
 

Longitudinal modes of bunched beams with weak space charge
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Longitudinal collective modes of a bunched beam with a repulsive inductive impedance (the space
charge below transition or the chamber inductance above it) are analytically described by means of
reduction of the linearized Vlasov equation to a parameterless integral equation. For any multipolarity, the
discrete part of the spectrum is found to consist of infinite number of modes with real tunes, which limit
point is the incoherent zero-amplitude frequency. In other words, notwithstanding the rf bucket nonlinearity
and potential well distortion, the Landau damping is lost. Hence, even a tiny coupled-bunch interaction
makes the beam unstable; such growth rates for all the modes are analytically obtained for arbitrary
multipolarity. In practice, however, the finite threshold of this loss of Landau damping is set either by the
high-frequency impedance roll-off or intrabeam scattering. Above the threshold, growth of the leading
collective mode should result in persistent nonlinear oscillations.

DOI: 10.1103/PhysRevAccelBeams.24.064401

I. INTRODUCTION

Charged particles of accelerated beams interact with
each other by means of their Coulomb and radiation fields,
thus opening possibilities to the beam collective instabil-
ities. Such instabilities may be prevented by Landau
damping, which is associated with transfer of collective
energy to incoherent oscillations of those particles whose
individual frequencies provide their resonance with the
collective mode. At sufficiently low beam intensity, all the
collective frequencies normally lie within the incoherent
spectrum, thus providing their damping by means of the
Landau mechanism. As the intensity increases, however,
some collective modes move outside the incoherent spec-
trum. Thus, at certain intensity, Landau damping becomes
either insufficient or even lost. The latter happens if the
coherent tune is shifted by the collective interaction so far
that it cannot meet resonant particles at all there; this case is
termed loss of Landau damping, LLD. A special role in
such phenomena is played by Coulomb, or space charge
(SC) forces. Being conservative and being also repulsive
below the transition energy, such forces cannot drive
instabilities by themselves. However, they can move the
coherent frequency outside the incoherent spectrum, above
the maximal incoherent frequency, in which case even a
tiny radiation field causes an instability. If to liken Landau

damping to the beam immune system, the SC force below
transition would play a role of an immunodeficiency factor,
while the wake fields of other bunches would be similar to
all possible viruses. In this situation, the wall inductance
plays the role of a guard of Landau damping, since it
behave in same way as SC, but with the opposite sign; such
a guard is not necessarily sufficient, of course. Above the
transition, SC and the chamber inductance switch their
roles: the SC becomes the guard of Landau damping, and
the inductance the thief. Since SC normally dominates
below transition, and sufficiently above it dominates the
chamber inductance, the thief typically overcomes the
guard. In this paper, we limit ourselves by this situation
of the repulsive inductance, where the force is proportional
to the line density derivative, taken with the negative sign.
For the vacuum chamber, this law is effective with wave
numbers no higher than the inverse aperture; for hadron
beams it is typically one or two orders of magnitude
above the inverse bunch length. The SC impedance rolls
off γ times further than that, where γ is the relativistic
Lorentz factor.
The possibility of LLD for a bunch in the inductive

vacuum chamber above transition was first noted by
F. Sacherer [1]; he evaluated the threshold number of
particles per bunch, Nth ∝ σ5, where σ is the bunch length.
Later this result was essentially confirmed by A. Hofmann
and F. Pedersen [2]; see also Ref. [3]. Similar result was
obtained by V. Balbekov and S. Ivanov [4], O. Boine-
Frankenheim and T. Shukla [5]. Ten years ago, the author
of this paper obtained several times smaller threshold than
previous authors, with the same dependence on the param-
eters [6,7]. The reason for the discrepancy was in shorter
wavelengths of possible perturbations examined in the last
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reference. The problem of the LLD threshold calculation
looked to be solved until a recent article of I. Karpov,
T. Argyropoulos, and E. Shaposhnikova [8] demonstrated
that all the previous results were, in fact, incorrect: actually,
there is no LLD threshold for such impedance, and the
previous claims were all based in the insufficiency of the
accepted limits on wave numbers q of the perturbations or
insufficient number of the mesh points. This conclusion
was demonstrated in several independent ways, leaving no
doubt of its correctness. It was also shown that if the
inductance iZðqÞ=q rolls off at certain wave number
q ¼ qc, the LLD threshold would be inversely proportional
to that value, Nth ∝ σ4=qc. When the intensity increased,
emergence of a second mode of the discrete spectrum
was demonstrated.
All these unexpected results generate new questions. Why

is the threshold inversely proportional to the rolloff fre-
quency? Can we describe the collective spectrum in the
general case? How do these spectra depend on the beam
parameters? Further, since the roll-off frequency is typically
very high compared with the inverse bunch length, and sowe
have to operate above the LLD threshold, what is the
practical meaning of that? The last question actually leads
us to the source of the growth rates, the coupled-bunch (CB)
interaction. Without Landau damping, even a tiny CB wake
would lead to an exponential growth of the initial perturba-
tion, unless there is a proper feedback or the wave number is
so short that the intrabeam scattering (IBS) damping rate
becomes sufficient [9]. Otherwise, such growth may be
stabilized only by the nonlinearity of the perturbations,
possibly resulting in a soliton like one seen at RHIC [9].
Undamped collective longitudinal oscillations were also
observed at Tevatron [10], SPS [11], and LHC [12].
Thus, in the case of LLD, there is a necessity to take

into account the CB interaction. All these problems are
addressed below within the assumption of weak space
charge (or inductance), or within the weak headtail
approximation, meaning that the coherent tune shifts and
incoherent tune spread are small with respect to the bare
synchrotron tune. This assumption is justified for typical
hadron beams: usually LLD does not allow to increase the
bunch intensity to so high level that the weak headtail
approach would not be valid. We will see why that is so in
the next section, where the steady-state problem is
reviewed. The weak headtail approximation allows to
consider all the perturbations as independent harmonics
in the phase space, ∝ expðimϕÞ, where ϕ is the phase
variable and m ¼ 1; 2; 3;… is the harmonic number. It will
be shown that there are two limit cases within the weak
headtail approximation, determined by the ratio of the
coherent tune shift of the leading mode and the incoherent
tune spread within the bunch. If this ratio is much smaller
than 1, the spectral problem reduces to a parameterless
Hermitian integral equation, whose eigenvalues are found
and eigenfunctions are described. If, on the contrary, the

ratio is much larger than 1, the rf nonlinearity does not play
a role, and the leading dipole mode is just a rigid-bunch
one. In this paper we focus our attention in the former case,
the weak space charge regime.
For this case we solve the single-bunch eigensystem

problem for dipole modes,m ¼ 1, and then we compute the
growth rates introduced to these modes by the CB wakes.
If the CB rates are smaller than the single-bunch (SB)
coherent tune shifts, we find the former depending on the
bunch intensity as its fifth power. In the opposite case, the
CB growth rates are shown to satisfy the Sacherer
dispersion equation [1]. After that, we consider higher
multipoles, m ≥ 2, and essentially repeat the same pro-
cedure for SB and then CB. Comprehensible analytical
expressions for CB growth rates are found for arbitrary
multipolarity.

