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We propose a new method to measure and correct linear optics and coupling for storage rings with beam
position monitor (BPM) data. Two correctors in each transverse plane are used to modulate the closed orbit
in an appropriate pattern to sample the linear optics. The orbit modulation data are fitted to the lattice model
in a similar manner as the usual method of fitting the orbit response matrix. The closed orbit modulation
measurements can be done much faster, and the number of sample points is not limited by the number
of correctors. The method also has a number of advantages over methods that rely on turn-by-turn BPMs.
A simulation is done to demonstrate the working principles of the method.
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I. INTRODUCTION

Linear optics correction is critical for storage rings to
achieve the design performance. A commonly adopted
method for linear optics correction is linear optics from
closed orbit (LOCO), which fits the measured orbit
response matrix to a lattice model to determine the quadru-
pole errors in the machine [1]. The orbit response matrix
consists of orbit deviations at beam position monitor
(BPM) locations when the orbit correctors are changed,
one at a time. Each column of the orbit response matrix
corresponds to the response of one corrector. The LOCO
method uses only orbit correctors and BPMs, both of which
are available on a typical storage ring. Combined with the
constrained fitting technique to address the degeneracy
problem due to similarities in the optics perturbations by
neighboring quadrupole magnets [2], the LOCO method
can be applied to essentially any storage ring. When the
cross-plane response data are included and the skew
quadrupoles are fitted, linear coupling errors can also be
determined and corrected.
One disadvantage of the LOCO method is that measur-

ing the orbit response is a slow process, especially for
machines with slow correctors. The time needed to measure
one set of orbit response matrix data ranges from ∼10 min
to a few hours. This is not ideal, especially for cases where
many datasets are needed, for example, during a lattice
development shift, or when measuring the effects of an
insertion device operated at various modes and gaps.

Fast measurement has been demonstrated by driving
multiple correctors with rf modulation of different frequen-
cies [3–5]. This method substantially reduces the data-
taking time for LOCO. The method requires the correctors
to have a fast response (e.g., 8 Hz in [3]). However, at many
facilities, not all correctors are fast ones. Exclusion of the
slow correctors reduces the number of optics sample points.
In addition, driving multiple correctors in parallel increases
measurement noise in the LOCO data [4].
Turn-by-turn (TBT) orbits taken with a beam undergoing

coherent betatron oscillations provides a much faster way
to sample the linear optics. The TBT BPM data can be
processed with a number of methods to extract the
information for optics correction. Some methods derive
the linear optics functions (beta functions and betatron
phase advances) from the oscillations [6–8], which can, in
turn, be used to fit the lattice model [8,9]. Linear coupling
can be determined and corrected using decoupled betatron
normal modes by the independent component analysis
method [10]. The measured phase advances from the
TBT BPM data are also used to measure and correct the
global optics section by section [11,12].
The TBT orbit data can also be fitted to the lattice model

directly by comparing the measured orbits and the orbits
obtained through particle-tracking simulation [13]. This
method has been extended to one-pass systems such as the
Linac Coherent Light Source linac and transport lines [14].
In the latter case, two correctors in each transverse plane
were used to scan the trajectory on a grid as a way to sample
the linear optics [15].
TBT orbits and closed orbit responses are essentially

the same in terms of sampling the linear optics. Both orbits
represent deviations from the phase space origin and are
governed by the focusing forces along the beam path.
Because the betatron tunes are typically away from
lower-order resonances, the TBT orbits of many turns of
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an excited beam usually fills up the circumference of the
phase space ellipse. The closed orbit responses of all
correctors observed at one location also spread out in
the phase space as the correctors are distributed along the
ring. This is illustrated in Fig. 1, which shows a comparison
of horizontal phase space for 256 turns of TBT orbits with
betatron oscillations and closed orbit responses by the 58
correctors for the Stanford Positron Electron Asymmetric
Ring (SPEAR3) storage ring.
The two ways to sample the linear optics both have their

advantages and disadvantages. The TBT orbit data can be
taken within seconds. However, it requires BPMs with TBT
capability and a vertical pinger to excite betatron motion
in the vertical plane. The data precision for TBT orbit is
usually much lower than closed orbit measurements. In
addition, decoherence of a kicked bunch can limit the
number of turns of usable data to tens of turns. The closed
orbit measurements have high precision. However, data
taking is slow, and the number of data samples is limited by
the number of corrector magnets.
In this study, we propose a new approach to sample the

