surrounding a centered beamlet. Each beamlet contains 104

electrons of a Gaussian spatial distribution, and all the
beamlets are within a halo of 2 × 104 electrons of a uniform
spatial distribution within a 1 mm radius. The initial
temperature of the system is 0 K, and it is set to propagate
along the z direction with an electric field Ez ¼
−20 kVm−1 applied for 2.5 cm. Figure 8(a) shows a cross
section of the initial configuration of the beamlets system.

FIG. 7. Performance of PHAD as a function of the clustering
parameter q for a Gaussian distribution of 105 electrons. The
computational timeofPHADis primarily composedof the computa-
tional time of its FMM and the Simò integrator components.
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The parameters of the simulations follow: the accuracy
of the Simò integrator was 10−12, the maximum allowed
order was 20, and the number of equal-width time bins was
40. PHAD time step was 3.3 ps which is smaller than the
plasma period of ∼1 ns estimated from an average density
of the beamlets. After a simulation time of 1.7 ns, the cross
sections of the simulated beamlets by the standalone Simò
integrator and PHAD are qualitatively nearly identical as
shown in Fig. 8(b) and Fig. 8(c), respectively. For both
cross sections, the number of electrons per bin was
calculated from a nonparametric estimation of the proba-
bility density function (PDF) using the same number of
bins and bandwidth and is depicted in Fig. 9 along with the
density difference between both simulations (the nonin-
teger number of electrons is due to the estimation from the
PDF). With respect to the standalone Simò integrator, Fig. 9
(right plot) indicates that the resulted density from PHAD
simulation did not change in about 88.6% of the bins, about
10.5% of the bins changed by one electron, and less than
1% of the bins changed by two or three electrons.

Moreover, we compared the coordinates of each
electron from the simulations of both codes. The abso-
lute errors for the x and y coordinates are shown in
Fig. 10 where the majority of these errors are on the order
of 10−6. While both runs were performed using 48
processors, the computational time of PHAD was ∼21
hours while the computational time of the standalone
Simò integrator was ∼50 days. This indicates that the
efficiency gained from using PHAD is about an order of
magnitude compared to the Simò integrator. Hence,
PHAD is as accurate as the direct methods, but is
significantly more efficient. Further studies of PHAD
accuracy when the near equations were solved by the
Picard iteration-based integrator were performed in [37]
and showed good agreement between PHAD and the
N-body Picard iteration-based integrator, which are still
valid. Accordingly, we can employ PHAD to model
more complicated applications such as the electron cool-
ing of ion beams to which we give some examples in
Section VI B.

FIG. 8. Density log plots of the cross-section of six beamlets each consisting of 104 electrons Gaussian distributed, and surrounded by
a halo of 2 × 104 uniformly distributed electrons: (a) initial condition, and the results after t ¼ 1.7 ns of: (b) the standalone Simò
integrator simulation and (c) PHAD simulation.

FIG. 9. The resulted transverse density of six electron beamlets within a halo of electrons simulated by the standalone Simò integrator
and PHAD (left). The difference between these resulted densities (right) shows that the accuracy of PHAD is comparable to that of the
standalone Simò integrator.
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2. PHAD simulations of beamlets dynamics

We simulated electron beamlets with a halo of electrons
as depicted in Fig. 11. Initially, nine beamlets each
consisting of 104 electrons were surrounded by 2 × 104

halo electrons uniformly distributed within a 1 mm radius
for an overall charge of 17.6 fC. Electrons within the
beamlets are Gaussian distributed in transverse directions
with a standard deviation of about 0.08 mm. In the
longitudinal direction, electrons are uniformly distributed
within 5 μm of zero. The initial momenta were distributed
according to the Maxwell-Boltzmann distributions at dif-
ferent initial temperatures. The electrons were accelerated
in the longitudinal direction by a −20 kVm−1 electric field
for 2.5 cm.
For these runs, the simulation time was about 2 ns