II. STEADY STATE

Description of bunch dynamics generally requires solv-
ing of two consecutive problems. First, the bunch steady
state has to be found, and, second, the evolution of its small
perturbations is to be analyzed. For that, the phase space
density FðIÞ, the wake functionWðzÞ, and the RF potential
UrfðzÞ have to be provided as input functions, where I and z
are the action variable and the longitudinal position along
the bunch. The steady state Hamiltonian Hðz; pÞ, with p as
the momentum variable associated with the coordinate z,
full potential UðzÞ, action IðHÞ and line density λðzÞ have
to be found then as solutions of the following set of
equations [6]

Hðz; pÞ ¼ p2

2
þ UðzÞ;

UðzÞ ¼ UrfðzÞ −
Z

ẑþ

ẑ−

λðz0ÞWðz − z0Þdz0

¼ UrfðzÞ þ kλðzÞ;

IðHÞ ¼ 1

π

Z
zþðHÞ

z−ðHÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðH −UðzÞÞ

p
dz;

λðzÞ ¼ 2

Z
Ĥ

UðzÞ

FðIðHÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðH −UðzÞÞp dH;

2π

Z
Î

0

FðIÞdI ¼
Z

ẑþ

ẑ−

λðzÞdz ¼ 1:

ð1Þ

Here z�ðHÞ are stop-points inside the potential well, i.e.,
the two roots of the equation Uðz�Þ ¼ H, and the hatted
symbols, like ẑ� or Ĥ, tell that the value relates to the bunch
or distribution edge. The wake function is defined accord-
ing to Ref. [13]; note that it is W0, not Wk ≡W0

0. The
strength of the inductive or SC wake WðzÞ ¼ −kδðzÞ, with
δðzÞ as the Dirac’s delta function, is described by the
intensity parameter k > 0, whose definition depends on the
units. In this paper, we follow the same unit conventions as
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in Ref. [6]. Namely, the coordinate z is measured in the rf
radians, time in the units of inverse zero-amplitude bare
synchrotron frequency Ω0, and the relative momentum
offset in units of Ω0=ðηωrfÞ. Here η ¼ 1=γ2t − 1=γ2 is the
slippage factor, with γ as the Lorentz factor, γt as the
transition gamma, and ωrf as the rf frequency. With these
unit conventions, the rf potential Urf ¼ 1 − cos z, and the
dimensionless intensity parameter can be expressed as

k ¼ −
2Nr0ηω3

rf

γcΩ2
0

ℑZn

nZ0

: ð2Þ

Here N is the number of protons per bunch; r0 is the
classical proton radius; c is the speed of light; Zn is the
impedance; n≡ qR0 is the azimuthal harmonic number
with R0 ¼ C0=ð2πÞ as the average machine radius;
Z0 ¼ 377 Ohms in SI and 4π=c in the Gaussian unit
system. Equations (1) can be solved numerically; a possible
algorithm was suggested in Ref. [6]. Note that only a
stationary bucket is considered, without any acceleration.
In principle, set of Eqs. (1) was already used in Ref. [14],

with a difference, though: the given phase space density F
was considered there to be a function of the Hamiltonian,
not the action. This difference requires special care and
corrections for proton beams, since it generally leads to
violation of the Liouville theorem at successful iterations.
Further, we will need to know the incoherent spectrum at

the first order of the intensity parameter, at the core of the
bunch. For that purpose, let us expand the potential UðzÞ ¼
1 − cosðzÞ þ kλðzÞ up to the fourth order of the argument:

UðzÞ ≃ z2

2
−
z4

24
þ kλð0Þ

�
1 −

z2

2σ22
þ z4

8σ44

�
: ð3Þ

The parameters λð0Þ and σ2;4 describe the normalized line
density at the bunch core. For a Gaussian bunch with
the rms length σ, λð0Þ ¼ 1=ð ffiffiffiffiffiffi

2π
p

σÞ, σ2;4 ¼ σ. At the first
order over the intensity parameter k, we may neglect the
influence of the potential well distortion on the line density
here. The incoherent frequency can be obtained with the
canonical transformation z ¼ −

ffiffiffiffiffi
2I

p
cosϕ, p ¼ ffiffiffiffiffi

2I
p

sinϕ
and averaging over the synchrotron phase ϕ in the
Hamiltonian. This yields

HðIÞ ≃ I

�
1 −

kλð0Þ
2σ22

�
−
I2

16

�
1 −

3kλð0Þ
σ44

�
;

ΩðIÞ ¼ dH
dI

¼ 1 −
kλð0Þ
2σ22

−
I
8

�
1 −

3kλð0Þ
σ44

�
:

ð4Þ

It was pointed out in Ref. [15] that if at some action within
the bunch distribution function the synchrotron frequency
derivative over action reaches zero, this drives loss of
Landau damping (LLD). For a Gaussian bunch, the
frequency derivative Ω0 ¼ dΩ=dI becomes zero at zero
action when k ¼ ffiffiffiffiffiffi

2π
p

σ5=3, while the frequency relative

depression is not large, 1 −Ωð0Þ ¼ σ2=6 ≪ 1, since typ-
ically σ < 1. This fact demonstrates that LLD normally
happens at such intensities that are far below the threshold
of the longitudinal mode coupling instability, so the weak
headtail approximation is well justified.