linear optics with BPMs, which can be used to determine
the linear optics and coupling errors in the same fashion as
the LOCO method or the method of fitting TBT orbit data
but without the disadvantages of either method. In the new
method, we use a pair of correctors in each transverse
plane to modulate the closed orbit such that the orbits are
distributed on the phase space ellipse.
The new method is similar to LOCO in that it also

measures closed orbits. It is substantially different from
LOCO in that it needs only two correctors in each plane
and as many sample points can be obtained as necessary.
The measurements can be done quickly. The two correctors
can be simultaneously driven by sinusoidal signals of the
same frequency with a proper phase difference as they are
changed to scan the phase space ellipse. In this mode, the
data-taking process can complete within a second. Even if
the two correctors are discretely sampled, it would still be
much faster than orbit response matrix measurement, as

faster correctors can be used and scanning the same
correctors in small steps takes less time than switching
to different correctors.
The new method may be referred to as linear optics from

closed orbit modulation (LOCOM). In the next section, we
describe the method in more detail. In Sec. III, simulation
results are shown as a demonstration of the working
principle. The conclusion is given in Sec. IV.

II. THE LOCOM METHOD

A. Orbit modulation

When one orbit corrector is changed to give an angular
kick to the beam, the closed orbit changes in a certain pattern
according to the closed orbit response of the corrector. This
corresponds to one point away from the origin in the phase
space (observed at a given location). Changing the strength
of the kick further will generate another point. However,
in terms of probing the linear optics, the second point is
degenerate with the previous point, as it corresponds to the
same pattern, only linearly scaled. New information is
brought in only if the closed orbit is shifted to a different
angle coordinate in the phase space.
With two orbit correctors in the same plane separated

by a betatron phase advance, closed orbits corresponding
to any angle coordinate shift can be generated. By varying
the kicks of the two correctors, the closed orbit can
thoroughly scan the phase space. For the best effect of
sampling the linear optics, we prefer that the scanned
points populate the circumference of the phase space
ellipse of an appropriate size [14].
Suppose the two correctors are located at P1 and P2 and

apply kicks θ1 and θ2, respectively, as illustrated in Fig. 2.
The closed orbit with kicks from the two correctors is the
superposition of the closed orbits with each kick individu-
ally. Suppose the transfer matrix from P2 to P1 is m; then
the phase space coordinate of an initially unperturbed
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FIG. 1. Comparison of closed orbit responses with 58 correc-
tors and TBT orbits for 256 turns in phase space.

FIG. 2. Illustration of modulating the orbit with two correctors
located at P1 and P2.
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particle (before P2) at just downstream of P1 will be

m
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where α1;2 and β1;2 are Courant-Snyder parameters with the
subscript indicating locations P1 and P2, respectively,
and ψ12 is the phase advance from P2 to P1. The
normalized phase space coordinates with the two kicks
downstream of P1 is
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Although this is not the closed orbit, we can expect that
scanning the kicked coordinate over the local Courant-
Snyder ellipse will have a similar effect for sampling
the linear optics. It would be ideal if ψ12 ¼ kπ þ π

2

(with integer k), in which case we can simply specify

θ1 ¼ θamp cos ϕ and θ2 ¼
ffiffiffiffi
β1
β2

q
θamp sin ϕ, with ϕ increas-

ing with uniform steps.
It is preferred that ψ12 is close to the ideal value. In the

general case, we could solve for the required kick angles θ1
and θ2 needed to uniformly scan the ellipse. However, a
uniform scan is not strictly necessary. Since it is desirable
to drive the two correctors with sinusoidal signals, we look
for the form of

θ1 ¼ θamp sinϕ; θ2 ¼
ffiffiffiffiffi
β1
β2

s
θamp cosðϕþ χÞ; ð3Þ

with a phase shift χ between the waveforms of the two
correctors. We would like to make the x and α1xþ β1x0
components orthogonal within a period of the drive signal.
It is easy to show that this is achieved when

χ ¼ π

2
− ψ12: ð4Þ

Simulation with the SPEAR3 lattice is used to illustrate
the concept of closed orbit modulations with two correc-
tors. A pair of horizontal correctors, with phase advance
difference ψx;12 ¼ 1.60π and a pair of vertical correctors,
with ψy;12 ¼ 0.52π are used. Figure 3 shows the phase
space plots in comparison to the Courant-Snyder ellipses
at the same location for the two planes. For both planes,
the choices of χ ¼ −ψ12 and χ ¼ π

2
− ψ12 are shown for

comparison. Clearly, the latter case paints out a trace
similar to the ideal Courant-Snyder ellipses and is, thus,
better suited for linear optics sampling. For the vertical

plane, as the phase advance between the two correctors is
closer to the ideal value of π