performed by 120 time steps. PHAD time step was 16.7 ps
which is smaller than the plasma period of 1.4 ns estimated
from an average density of the beamlets. This time step is
also smaller than the estimated collisional relaxation
time for the beamlets at the different temperatures used
in our simulations: ∼4 ns for 20 K, ∼19 ns for 100 K, and
∼0.3 μs for 1000 K. Our simulations produce similar

patterns in the charge densities of electrons as those
detected experimentally in [46], where cooled Rubidium
ion beamlets were measured. At lower initial temperatures,
the particle densities evolve until there are eight well-
defined spokes visible around a central hub as in Fig. 12(c).
As the initial temperature is increased, these spokes become
less and less defined as in Fig. 12(f). At higher temper-
atures, the spokes do not form as is the case for 1000 K
shown in Fig. 12(i). We envision a future nondestructive
ultracold electron beam emittance characterization method
using these observations.

B. Electron cooling of ion beams

Modern electron-ion colliders will rely on the high
luminosity of heavy hadron beams, which will be accom-
plished via the application of various cooling methods
depending on the intensity and temperature of the ion
beam. For high-intensity beams, two methods of fast
cooling are proposed [50]: the electron cooling (also known
as the conventional electron cooling) is efficient for low
temperature ion beams, and the strong electron cooling
such as the coherent electron cooling (CeC) is suggested to
efficiently cool high energy ion beams. Both techniques
highly depend on Coulomb interactions between the ions
and the cooling electrons, and it is difficult to estimate the
cooling rates analytically. Hence, numerical simulations are
crucial for predicting cooling rates and for the development
of modern electron-ion colliders. In the following sections,
we present our simulations related to both cooling methods
performed by PHAD which we proposed to tackle such
complicated nonlinear multiparticle large-scale beam
dynamics problems. We note that these are the first electron
cooling simulations based on first principles.

1. Density modulations for the coherent
electron cooling

The coherent electron cooling (CeC) is a novel method
proposed to cool high-energy intensive hadron beams and
achieve high luminosity on a much faster rate than other

FIG. 11. Density log plot of the cross-section of the initial
configuration of ten beamlets each consisting of 104 electrons
Gaussian distributed, and surrounded by a halo of 2 × 104

uniformly distributed electrons.

FIG. 10. The absolute errors in the x coordinates (left) and in the y coordinates (right) of the electrons in the beamlets simulations by
PHAD compared to the standalone Simò integrator. The mean of the absolute errors is on the order of 10−6.
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cooling methods [51,52]. In general, the CeC technique
depends on the Debye shielding (screening) process that
yields perturbations in the electron beam’s density and
velocity [53]. A typical CeC scheme incorporates three
sections: a modulator, an amplifier, and a kicker.
In this section, we present our PHAD simulation of the

electron density modulation in the modulator section rel-
evant to the proof-of-principle (PoP) CeC experiment in the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven

National Laboratory (BNL). In the modulator section, the
ion beam and the electron beam are merged and copropa-
gated through a focusing field generated by a set of four
quadrupoles. The Coulomb interactions between electrons
and ions results in a densitymodulation of the electron beam
as each ion attracts the electrons around itself (the process of
shielding). The ion beam consists of 40 GeV=nucleon
Auþ79 ions, and the velocity of the electrons is matched
to that of the ions. The parameters of the modulator lattice

FIG. 12. Density log plots of the evolution of the electron beamlets with different initial temperatures: (a–c) 20 K, (d–f) 100 K,
and (g–i) 1000 K. The simulations were performed by PHAD and different number of time steps are presented.
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and the parameters of the ion and electron beams of the PoP
CeC experiments at RHIC can be found in [54].
We consider a Gaussian electron beam and a single ion in

a hard-edge quadrupole focusing field. Since the discrete-
ness of the particles in particle simulations produces a shot
noise that is strong compared to the modulation signal, we
extract the modulation signal from the shot noise in the
same manner used in [54]. The propagation of an electron
beam through the modulator lattice is simulated two times:
one with the presence of the ion and the other is without the
ion. Subtracting the final results of these two simulations,
we obtain the density modulation of the electron distribu-
tion due to the ion.
In the PoP CeC experiments at RHIC, the size of the