III. FOUR SC REGIMES

Before starting a scrupulous analysis of the spectral
properties, let us do some simple estimations. For that
purpose, the leading mode can be roughly approximated as
oscillations of a central part of size awith a small amplitude
z̃ ≪ a. Such oscillations result in the phase space density
perturbation f ≃ F0az̃ and the line density perturbation
ρ ≃ fa ≃ F0a2z̃, where F0 ¼ dF=dI at zero action, I ¼ 0.
For the inductive impedance, the related collective force is
E ≃ kρ=a ≃ kF0az̃. For the case under study, k > 0, this
corresponds to an additional focusing seen by the collective
mode, taking it above the incoherent spectrum. To avoid
confusion, let us note that at the same time the incoherent
frequencies are depressed by this wake. The related
coherent tune shift is thus estimated as Δω ≃ −kF0a=2.
For the same central cluster of particles, the incoherent tune
spread is δΩ ≃�jΩ0ja2=4, where Ω0 ¼ dΩ=dI at I ¼ 0, in
the total potential well. The coherent motion domi-
nates over the incoherent as soon as Δω ≥ δΩ, or
a ≤ 2kjF0=Ω0j≡ α. Thus, all the perturbations shorter
than α are of relatively small incoherent tune spread;
in other words, there is no Landau damping for them.
The maximal coherent tune shift for them is Δω≃
−kF0α=2 ≃ k2F02=jΩ0j. The suggested estimates assume
a weak space charge, when the mode size is small, α < σ,
where σ is the rms bunch length. For the Gaussian beam,
this requirement leads to

α

σ
¼ 8

π

k
σ5

1

1 − 3kffiffiffiffi
2π

p
σ5

≪ 1: ð5Þ

As we’ll see below, the weak SC approximation works
remarkably well with mode size as large as α=σ ≃ 0.6, but
as the bunches get shorter, it quickly becomes inapplicable.
Thus, we may present the weak SC criterion, mostly
assumed in this paper, as

k ≤ 0.2σ5: ð6Þ

Note that under this assumption the relative depression of
the tune derivative jdΩ=dIj (4) is not large.
The weak SC condition (6) can be compared with the

condition of separated multipoles, or weak headtail con-
dition, requiring for the relative tune shift to be small.
According to Eq. (4), for a Gaussian bunch the latter can be
presented as

k ≪ 2
ffiffiffiffiffiffi
2π

p
σ3: ð7Þ
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Thus, we come to a conclusion that there are four SC
regimes: (i) insignificant, α ≤ q−1c or k < ðπ=8Þσ4q−1c ; (ii)
weak, ðπ=8Þσ4q−1c ≤ k ≤ 0.2σ5; (iii) medium, 0.2σ5<k≪
2

ffiffiffiffiffiffi
2π

p
σ3; (iv) and strong, k ≃ 2

ffiffiffiffiffiffi
2π

p
σ3.

For the first of them, the one with insignificant SC, all the
modes are Landau damped due to the impedance roll-off or
due to the intrabeam scattering at wave numbers q > qc.
For the second, with weak SC, there is at least one discrete
undamped mode, associated with oscillations of the rela-
tively small central portion of the bunch, with the size
a ≃ α. This size is determined by the equilibrium between
SC tune shift and nonlinearity of the rf force. For the third
regime, the medium one, the rf nonlinearity already does
not play a role; all bunch particles are effectively involved
into the undamped collective oscillations, but the synchro-
tron multipoles are still well-separated, the coherent and
incoherent tune shifts are relatively small, and the bunch
length is mostly determined by the given emittance and rf
potential. For the fourth regime, the one with the strong SC,
the potential well is significantly flattened by the SC forces,
and the bunch length is determined by this condition,
σ ≃ k1=3 [16,17]. For all the regimes, except one of the
insignificant SC, the Landau damping is lost, and even a
tiny CB wake may drive an instability.
Having these distinctions marked, I’d like to stress that

this paper is devoted only to one of the SC regimes, the
weak one. Since in this case only the central part of the
bunch plays a role, the analysis is simplified, resulting in a
parameter-less linear integral equation with analytically
expressible real positive symmetric kernel, as shown below.
Thus, the problem has a universal solution, and all the
specific cases are described by scaling of one and the same
set of parameter-less 1D analytical functions.
The back-of-the-envelope estimations of this section

essentially explain the findings of Ref. [8] that there is no
LLD threshold for the pure inductive repulsive impedance,
being in agreement with the leading mode character seen in
that reference. It is also instructive tonote that for the attractive
wake, k < 0, the collective modes are shifted down with
respect to the incoherent ones. Thus, LLDcanhappenonly for
the modes mostly associated with the high-amplitude par-
ticles, not the central ones. At high amplitudes, however, the
derivative of the phase space density F0ðIÞ normally tends to
zero; thus, the nonzero LLD threshold has to be expected
there, which also agrees with the analysis of Ref. [8].
It is worth noting that the method of estimations

described in this section can be applied to any impedance.
To show that, let us assume a repulsive impedance
ZðqÞ ¼ ζð−iqÞκ, with some constant parameters ζ and κ.
With that, the intensity parameter k is modified by a
substitution −ℑZ=q → ζ, yielding the coherent tune shift
Δω ≃ −kF0a2−κ=2. Compared with the incoherent tune
spread δΩ ¼ �jΩ0ja2=4, it leads to a conclusion that at
κ > 0 all the central perturbations with a ≤ j2kF0=Ω0j1=κ
are not damped. Thus, for all such impedances with κ > 0

the spectral properties should be qualitatively the same as
for the inductive impedance. In particular, they all must
correspond to zero LLD threshold above transition. Note
that the resistive wall impedance belongs to this class; it is a
case of κ ¼ 1=2.

IV. COLLECTIVE MODES

Collective dynamics of continuousmedia can be generally
described by the linearized Jeans-Vlasov equation on the
small perturbation of the phase space density f̃ðI;ϕ; tÞ
(regardingthenamingofthisequation,onemayseeRef. [18]),

∂f̃
∂t þ ΩðIÞ ∂f̃∂ϕ −

∂V
∂ϕ F0ðIÞ ¼ 0 ð8Þ

Here t is time, F0ðIÞ ¼ dF=dI. The perturbation of the
potentialV is associatedwith that of thedistribution function,