2
, the scanned trace is closer to

the ideal ellipse.
Figure 4 shows the horizontal orbit samples for the

two values of the phase shift χ. The top plot shows the case
with χ ¼ −ψx;12 and the bottom plot for χ ¼ π

2
− ψx;12. The

orbits shown in the top plot are nearly degenerate, as they
are in a similar (but scaled) pattern. The case in the bottom
plot is better, as there is a shift in phase between the orbits.
Figure 5 shows the orbit samples for the vertical plane,
where the degeneracy in the top plot is even more
pronounced. The bottom plot in Fig. 5 illustrates the ideal
case of orbit modulation, where the amplitude or orbit
deviation remains nearly the same, but the phase of the
orbit is shifted.

B. Fitting the lattice model

Similar to LOCO, the measured closed orbit patterns in
the LOCOM method can be compared to its counterpart in
simulation. The differences between measurements and
simulation represent the optics errors of the machine, as
well as imperfections in the measurements, such as
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FIG. 3. Phase space plots for simulated closed orbit modulation
with the SPEAR3 lattice. Left, horizontal; right, vertical.

FIG. 4. Comparison of horizontal orbit samples phase shifts
between the two correctors set to χ ¼ −ψx;12 (top) or
χ ¼ π

2
− ψx;12 (bottom) for the SPEAR3 example. Each sample

is an orbit with 57 BPMs.
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corrector and BPM calibration errors. These errors can be
fitted to minimize the difference between the measurements
and the model predictions. The cross-plane orbit changes
(i.e., vertical orbit shifts due to horizontal correctors)
represent linear coupling, which can also be fitted, with
skew quadrupoles in the lattice model and rolls of correc-
tors and BPMs as fitting parameters. The least-square
fitting scheme is the same as LOCO [1] or fitting the
TBT orbits [13].
The BPM readings (x and y) are related to the actual

beam orbits (x̃ and ỹ) through [16]

�
x

y

�
¼
�
gx cx
cy gy

��
x̃

ỹ

�
; ð5Þ

where gx;y are the horizontal and vertical gains and cx;y are
the coupling coefficients. Similarly, the two correctors also
have gain and roll errors. The actual kicks on the beam,
θ̃x and θ̃y, are related to the apparent kicks (as determined
from the power supply) θx and θy via

�
θ̃x

θ̃y

�
¼
�

cosϕ sinϕ

− sinϕ cosϕ

��
kxθx
kyθy

�
; ð6Þ

with corrector gain kx;y and roll ϕ. One advantage of the
LOCOM method over LOCO is that only the gain and roll
errors for the four correctors need to be fitted, while LOCO
needs to include the corrector parameters for each orbit.
Generally speaking, the reduced number of fitting param-
eters help avoid cross talk between the fitting parameters
and increase the capability of the fitting scheme to resolve
the actual errors.
Dispersion functions can be included as fitting data, as is

done for the LOCO method. Because the closed orbit
modulation data are similar to orbit response matrix data in
nature, the robustness of the LOCOM method is expected
to be similar to the LOCO method.

III. SIMULATION

A simulation is done to test the scheme of fitting
LOCOM data to discover lattice errors, using the
SPEAR3 lattice model. Quadrupole gradient errors are
added artificially to the model to generate optics distortion.
Error is also added to a skew quadrupole to introduce
coupling. Random gain and coupling errors are introduced
to the 57 BPMs. The cy and cx coupling coefficients are
chosen to be equal in magnitude but with opposite signs
such that they represent rolls. Gain and roll errors are also
added to the two corrector magnets.
The LOCOM data are generated by modulating the same

pairs of correctors in each plane as in the previous section.
The modulation waveforms differ in phase by π

2
− ψ12.

A total of 30 orbits were generated with the maximum kick
angle of 0.1 mrad for each transverse plane. The in-plane
orbits are as shown in Figs. 4 and 5, bottom plots.
Dispersion functions are also measured with the simulated
lattice errors. The dispersion terms are given a weight factor
of 25 in the least-square χ2 definition. Random BPM noise
with rms value 1 μm is added to the simulated BPM
readings. There are a total of 6954 data points.
The fitting parameters are 78 quadrupole gradients,

13 skew quadrupole gradients, BPM gains and coupling
coefficients (57 × 4), and corrector gains and rolls (2 × 4).
There are a total of 327 fitting parameters. The initial χ2 of
the least-square problem is 1.61 × 105 (normalized by
BPM noise sigma and the number of data points). This
is reduced to 1.464 × 104, 3070, and 550, respectively,

FIG. 5. Comparison of vertical orbit samples for the SPEAR3
example with χ ¼ −ψy;12 (top) or χ ¼ π

2
− ψy;12 (bottom).