electron beam is much larger than the lengths relevant to the
shielding of the ion. Since the far away electrons do not
contribute to the density modulations, we simulate a
longitudinal slice of the electron beam with smaller
momentum spread and a moderately smaller transverse
size. The ion is positioned at the center of the Gaussian
electron beam that has the RMS sizes: σz ¼ 1.1 μm and
σx;y ¼ 0.11 mm. The propagation through the modulator
section was performed by 600 PHAD time steps of 16.7 ps,
which is much smaller than the collisional relaxation time
∼4 μs and the electrons plasma period ∼2 ns (both esti-
mated from an average density).
The density modulations resulting from the average of

three simulations is presented in Fig. 13, where the
evolution of the density modulations throughout the modu-
lator section is shown at different propagation distances.
Around the location of the ion, the longitudinal density
modulation gradually increases as the propagation distance
increases while the transverse modulations vary in a way
that reflects the effect of the quadrupoles on the transverse
beam size. Our simulation gives density modulations
similar to (and supports) the results presented in [54].
Using a single ion is the initial step to quantify the
modulation signal for various energies and locations of

the ion. Then, the density modulations due to the ion beam
can be examined and used to predict the cooling time of the
CeC system.

2. Conventional electron cooling of ion beams

Electron cooling is a method proposed by G. I. Budker in
1967 to significantly reduce the ion beam emittance (phase
space volume) [55]. This technique was experimentally
demonstrated in 1974 at the first cooler ring NAP-M [56].
In this method, a hot ion beam is overlapped by a cold
electron beam and both beams are propagated at the same
average velocity through a localized small section of an
accelerator or a storage ring. Through this brief interaction,
the momentum is transferred from individual ions to the
surrounding electrons and thus the ions experience a
dynamical friction or a velocity drag which accumulates
turn by turn causing a reduction of the 6D phase space
volume of the ion beam (i.e., cooling the ion beam).
Most of the models used to study the electron cooling

process rely on the standard analytical formulas of the
dynamical friction force which are based on many assump-
tions, and it is challenging to include external magnetic
fields. Moreover, these models generally ignore rare close
encounters although their collisions play an essential role in
the cooling process. As some studies such as [57,58] show,
an ion’s velocity and the friction force change significantly
due to those few close collisions, and a full description of
the dynamics can be provided by high precision collisional
numerical simulations that are based on a minimal set of
assumptions and that consider the whole distribution.
Below, we demonstrate PHAD’s capability to predict
cooling indicated by the reduction of emittances.

a.Electron cooling of longitudinal emittance.—We propa-
gate a Cþ6 ion beam of 7 MeV=nucleon kinetic energy
through a 3.4-m-long straight cooling section, which is part
of a 161-m-long storage ring. The initial parameters of this

FIG. 13. PHAD simulations of density modulations of a Gaussian electron beam due to a centered ion copropagating through the
modulator section of the PoP CeC at RHIC: (a) longitudinal direction, (b) horizontal direction, and (c) vertical direction. The density
modulations are shown at propagation distances: 0.6 m (blue), 1.2 m (orange), 1.8 m (green), 2.4 m (red), and 3 m (purple).
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simulation are included in Table I, where the spatial
distribution of the ion beam is Gaussian and the electron
beam’s is uniform. PHAD was used to model the cooling
section, while the ions were passed through the rest of the
ring using transfer maps generated by COSY INFINITY.
Using an average density of the ion beam, the 0.93 ns
PHAD time step is smaller than all the relevant timescales
in this simulation such as the electrons plasma period of
∼40 ns; the betatron oscillation periods are ∼1 μs; the
estimated ions plasma period and collisional relaxation
time are of the order of 10 μs; and the synchrotron
oscillation period is a few seconds.
Before we present our cooling results, we first show that