Vðz; tÞ ¼ −
Z

ρðz0; tÞWðz − z0Þdz0; ð9Þ

where ρðz; tÞ ¼ R
f̃ðI;ϕ; tÞdp is the line density perturba-

tion. Canonical transformation of the coordinate andmomen-
tum to the action andphase, zðI;ϕÞ andpðI;ϕÞ, is to be found
as a part of the steady state problem. Since the phase can
always be counted from an arbitrary point, we may make it
zero at the left stopping point for every action. For the
following Fourier expansions over the phase, we may limit
ourselves by the interval −π ≤ ϕ ≤ π. Thus,

zðI; 0Þ ¼ z−ðIÞ; zðI; πÞ ¼ zþðIÞ;
zðI;−ϕÞ ¼ zðI;ϕÞ; pðI;−ϕÞ ¼ −pðI;ϕÞ:

ð10Þ

A. Dipole modes

Following Ref. [19], the perturbation f̃ can be expanded
in a Fourier series over the phase ϕ. Limiting that by the
dipole terms only, and looking for the harmonic modes,
∝ expð−iωtÞ, we get,

f̃ðI;ϕ; tÞ ¼ e−iωt½fðIÞ cosϕþ gðIÞ sinϕ�: ð11Þ

Substitution of this expansion into the Jeans-Vlasov equa-
tion leads to gðIÞ ¼ ifðIÞ with the following integral
equation on the cosine component:

½ω −ΩðIÞ�fðIÞ ¼ −F0ðIÞ
Z

Î

0

KðI; I0ÞfðI0ÞdI0;

KðI; I0Þ ¼ −
2

π

Z
π

0

dϕ
Z

π

0

dϕ0 cosϕ cosϕ0

×WðzðI;ϕÞ − zðI0;ϕ0ÞÞ:

ð12Þ
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1. SB spectrum

After the wake function is represented in terms of the
impedance,

WðsÞ ¼ −i
Z

∞

−∞

dq
2π

ZðqÞ
q

expðiqsÞ; ð13Þ

the kernel can be expressed as

KðI; I0Þ ¼ −2ℑ
Z

∞

0

dq
ZðqÞ
q

Gðq; IÞG�ðq; I0Þ

¼ 2k
Z

∞

0

dqGðq; IÞG�ðq; I0Þ;

Gðq; IÞ ¼ i
Z

π

0

dϕ
π
cosϕ exp½iqzðI;ϕÞ�:

ð14Þ

Making use of the wake weakness and also keeping in mind
that bunch tails do not play a significant role here, we may
reduce accounting of nonlinearity of the incoherent oscil-
lations by dependence of the frequency on action, ΩðIÞ,
treating the phase trajectories as if they were circles in
the phase space, zðI;ϕÞ ¼ −

ffiffiffiffiffi
2I

p
cosϕ≡ −b cosϕ, with

the amplitude b ¼ jz�ðIÞj ¼
ffiffiffiffiffi
2I

p
. With this substitution,

the kernel factors G turn out to be Bessel functions,

Gðq; IÞ ¼ J1ðqbÞ: ð15Þ

Note that the kernel is Hermitian, KðI0; IÞ ¼ KðI; I0Þ� for
an arbitrary wake. If the steady state distribution is
monotonic, F0ðIÞ ≤ 0, the entire integral equation (12)
reduces to the Hermitian one for an arbitrary wake function
by means of a transformation to new eigenfunctions hðIÞ,

fðIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−F0ðIÞ

p
hðIÞ: ð16Þ

Thus, the eigenvalues ω are all real, and all the eigenfunc-
tions hðIÞ are real and orthogonal,

Z
Î

0

hβðIÞhγðIÞdI ¼ δβγ: ð17Þ

For the inductive impedance, the kernel of Eq. (12) can
be analytically calculated,

KðI; I0Þ ¼ 4k
πbmin

½KðuÞ − EðuÞ� ≥ 0; u≡ b2min=b
2
max ≤ 1;

ð18Þ

where K and E are the complete elliptic integrals of the
first and the second kind, and bmax ¼ maxð ffiffiffiffiffi

2I
p

;
ffiffiffiffiffiffi
2I0

p
Þ,

bmin ¼ minð ffiffiffiffiffi
2I

p
;

ffiffiffiffiffiffi
2I0

p
Þ. Although the logarithmic singu-

larity of the kernel at I0 ¼ I is integrable, it still requires
certain attention at numerical computations.

Eigensystems of Hermitian Jeans-Vlasov equations, or
integral equations like (12), were generally described by
van Kampen [20–22]. Later, Chin, Satoh, and Yokoya [23]
introduced the concept of van Kampen modes for a
description of bunch oscillations. It was shown that their
spectrum consists of two parts, continuous and discrete
ones. For the former, the eigenvalues are the same as the
incoherent frequencies ΩðIÞ, and the eigenfunctions are
singular, localized near the corresponding action.
Theoretically, the number of such solutions is infinite;
in the numerical computations, their amount is limited by
the number of mesh cells. The discrete part of the
spectrum is described by real eigenvalues located outside
the range of incoherent frequencies, while the eigenfunc-
tions are smooth and fully analytic. Altogether, the
continuous and discrete eigenfunctions form a complete
orthogonal set in the Hilbert space; thus, any initial
perturbation can be unequivocally expanded over it.
With time, the continuous part of that expansion will
decay due to decoherence of the singular modes partici-
pating in the expansion of a smooth initial perturbation.
This decay corresponds to the Landau damping. The
discrete part, however, will always remain. In other words,
the discrete van Kampen spectrum relates to the modes
with no Landau damping. At sufficiently low intensity, the
coherent effects are usually insignificant, so the discrete
spectrum is tacitly supposed to be empty in that case. The
intensity when the first discrete mode just appears marks
the threshold of the loss of Landau damping (LLD).
However, it was shown in Ref. [8], that, contrary to the
general expectations, there is no LLD threshold for the
repulsive inductive impedance, that the discrete spectrum
is always there, for any intensity, unless the impedance is
rolled-off at some frequency. In the latter case, it was
demonstrated that the LLD intensity threshold is inversely
proportional to the roll-off frequency. In the rest of the
section we’ll see that for pure inductive impedance, the
discrete spectrum is infinite, and its leading modes will
be shown.
Since the kernel is never negative for the repulsive

inductive impedance, KðI; I0Þ ≥ 0, the discrete eigenvalues
of Eq. (12) can be located only above the incoherent
spectrum, ω > maxΩðIÞ ¼ Ωð0Þ, where we assume the
intensity to not exceed the spectrum flattening value,
k < σ44=ð3λð0ÞÞ, according to Eq. (4). If the intensity is
small enough, the discrete modes are just a little above
Ωð0Þ, which also means that their eigenfunctions are
effectively limited by sufficiently small actions. Thus,
for the discrete modes, we may consider F0ðIÞ≈−jF0ð0Þj,
ΩðIÞ ¼ Ωð0Þ − jΩ0jI, which leads to the following form of
the integral equation:

fðIÞ ¼ jF0j
Δωþ jΩ0jI

Z
∞

0

KðI; I0ÞfðI0ÞdI0; ð19Þ
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where Δω ¼ ω −Ωð0Þ is the sought-for coherent tune
shift. In fact, this equation can be reduced to one without
a single parameter. To do this, let us make the following
substitutions:

I ¼ b2=2; b ¼ αr; Δω ¼ jΩ0jα2ν=2;
fðα2r2=2Þ ¼ ΦðrÞ; ð20Þ

where the scaling parameter

α ¼ 2kjF0j=jΩ0j; ð21Þ

and Eq. (19) assumes its smallness with respect to the
bunch rms length σ, i.e α ≪ σ. In the opposite case, which
we do not discuss in this paper, the synchrotron frequency
spread does not play a role, and the leading dipole mode is
just the rigid-bunch mode [14] at the unperturbed rf
frequency, without any Landau damping.
Coming back to our weak SC case, for the scaled

eigenfunctions ΦðrÞ and eigenvalues ν, the parameterless
integral equation follows,

ΦðrÞ ¼ 1

νþ r2

Z
∞

0

dr0r0Φðr0ÞQðr; r0Þ; ð22Þ

with the scaled kernel

Qðr; r0Þ ¼ 4

πrmin
½KðuÞ − EðuÞ�; u≡ r2min=r

2
max; ð23Þ

and rmin ¼ minðr; r0Þ, rmax ¼ maxðr; r0Þ. The equation
becomes Hermitian (symmetric, in fact) after a substitution
ΦðrÞ ¼ ΨðrÞ= ffiffiffi

r
p

. Thus, the eigenfunctions ΦβðrÞ satisfy
the orthogonality condition with the weight r and can be
normalized accordingly,

Z
∞

0

ΦβðrÞΦγðrÞrdr ¼ δβγ; β; γ ¼ 1; 2; 3;…: ð24Þ

The discrete spectrum includes all the modes with positive
eigenvalues, ν > 0. Formally speaking, the number of such
modes is infinite, unless the inductive impedance rolls off
at some frequency; in that case, the latter determines the
highest-frequency discrete mode. In numerical computa-
tions, the number of discrete modes is also limited by the
total number of mesh points Nr. The eigenvalues computed
for Nr ¼ 600, 2400, and 4800 at the full interval 0 ≤ r ≤ 2
with the wake length σw ≃ 0.005 in the units of r of Eq. (20)
are presented in Fig. 1. The computation for Nr ¼ 2400
and three specified values of σw are shown in Fig. 2. With
denser mesh and shorter wake, new modes would appear at
the high frequency side of the spectrum, while the low
frequency side, with larger eigenvalues, would remain the
same, demonstrating its independence on the details of the
impedance high frequency roll-off. The first three eigen-
functionsΦðrÞ are shown in Fig 3. As wewill see a bit later,

the leading mode, with ν ¼ 0.43, is the most important as
potentially the most unstable.
Generally, the phase space density perturbations f̃ ∝

exp ð−iωtþ imϕÞ are traveling waves along the phase ϕ;
however, their projections on the z axis, the line density
perturbations ρðzÞ, are standing waves, even or odd, in
accordance with the multipolarity m. For the dipole modes,

10 20 30 40
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0.010

0.100

Eigenvalues

Nr 600

Nr 2400

Nr 4800

FIG. 1. Eigenvalues ν computed for three numbers of mesh
points Nr, with the wake size σw ≃ 0.005 in the scaled units. The
largest eigenvalues are ν ¼ 0.44, 0.16, 0.08. With denser mesh,
the high-frequency tail of the spectrum changes, while its low-
frequency part remains the same.
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5. 10 4

0.005
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0.500
Eigenvalues

w 0.01

w 0.005

w 0.0025

FIG. 2. Eigenvalues ν computed for Nr ¼ 2400 and the wake
sizes 0.01, 0.005 and 0.0025. With shorter wake, i.e., higher roll-
off wave number qc ≃ 1=σw, the high-frequency tail of the
spectrum changes, while its low-frequency part remains the same.
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FIG. 3. Eigenfunctions ΦβðrÞ, for β ¼ 1, 2, 3. The leading
mode is blue, the next is yellow, and the third one is green. The
eigenvalue of the leading mode is ν ¼ 0.43.
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ρðzÞ ¼
Z

f̃dp ¼ 2z
Z

∞

jzj

ΦðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − z2

p dr; ð25Þ

assuming the coordinate z scaled with the same factor as the
amplitude r, see Eq. (21). For the first three dipole modes,
the line density perturbations are presented in Fig. 4.
Since the collective motion results from coherent oscil-

lations of individual particles, we may ask about the
amplitudes of the individual oscillations associated with
one or another collective mode. For that purpose, let us
imagine, that the original steady state with the phase space
density FðIðz; pÞÞ is perturbed by a shift z → zþ Δz,
where Δz may depend on the action I. This shift produces
the phase space density perturbation f̃ ¼ F0ðIÞzΔz. For our
case, when all the perturbations are localized near the
bunch center, F0ðIÞ ≈ F0ð0Þ, z ¼ r cosϕ, it yields the
cosine component of the phase space density perturbation
f ¼ ∝ rΔz. Thus, the dipole eigenfunction ΦðrÞ is asso-
ciated with the collective amplitude Δz ∝ ΦðrÞ=r. These
collective amplitudes, normalized for this plot to the same
maximum, are presented in Fig. 5. The sharp dips to zero at
small r are actually associated with the finite wake size
of the numerical computations σw, being just proportional
to it.
Now let us imagine that the bunch is shifted as a whole

by some offset Δz0. This offset produces the phase space
density perturbation, which can be expanded over the
orthonormalized modes,

−F0bΔz0 ¼ α−1Δz0
X∞
β¼1

CβΦβðb=αÞ; ð26Þ

where CβΔz0 are the sought-for amplitudes of the normal-
ized modes α−1Φβðb=αÞ excited by the bunch offset Δz0.
The mode orthogonality leads to the following result for
these amplitudes,