TABLE I. Corrector gains and rolls: Target vs fitted values.

H corrector kx target kx fitted ϕx target ϕx fitted

1 1.050 1.038 0.010 0.0106
2 0.970 0.965 0.005 0.0051

V corrector ky target ky fitted ϕy target ϕy fitted

1 0.950 0.941 0.005 0.0050
2 1.040 1.028 −0.005 −0.0066
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FIG. 6. Comparison of fitted BPM gains and the target values.
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after one, two, and three iterations. The final value is
χ2 ¼ 3.2 after six iterations.
The corrector gain and roll values are listed in Table I,

with target values compared to the fitted values. The fitted
BPM gains are shown in Fig. 6, while the fitted BPM
coupling coefficients are in Fig. 7. The corrector rolls and
BPM coupling coefficients are in good agreement with the
expected values. The corrector gains are off by a small
amount. However, a large fraction of it comes from the
degeneracy due to simultaneously varying all corrector
gains and BPM gains. On average, the fitted horizontal

BPM gains are higher by 0.45%, while the fitted vertical
BPM gains are higher by 0.91%.
The fitted quadrupole gradient changes and the skew

quadrupole gradients are shown in Fig. 8. The quadrupole
errors planted in the lattice model are mostly recovered,
with some leakage to the nearby quadrupoles, which is
common to lattice calibration by fitting [2]. The rms beta
beating with respect to the reference lattice is reduced from
25% to 0.5% for the horizontal plane and from 7% to 0.4%
for the vertical plane. The skew quadrupole error is found
by fitting with high accuracy.
The reference lattice with artificial errors has rms beta

beatings of 25% and 7% for the horizontal and vertical
planes, respectively, while the beta beating of the fitted
lattice with respect to the reference lattice is only 0.5% and
0.4%, respectively. The beta beating of reference lattice is
compared to the beta beating between the reference lattice
and the fitted lattice in Fig. 9. The dispersion functions
for the reference lattice and the fitted lattice are compared
in Fig. 10. The rms values of the dispersion function
differences between the reference and fitted lattices are
reduced to 8.6 and 1.2 mm for the horizontal and vertical
planes, respectively.
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FIG. 7. Comparison of fitted BPM coupling coefficients and the
target values. Note that the target values are deliberately made
with cy ¼ −cx.
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IV. CONCLUSION

We propose a new method to measure the linear optics
and coupling of a storage ring with BPM data. This method,
referred to as LOCOM, uses a pair of correctors in each
transverse plane to modulate the closed orbit in a pattern
that scans the angle coordinate along the Courant-Snyder
ellipse in the phase space. The orbit modulation data are
fitted with a lattice model, from which the lattice errors can
be determined and used for correction. BPM gains and
coupling coefficients as well as the gains and rolls of the
four correctors are included in the fitting.
A simulation was donewith the SPEAR3 lattice model to

test the method. It was shown that the BPM, corrector,
quadrupole, and skew quadrupole errors can be determined
by fitting the closed orbit modulation data.
Compared to the commonly adopted method of LOCO

[1], the LOCOMmethod has a number of advantages. It uses
only two correctors per plane and can generate as many data
points as needed. These correctors can be fast magnets, and
the modulation scan can be donewith small steps. Therefore,
data taking is faster. The correctors can be driven with
sinusoidal signals of the same frequency but with a proper
phase shift, which could reduce the data-taking time to
within a second. Compared to the fast orbit response matrix
measurement method with sinusoidal corrector modulation
[3–5], the present method should be faster as only two
correctors are driven, data reduction is simpler as no
demixing is needed, and the number of samples is flexible.
Furthermore, only eight corrector parameters (gain and roll)
need to be fitted, which would help increase the ability of the
fitting scheme to resolve lattice errors.
The LOCOM method also has advantages over the

methods that useTBTBPMdata. It is applicable to practically
any storage ring, while TBT BPMs are typically available
only at the newer machines. Closed orbit measurements have
muchhigher accuracy thanTBTorbits. TBTorbitsmayhave a
limited number of usable turns due to decoherence, especially
for high chromaticity or high oscillation amplitude. Many
ringsdo nothave a pinger to excite beammotion in thevertical
plane, which is needed for the TBT approach.
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