PHAD preserves symplecticity which is an important
feature for electron cooling simulations. This is demon-
strated through the invariant 4D/6D RMS emittances of the
ion beam considered in this section through the ring and the
cooling section without the electron beam. Indeed, Fig. 14
shows those invariants ϵ4D and ϵ6D in the absence of
cooling. The 2D RMS emittance was not included in this
example as presence of the longitudinal magnetic field of
the solenoid introduces transverse coupling.
Now, we include the electron beam through the cooling

section and observe the cooling process in the longitudinal
direction. Each pass through the cooling section takes about
93 ns (or 100 time steps), and the electron bunch is
refreshed for the next pass. The evolution of the longi-
tudinal emittance after 0.7 ms is shown in Fig. 15, where
the cooling is indicated by the decrease of the longitudinal
emittance with time. This simulation suggests that the
longitudinal cooling can be achieved with an electron
bunch that is shorter than the ions beam bunch length.
Also, the cooling is fairly fast which could be due to the
relatively large current of the electron beam with respect to
its bunch length. This is the first particle-based simulation

which considers all collisions and predicts the longitudinal
cooling of the ion beam without the need to calculate the
friction force. Next, we provide more PHAD simulations
and comparison of cooling times of the transverse emit-
tance for different initial configurations.

b.Electron cooling of transverse emittance.—Wecarried out
simulations of electron cooling of high energy proton beams
where we varied the initial proton-electron beam configura-
tions aiming to identify the ones that give fast cooling times.
This is performed by quantifying the reduction of the
transverse emittance of the proton beam through the simu-
lation. The following simulations were introduced in
Chapter 6 of [37]. Since the cooling times at higher energies
are very long compared to feasible simulation times, we
resorted to a modified algorithm. Owing to the kernel-
independent nature of our FMM algorithm, we introduced

FIG. 14. A demonstration of symplecticity preservation by
PHAD, showing the invariant RMS emittances ϵ4D, and ϵ6D of
the Cþ6 ions beam in the absence of cooling. The emittances ϵ4D
and ϵ6D are scaled as

ffiffiffiffiffiffiffi
ϵ4D

p
and

ffiffiffiffiffiffiffi
ϵ6D3

p
, respectively.

FIG. 15. The longitudinal emittance of the Cþ6 ions beam
cooled with an electron beam of shorter bunch length and larger
radius. The electron beam current is 15 mA and the longitudinal
magnetic field in the cooling section is Bz ¼ 0.1 T.

TABLE I. Initial parameters of the simulations of electron
cooling of the Cþ6 ion beam.

Parameter Value

Energy (MeV=nucleon) 7
Ion Cþ6

Number of ions 500
Ions RMS bunch length (mm) 5.5
Ions RMS momentum spread 2.5 × 10−4

Ions RMS emittance [h:=v:] (mm mrad) 0.15=0.1
Length of cooler (m) 3.4
Beta value in cooling section (m) 10
Magnetic field in cooling section (T) 0.1
Number of electrons 15604
Electron charge (e) −900
Electron beam radius (mm) 7.5
Electron beam temperature [trans=long] (eV) 0.01=10−5

Electrons bunch length (mm) 5.5
Electron beam current (mA) 15
PHAD time step (ns) 0.93
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a softened Coulomb force to allow increased time steps
without introducing nonphysical effects, at the expense of
washing out close collisions. A softening parameter of
λ ¼ 50 μm was employed (see Appendix C). Since under
these circumstances there is no need for the sophisticated
capabilities of the Simò integrator, the near equations were
solved using a Picard-iteration based integrator of fixed order
and time step as described in [40] for enhanced efficiency.
The initial parameters of these simulations are presented

in Table II. In these simulations, PHAD time step was
3.3 ps which is smaller than the timescales relevant to these
simulations such as the electrons plasma period that is
<10 ns; the ions plasma period is ∼0.3 ms; and the
collisional relaxation time goes to infinity since the electron
beam temperature is zero here. We varied the following

TABLE II. Initial parameters of the simulations of electron
cooling of the proton beam.