Cβ ¼ jF0jα2
Z

∞

0

ΦβðrÞr2dr: ð27Þ

The complementary problem consists in finding out the
average offset Δzβ, associated with the given normalized
mode α−1Φβðb=αÞ of unit amplitude. The answer is
straightforward,

Δzβ ¼ α−1
Z

2π

0

dϕ
Z

∞

0

db b2cos2ϕΦðb=αÞ

¼ πα2
Z

∞

0

ΦðrÞr2dr: ð28Þ

For the first three modes, the dipole form-factorsR
ΦβðrÞr2dr are computed as 1.31, 0.64, and 0.39.
The number of the discrete modes reduces with larger

wake length. At its certain value, the last remaining discrete
mode, the leading one, disappears, and Landau damping
becomes effective for all the perturbations. This happens
when the wake length lw ¼ ασw is about the effective size
of the leading mode, lw ≃ Δb1 ≃ 0.5α. Thus, the LLD
threshold corresponds to the scaled wake length σw ≃ 0.5.
In other words, the threshold value kth of the intensity
parameter k is

kth ≃ lwjΩ0j=jF0j ¼ lw

�
dF
dΩ

�
−1

∝ lwÎ
2 ∝ lwb̂

4: ð29Þ

This formula determines the LLD threshold up to a
numerical factor ∼1, which depends on details of the wake
behavior at the scale ∼lw. If one neglects the potential well
distortion, then Ω0 ¼ −1=8, making Eq. (29) fully identical
to Eq. (53) of Ref. [8].

2. Note on other impedances

Let us say a few words about the entire class of
impedances, ZðqÞ ¼ ζð−iqÞκ, κ > 0, characterized by zero
LLD threshold, according to considerations of Sec. III.
The inductive impedance, κ ¼ 1, belongs to this class, but,
with its zero real part, it constitutes a special case. For this

1.5 1.0 0.5 0.5 1.0 1.5
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Line density perturbations

FIG. 4. Line density perturbations, Eq. (25), associated with the
first three modes.
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FIG. 5. Amplitude perturbations ΦðrÞ=r, normalized to the
same maximum, for the first three dipole modes.
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impedance, the full potential well UðzÞ is symmetric,
which provides the symmetry of the Vlasov matrix,
KðI; I0Þ ¼ KðI0; IÞ, which, in turn, leads to the real spec-
trum, ℑν ¼ 0. All other members of this class of imped-
ances have some real parts, ℜZ ≠ 0, so their Vlasov
matrices K have certain asymmetry. This circumstance
raises the question about the possibility of the imaginary
parts of the collective tune shifts within the weak head-tail,
or separated multipoles, approximation.
To check whether such instabilities are really possible,

I followed the general algorithm of the numerical solution
of the stability problem for the resistive wall impedance,
κ ¼ 1=2. For the smooth-edge distribution, FðIÞ ∝
ð1 − I=ÎÞ2, the phase trajectories zðI;ϕÞ were numerically
computed in the skewed potential well, for various emit-
tance Î and impedance amplitude ζ values. Although the
Vlasov matrices K were not symmetric, the eigenvalues
were always real, for vast variety of the parameters Î and ζ.
I think, this fact can be explained as follows.
Were there an instability, there would be two modes of

the discrete spectrum with the same tune shift at the
instability threshold because of the reality of the Vlasov
matrix K. The discrete modes are counted by natural
numbers, β ¼ 1; 2; 3;…, corresponding to the numbers
of their oscillations. The higher is the number of the mode
oscillations, the weaker is the sensitivity of its tune shift to
the impedance. Thus, distances between the neighbor
eigenvalues may only increase with the impedance, making
impossible mode degeneration or coupling. With a resonant
impedance, however, the situation may be different from
this broadband class. If the eigenvalue derivative over the
shunt impedance dνβ=dRS reaches a maximum for any
mode except the first one, the radial mode coupling, and
thus the instability, is hypothetically possible.

3. Comparison with general van Kampen analysis

To demonstrate correctness and effectiveness of our
parameter-less weak SC approximation, we can compare
our results with those of general van Kampen analysis of
Ref. [8] which comply with the SC weakness. That sort of
result can be found in Fig. 11 of the reference, copied here
as Fig. 6. In this plot, the Fourier spectrum of the leading
mode line density perturbation is presented for the cases
when the high frequency impedance roll-off at frequency fr
(almost) does not play a role, so SC is not insignificant.
All the computations were done for the smooth-edge
distribution function FðIÞ ∝ ð1 − I=ÎÞ2, and the bunch
length τ4σ is defined by the authors as τ4σ ¼ 1.67τ̂þ, where
τ̂þ is one half of the full bunch length. With all the values
provided therein, one may calculate the intensity parameter
k ¼ 0.067, and for the red solid line, in our terms,
ẑþ ¼ 1.78; σ2 ¼ 0.80, α ¼ 0.48, when the SC weakness
parameter α=σ2 ¼ 0.6. The transfer from our scaled wave
numbers to conventional frequencies in Hertz is provided

by multiplication on frf=α, where frf ¼ ωrf=ð2πÞ is the rf
frequency.
The properly scaled result of our computations is shown

as the dashed red line, showing a remarkable agreement
with the red solid line, i.e., with the general van Kampen
analysis for these parameters. For the leading mode in the
shorter bunch, presented by the green and blue lines, the
SC is not weak. Its parameter α=σ2 ¼ 3.6 suggests that its
leading mode should be close to the rigid-bunch one. To
check this, the rigid-bunch phase space density perturba-
tion F0ðIÞ ffiffi

I
p

∝ bð1 − b2=b̂2Þ is to be projected onto the
axis z, see Eq. (25), and the resulted line density
perturbation ρðzÞ ∝ zð1 − z2=ẑ2Þ3=2 be Fourier-trans-
formed, leading to ρq ∝ J3ðqẑÞ=q2, with J3 as the
Bessel function. Scaled for the specified parameters, this
line is presented as the blue dashed curve in Fig. 6. Being
rather close to the actual mode, it is a bit different in two
aspects: its Fourier image is ≃20% shorter, and it contains
a high frequency undulation. Both differences actually tell
the same thing, that in reality some high-amplitude
particles are not involved in the mode. Following this
idea, we may try to represent this mode as a rigid motion
of a Gaussian bunch, with ρq ∝ q expðq2=ð2σ2qÞÞ, which
width σq can be fitted to the practically identical green and
blue solid lines of Fig. 6. The remarkable agreement of
this mode presentation with the original results is dem-
onstrated by the dotted blue line, practically coinciding
with the related solid lines.