Parameter Value

Energy (MeV) 280
Ion proton
Number of ions 100
Ions bunch length (mm) 1
Length of cooler (m) 3
Number of electrons 1000
Electron charge (e) −32552.08
Electrons transverse momentum px;y=pz 0
Electrons bunch length (mm) 1
Electron beam current (A) 1
PHAD time step (ps) 3.3

FIG. 16. The transverse emittance of the proton beam bunch of 1 cm radius cooled with an electron beam of the same radius,
Bz ¼ 1 T, and px;y=pz ¼ 10−6. The black and green dashed lines are reference lines for ϵx and ϵy, respectively.

FIG. 17. Maxima of the horizontal (left) and vertical (right) emittances curves of the proton beam bunch of 1 cm radius cooled with an
electron beam of the same radius, Bz ¼ 1 T, and px;y=pz ¼ 10−6. The decline of these maxima indicates cooling.
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parameters: the radii of both the electron and proton beams,
the transverse momentum of the proton beam, and the
longitudinal magnetic field Bz. The electron bunches were
refreshed with new cold electrons after each pass through
the cooler which means after ∼16 ns (or 4700 time steps).
Beginning with a small transverse momentum of

px;y=pz ¼ 10−6 for the proton beam and a longitudinal
magnetic field Bz ¼ 1 T, both the electron and proton
beams have a uniform distribution with the same bunch
length and we vary their radii. In the case both the radii are
set to 1 cm, the change of the transverse emittance after
0.44 μs (or 132,000 time steps) is shown in Fig. 16. The
decrease of the horizontal (peaks of the red curve) and
vertical (peaks of the blue curve) emittances is indicated by
the horizontal dashed black and green lines, respectively.
Figure 17 illustrates the decline of the maxima of each
curve with time, which indicates cooling.
Then, we reduced the radius of the proton beam to 5 mm.

The resulting transverse emittance in this simulation did not
show a decline, indicating a longer cooling time compared
to the equal radii of both beams. For the opposite case when
the proton beam has a 1 cm radius that is larger than the
5 mm radius of the electron beam, we observed a reduction
of the transverse emittance similar to that when both beams
are of equal radii. We proceeded with this spatial configu-
ration (proton beam of 1 cm radius and electron beam of
5 mm radius) in the following simulations.
We increased the transverse momentum of the proton

beam to px;y=pz ¼ 10−3 and performed the simulation for
more than 100,000 time steps (about 0.36 μs). Figure 18
shows the change of the proton beam’s horizontal (peaks of
the red curve) and vertical (peaks of the blue curve)

emittances with respect to the horizontal dashed black
and green lines, respectively. This figure shows a slight
decrease of the transverse emittance indicating a slow
cooling compared to the previous case of the smaller
transverse momentum.
Lastly, we fixed the transverse momentum to px;y=pz ¼

10−3, and we increased the longitudinal magnetic field to
1.5 T. During 3.4 μs (1,005,000 time steps), Fig. 19 shows
the proton beam’s horizontal (peaks of the red curve) and
vertical (peaks of the blue curve) emittances with respect to
the horizontal black and orange lines, respectively. From
this figure, a clear reduction of the transverse emittance is

FIG. 18. The transverse emittance of the proton beam bunch of 1 cm radius cooled by a 5 mm electron beam radius, Bz ¼ 1 T, and
px;y=pz ≈ 10−3. The black and green dashed lines are reference lines for ϵx and ϵy, respectively.
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FIG. 19. The transverse emittance of the proton beam cooled
bunch of 1 cm radius with a 5 mm electron beam radius in the
presence of a strong longitudinalmagnetic field ofBz ¼ 1.5 T, and
px;y=pz ≈ 10−3. The black and orange lines are reference lines for
ϵx and ϵy, respectively.
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observed. The decline of the maxima of both emittances
curves is also depicted in Fig. 20.
Based on the simulation results presented within this

section, electron cooling of the transverse emittance is
faster when the transverse size of the electron beam is
smaller than or equal to that of the proton beam, and when
the transverse momentum of the proton beam is small.
These results also suggest that cooling time is faster for
stronger longitudinal magnetic field as it is known for the
magnetized cooling [59].