FIG. 6. Fourier transforms of the leading dipole mode line
density. The general frame with its solid lines is a copy of
Fig. 11, right, of Ref. [8] for the specified LHC beam
parameters. The dashed red line shows the Fourier transform
of the parameter-less leading mode profile, Fig. 4, scaled to the
solid red line parameters. The blue dashed line shows the
transform of the line density perturbation for the solid green and
blue line parameters, if it corresponded to the rigid-bunch
motion. The blue dotted line, practically coinciding with almost
identical green and blue solid lines, is a fit of a Gaussian rigid-
bunch mode.
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4. CB growth rates

By itself, loss of Landau damping could be tolerable,
provided that the initial perturbations are small enough.
The problem comes with the coupled-bunch (CB) inter-
action: if Landau damping is lost, then even a tiny CB wake
would drive up instability.
Let us see how the CB interaction works for the discrete

dipole modes ΦβðrÞ. Such a question already implies that
CB wakes do not destroy the SB modes; instead, they just
add small complex shifts to their tunes. In the further
analysis, we will assume that the CB wake forces do not
change much within the bunches they act upon. This is
typically correct, unless these wakes are associated with
high order modes in the high-Q cavities, which we exclude
here. If so, the CB forces provide the same kicks for all
the particles within a given bunch, and these kicks are
determined by the center-of-mass (CoM) offsets of the
bunches. In fact, CB interaction is identical to a flat SB
damper, which sees only CoM offset of the bunch and then
kicks it as a whole proportionally to that signal, with the
coefficient determined by the pure CB growth rate for
pointlike bunches. Let us apply now these ideas for
building the CB term (or the damper term) in the right-
hand side of Eq. (12). Since the damper kick is proportional
to the CoM offset, the related term must include the latter,
∝
R
fðI0Þ

ffiffiffiffi
I0

p
dI0. Since all the particles are kicked identi-

cally, the sought-for term has to be also proportional to
F0ðIÞ ffiffi

I
p

. Thus, the modified dynamic equation must be as
follows,

½ω −ΩðIÞ�fðIÞ ¼ −F0ðIÞ
Z

Î

0

KðI; I0ÞfðI0ÞdI0

− 2πΓμF0ðIÞ
ffiffi
I

p Z
Î

0

fðI0Þ
ffiffiffiffi
I0

p
dI0: ð30Þ

Here Γμ is the CB complex tune shift for the CB mode μ
(remember the normalization 2π

R
dIFðIÞ ¼ 1). As one can

see, without tune spread and with K ¼ 0, i.e., with the CB
term only, the solution is what it was supposed to be:
fðIÞ ∝ F0ðIÞ ffiffi

I
p

, and ω ¼ Ωþ Γμ. With tune spread, but
still without the SB wake, the solution is reduced to the
conventional dispersion equation

−2πΓμ

Z
Î

0

F0ðIÞI
ω −ΩðIÞ dI ¼ 1; ð31Þ

which can be analyzed by means of the stability diagram
method [1]. Finally, if the CB term is small compared with
the SB one, its effect can be evaluated by means of the
standard perturbation theory. To do this, one has to move on
to the scaled variables (20), then expand the solution
of Eq. (30) over the orthonormalized basis ΦβðrÞ, and
after that express the result in the original variables. All this

leads to the following result for the CB tune shift δωcb for
the mode Φβ,

δωμβ ¼ πΓμjF0jα4
�Z

∞

0

ΦβðrÞr2dr
�

2

¼ 16πΓμk4
jF0j5
Ω04

�Z
∞

0

ΦβðrÞr2dr
�

2

: ð32Þ

By means of Eqs. (27), (28), this result can be also
expressed as

δωμβ ¼ ΓμCβΔzβ: ð33Þ

The integrands for the first three dipole form factors are
shown in Fig. 7, demonstrating the convergence. The mode
tune shifts δωcb have the same complex phase as the CB
tune shift Γ. Thus, if the latter is dominated by a damping
rate of a damper, than all the modes would be stabilized.
The squares of the dipole form factors drop fast with the
mode number. For the leading mode,

�Z
∞

0

Φ1ðrÞr2dr
�

2

¼ 1.73; ð34Þ

while for the next two modes these values are 0.41 and
0.15. Due to this circumstance, one may apparently
disregard all the discrete modes except the leading one.
The perturbation theory is justified here if the CB tune
shift (32) is small compared with the SB tune shift
jΩ0jα2ν=2. For the leading mode, it requires

2π
ΓμjF0j
jΩ0j α2 ≪ 0.25: ð35Þ

When the CB rate exceeds this limitation, the mode shape
and its tune shift start to be defined by the CB wake instead
of the SB one; thus, outside of this limitation the tune shift
would be determined by the CB dispersion equation (31).
Note that intensity dependence of the CB tune shifts (32)
is extremely steep. Since both α and Γμ parameters are
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0.4

0.6

r2 r

FIG. 7. Integrands of the CB tune shift factors for the first three
modes.
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proportional to the number of particles per bunchN, the CB
tune shift grows ∝ N5, as long as the condition (35) is
satisfied. Another thing which deserves to be mentioned is
proportionality of the CB tune shifts to the high power of
the distribution derivative jF0j. Making these derivatives
smaller could be a possible way to suppress the slow CB
instabilities, as it was demonstrated in Ref. [24].

B. Higher multipoles

In this section we show that the quadrupole and
higher order modes, with the phase space density pertur-
bation f̃ðI;ϕÞ ¼ e−iωt½fðIÞ cos ðmϕÞ þ gðIÞ sin ðmϕÞ� and
m ¼ 2; 3;…, may lose Landau damping due to the repul-
sive inductive impedance, as the dipole modes do.
Similarly, even a tiny CB wake makes modes of the
discrete van Kampen spectrum unstable. This instability
should typically be much weaker than the dipole one, but if
the latter is suppressed by a feedback, the slower growth of
the quadrupole modes could be the leading perturbation.
Following the same procedure as for the dipole case, for

the multipolarity m we get (see e.g., Ref. [6]),

½ω −mΩðIÞ�fðIÞ ¼ −mF0ðIÞ
Z

dI0½KsbðI; I0Þm
þ KcbðI; I0Þm�fðI0Þ; ð36Þ

where KsbðI; I0Þm and KcbðI; I0Þm are the SB and CB
kernels, associated with the corresponding wake functions
WsbðzÞ and WcbðzÞ. The kernels are straightforward gen-
eralizations of the dipole one; for the both,