VII. SUMMARY AND CONCLUSIONS

Beam dynamics, especially in the nonlinear multiparticle
regime, is a subject best treated numerically. Historically,
this recognition led to the development of many algorithms
and codes based on them; some of these codes even rise to
the community code level. However, the vast majority of
these codes are based upon variants of what generically
may be called mean-field, collisionless codes. While this is
sufficient for many applications, several recent beam
physics applications emphasized the need for new, colli-
sional algorithms and codes based on them. We briefly
summarized two such applications here: ultracold electron
beam generation based on arrays of sharp nanotips and
electron cooling of ion beams.
We developed a new, efficient algorithm for high-fidelity

collisional simulations. It is based on using the fast multi-
pole method to compute forces among the beam particles
pairwise, our new Simò integrator for time propagation,
and Strang splitting to speed up the simulations while
preserving symplecticity. Efficiency is guaranteed by linear
scaling with particle number of the force computation; by
provable computational effort minimization in the Simò
time stepping for an a priori user-set error requirement; by
the ability to separate near and far regions from the
perspective of each particle and treat the regions independ-
ently from the computational point of view; by the ability to
use large time steps due to the splitting technique; and by

thorough parallelization of the code. High-fidelity is
achieved by the tunable accuracy of the FMM with
guaranteed error bounds, the adaptivity both in order
and time of the Simò integrator, and maintenance of
numerical (machine precision level) symplecticity.
The resulting algorithm, termed PHAD,was implemented

and benchmarked. With our code, based on COSY
INFINITY, we estimated roughly an order of magnitude
decrease in time to solution compared to the previous best
solutionmethod, the Simò integrator. Therefore, PHAD now
makes possible much faster simulations of larger scale
collisional beam dynamics problems than before, while
maintaining adequate accuracy. The algorithm’s perfor-
mancewas illustrated with two applications where collisions
play a significant role: generation of ultrabright beams and
electron cooling of ions.
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APPENDIX A: DIFFERENTIAL ALGEBRA

The performance of our numerical method relies on the
concept of differential algebra (DA) and its implementation
in COSY INFINITY. Thus, we give here a brief description
of the DA method following its presentation in [23].
Classical numerical methods for differentiation that com-
pute Taylor expansions of functions were considered
impractical and inaccurate since their algorithms depend
on the exact value of the functions at particular points. The
DA methods are based on the fact that there are more
information that can be extracted from a function other than

FIG. 20. Maxima of the horizontal (left) and vertical (right) emittances curves of the proton beam bunch of 1 cm radius cooled with a
5 mm electron beam radius, Bz ¼ 1.5 T and px;y=pz ≈ 10−3.
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its exact values. Defining an operator T that can extract
Taylor coefficients of a function up to an arbitrary order, the
function can be translated to an equivalence class consist-
ing of all functions of the same Taylor expansion to the
same order. Supplying a set of equivalence classes with
well-defined basic arithmetic operations can turns it into a
commutative algebra. When the operations of differentia-
tion and integration are introduced, the resulting structure is
called a differential algebra (DA).
Starting with the first nontrivial DA in R2, the real

numbers a0 and a1 establish the set of all ordered pairs
ða0; a1Þ. The commutative algebra 1D1 is formed by the
ordered pairs along with the arithmetic operations of
addition, scalar multiplication, and vector multiplication
defined as

ða0; a1Þ þ ðb0; b1Þ ¼ ða0 þ b0; a1 þ b1Þ
t · ða0; a1Þ ¼ ðt · a0; t · a1Þ

ða0; a1Þ · ðb0; b1Þ ¼ ða0 · b0; a0 · b1 þ a1 · b0Þ;
where t is a scalar. Defining the infinitesimal or the
differential d ¼ ð0; 1Þ, any ða0; a1Þ ∈ 1D1 can be written as

ða0; a1Þ ¼ ða0; 0Þ þ ð0; a1Þ ¼ a0 þ d · a1;

where the first and the second components are called
the real and the differential parts, respectively. Also,
any ða0; a1Þ ∈ 1D1 satisfies the relation ða0;a1Þn¼
ðan0;n ·an−10 a1Þ for all n > 1. A multiplicative inverse can
be defined as ða0; a1Þ−1 ¼ ða−10 ;−a1=a20Þ if and only if
a0 ≠ 0. The derivation operator is defined as the map
∂∶ 1D1 ↦ 1D1 by ∂ða0; a1Þ ¼ ð0; a1Þ, and ð1D1; ∂Þ is a
differential algebra.
For the purpose of the automatic computation of

derivatives, an operator [] is introduced as a map from
the space of differentiable functions to 1D1 such that
½fðxÞ� ¼ ðfðxÞ; f0ðxÞÞ for a function fðxÞ with its value
and derivative are given at a point x. The arithmetic
operations for functions f and g can be written as follow

½f� þ ½g� ¼ ½f þ g�
t:½f� ¼ ½t:f�

½f�:½g� ¼ ½f:g�:
For a real x, it can be shown that ½fðxÞ� ¼ fð½x�Þ where
½x� ¼ ðx; 1Þ. Using the DA variable ðx; 1Þ, we can compute
the value and the derivative of fðxÞ just through arithmetic
operations. As an example, consider the following function
and its derivative

fðxÞ ¼ x2 þ 1

1þ x
; f0ðxÞ ¼ 2x −

1

ð1þ xÞ2 :

At x ¼ 2, direct evaluations give fð2Þ ¼ 4.3 and
f0ð2Þ ¼ 3.89. However, we can evaluate both the function

and its derivative using the DA representation of x ¼ 2 ¼
ð2; 1Þ and we get

fðð2; 1ÞÞ ¼ ð2; 1Þ2 þ 1

1þ ð2; 1Þ ¼ ð4; 4Þ þ 1

ð3; 1Þ
¼ ð4.3; 3.89Þ:

This treatment can be extended to any common intrin-
sic function gi as gið½f�Þ ¼ ½giðfÞ� or gi½ða0; a1Þ� ¼ ½gða0Þ;
a1g0iða0Þ�. Therefore, any function can be represented by a
finite number of intrinsic functions and operations in 1D1.
Following the description of ð1D1; ∂Þ, we can arrive to the
differential algebra ðnDv; ∂1;…; ∂vÞ which allows the
computation of derivatives of functions in v variables up
to order n.
In the implementation of the DA techniques in COSY

INFINITY software, evaluating a function in DA creates a
DA vector that contains the truncated Taylor polynomial
around a particular expansion point. These DA vectors are
treated according to the various supported operations of DA
such as arrays of DA vectors, arithmetic operations,
derivation and anti-derivation, evaluation, inversion, and
composition. Thus, implementing Taylor methods using
DA in COSY INFINITY is very efficient and is very
accurate due to the ability of computing high orders.

APPENDIX B: OVERVIEW OF THE
SIMÒ INTEGRATOR

The main aspects of the Simò integrator were explained
in [24] and some of them are summarized here. The
optimal time step size hsi of particle i is obtained from
(20) and it involves finding the radius of convergence ρi.
For a function expanded into a Taylor polynomial, the
distance from its expansion center to the nearest singularity
in the complex plane is its radius of convergence. The
components of the right-hand side of the near equation are
expanded into Taylor polynomials in the Simò integrator,
and converge to the solution in the interval ½0; ρi�.
If we define αiðtÞ ¼ f2i þ p̂2

xi þ p̂2
yi þ p̂2

zi , and βi;jðtÞ ¼
ðxi − xjÞ2 þ ðyi − yjÞ2 þ γ2ðzi − zjÞ2, then the compo-
nents of the right-hand sides of (9) and (11) are singular
when T n

ðt;0Þ½αiðtÞ� ¼ 0 or T n
ðt;0Þ½βi;jðtÞ� ¼ 0. Hence, the

closest root of T n
ðt;0Þ½αiðtÞ� or T n

ðt;0Þ½βi;jðtÞ� to the center
of the complex plane represents ρi for a particle i.
In order to reduce the number of floating point

operations, the Simò integrator estimates the radius of
convergence from the coefficients of T n

ðt;0Þ½αiðtÞ� and
T n

ðt;0Þ½βi;jðtÞ�. We chose to implement Lagrange’s lower
bound to estimate ρi as suggested by the results of our
numerical experiments of different theorems of lower
bounds [24]. While these numerical experiments showed
that estimating ρi at order 2 is accurate enough, some of our
simulations of real applications required higher orders.
Therefore, we have modified the order at which ρi (and hsi )
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is determined. To maintain the efficiency of the Simò
integrator, ρi is first estimated at order 2 as before. If the
order reaches half the maximum allowed order (set by the
user) and the required accuracy has not been achieved yet,
the estimation of ρi is updated at this order only for particle
i. If this updated estimation still does not achieve the
required accuracy as the order increases, another estimation
is performed at the maximum allowed order.
An additional efficiency in the Simò integrator is

provided through the use of time bins. After all the
Taylor polynomials of the solutions are generated and
the optimal time steps and orders are calculated, particles
are distributed over a number of time bins based on their
optimal time steps. The first bin contains the particles that
have the smallest propagation time steps. At the end of each
time step, the first bin particles are propagated, and will
need new expansions to be computed in the next step while
the other particles in other bins will keep their computed
expansions. All the particles will be propagated to the final
simulation time in the final step.
Moreover, the Simò integrator implements two types of

time bins: equal width time bins and equal number of
particles time bins. The efficiency of the Simò integrator
can be enhanced by the appropriate choice of the number
and type of time bins. In general, more particles in the first
bin means more computational time. However, less par-
ticles in the first bin means less computational time per step
but requires more time steps to integrate the total simulation
time, which could increase the computational time. This
suggests that the computational time starts large for small
number of time bins and decreases until it reaches a
minimum, and then increases again for larger number of
time bins. Figure 21 shows this behavior for two beams of
25 × 103 particles with the same initial conditions except
for their spatial distributions. In this case, the optimal time
steps will mainly depend on the distances between the
particles where uniformly distributed particles have com-
parable optimal time steps. In a Gaussian distribution, the

particles time steps vary with small ones for the core
particles and larger ones for the particles outside the core.
As a result, the variation of the computational time with the
number of bins is more noticeable for the Gaussian
distribution than the uniform distribution in both types
of bins as shown in Figs. 21(a) and 21(b).

APPENDIX C: SOFTENED COULOMB
POTENTIAL OF DA-FMM

In its usual incarnation, the FMM algorithm allows the
inclusion of all collisional effects. However, if only the
mean fields are of interest, accounting for the strong effects
due to close encounters would cause unphysical behavior.
To avoid any unphysical effects, it us customary to smooth
the Coulomb potential. Unfortunately, the standard FMM
cannot tackle this problem. Fortunately, our DA based
FMM allows easy employment of a softened (smoothed)
Coulomb potential and without altering the algorithm
[4,18]. The softening of the Coulomb potential is per-
formed by introducing a Plummer-like softening (smooth-
ing) parameter, denoted by λ here. The softened 2D
Coulomb potential at a target ðx; yÞ can be written as

Vðx; y; λÞ ¼ −
1

2

XN
i¼1

log½ðxi − xÞ2 þ ðyi − yÞ2 þ λ2�; ðC1Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ λ2

p
. With the DA variables

dx ¼ x=r2, dy ¼ y=r2, d2r ¼ 1=r2, and dλ ¼ λ=r2, the
resulting potential is

Vðx;y;λÞ¼−
1

2

XN
i¼1

flogðx2þy2þλ2Þ

þ log ½1þðx2i þy2i Þd2r −2ðxidxþyidyÞ�g: ðC2Þ

The rest of the algorithm proceeds in similar fashion to the
usual DA-FMM algorithm as described in [4,18].

FIG. 21. The dependence of the computational time on the number of time bins for the two types: (a) equal width time bins, (b) equal
number of particles time bins.
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