KðI; I0Þm ¼ −
2

π

Z
π

0

dϕ cosmϕ

×
Z

π

0

dϕ0 cosmϕ0WðzðI;ϕÞ − zðI0;ϕ0ÞÞ: ð37Þ

The generalized tune shift Δω can be defined as
ω ¼ mðΩð0Þ þ ΔωÞ, while ΩðIÞ ¼ Ωð0Þ − jΩ0jI, and
F0ðIÞ ¼ −jF0j. With such substitutions, Eq. (36) reduces to

ðΔωþ jΩ0jIÞfðIÞ

¼ jF0j
Z

dI0½KsbðI; I0Þm þ KcbðI; I0Þm�fðI0Þ; ð38Þ

1. SB spectrum

For the inductive SB wake and weak headtail, the SB
kernel reduces to

KsbðI; I0Þm ¼ 2k
Z

∞

0

dq JmðqbÞJmðqb0Þ; ð39Þ

where JmðxÞ are the Bessel functions, and b ¼ ffiffiffiffiffi
2I

p
, as

above. In fact, this integral can be analytically taken for
arbitrary m. For m ¼ 1; 2 and 3, the results are

KsbðI; I0Þ1 ¼
4k

πbmin
½KðuÞ − EðuÞ�≡ 4k

πbmin
R1ðuÞ;

KsbðI; I0Þ2 ¼
4k

πbmin

ðuþ 2Þ KðuÞ − 2ðuþ 1ÞEðuÞ
3

ffiffiffi
u

p ≡ 4k
πbmin

R2ðuÞ;

KsbðI; I0Þ3 ¼
4k

πbmin

ð4u2 þ 3uþ 8Þ KðuÞ − ð8u2 þ 7uþ 8ÞEðuÞ
15u

≡ 4k
πbmin

R3ðuÞ; ð40Þ

with the same notations as above (18). The kernel factors
RmðuÞ are presented in Fig. 8. Note that the factors are all
positive; with higher multipolarity, they decrease and tend
to be more local. At small arguments, RmðuÞ ∝ um, while
at u ¼ 1 all the factors have a logarithmic singularity.
Eigenvalues of the quadrupole modes are presented in
Fig. 9. It is similar to the dipole one, with the leading tune
shift about 2.7 times smaller. For the pure inductive

impedance, the number of modes is also infinite, with
the same limit point þ0. In reality this number is finite,
being determined either by the impedance roll-off or the
intrabeam scattering. In the numeric computations, it is also
limited by the number of mesh points Nr. All the plots
of this section were produced with Nr ¼ 1200 at the
interval r ≤ 3, with the wake width σw ≃ 0.005. The mesh
density Nr and the roll-off parameter qc ≃ 1=σw are taken

0.0 0.2 0.4 0.6 0.8 1.0
u

0.5

1.0

1.5

2.0
R u

FIG. 8. Multipole kernel factors RmðuÞ for m ¼ 1, 2, 3 blue,
yellow, and green correspondingly.
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sufficiently high, to guarantee a good accuracy for the first
few modes. For any multipolarity m, the eigenfunctions are
orthogonal and can be normalized in the same way as for
the dipole modes (24). The first three quadrupole eigen-
functions are shown in Fig. 10. Near the bunch center, they
all ∝ r2, and they are in general somewhat shorter than the
dipole modes. The standing waves envelopes correspond-
ing to the line density perturbations

ρðzÞ ¼
Z

dpfðIÞ cosð2mϕÞ

¼ 2

Z
∞

jzj
dr

ΦðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − z2

p ð1 − 2z2=r2Þ ð41Þ

are shown in Fig. 11.

2. CB growth rates

The CB kernel in Eq. (38) can be simplified if one takes
into account that typically CB wake functions vary at
lengths larger than the bunch length. If so, the CB wake
function can be expanded in a power series over the small
argument z − z0. For the SB multipolarity m, only the term
∝ zmz0m has to be retained. This yields the kernel

KcbðI; I0Þm ¼ W̃μmbmb0m ð42Þ

with

W̃μm ¼ 2π
ð−1Þmþ1

ðm!Þ222m
X∞
n¼1

Wð2mÞð−nsbbÞ exp ðinψμÞ: ð43Þ

Here sbb is the distance between the neighbor bunches,
Wð2mÞ is the 2mth derivative of the CB wake, and

ψμ ¼ 2πμ=M; ð44Þ

where M is the number of bunches in the beam and
μ ¼ 0; 1; 2;…M − 1 is the CB mode number. If the CB
wake drops as a power, Wð−sÞ ∝ 1=sl, one may estimate
the quadrupole to dipole ratio

W̃μ2=W̃μ1 ∼
ðlþ 2Þðlþ 3Þ

16s2bb
: ð45Þ

For the resistive wall wake, with l ¼ 1=2, it yields
W̃μ2=W̃μ1 ∼ 0.5=s2bb.
If the CB term is small compared with the SB, it can be

taken into account as a perturbation, in the same manner as
it has been done for the dipole modes. By following this
straightforward procedure, we get the CB complex tune
shift,

δωμmβ ¼ jF0jW̃μmα
2mþ2

�Z
∞

0

dr rmþ1ΦmβðrÞ
�

2

: ð46Þ

To apply our formulas with CB wakes, one has to multiply
the conventional wake of Ref. [13] by the following factor,

Wcb →
Nr0ηω2

rf

γC0Ω2
0

Wcb; ð47Þ

where C0 is the ring circumference, and the other symbols
are defined just below Eq. (2). Note also that our
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FIG. 9. Eigenvalues for the quadrupole modes. For the leading
mode, ν ¼ 0.16.
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FIG. 10. Eigenfunctions for the 1st, 2nd, and 3rd discrete
quadrupole modes.
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FIG. 11. Line density perturbations for the first, second, and
third discrete quadrupole modes.
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dimensionless space derivative relates to the conventional
ones by means of the rf wave number ωrf=c. Using all that,
we get the CB dipole tune shift parameter Γμ of Eq. (30),

Γμ ¼
Nr0ηc2

2γC0Ω0

X∞
n¼1

W00ð−nsbbÞ exp ðinψμÞ; ð48Þ

in agreement with Eq. (4.123) of Ref. [13]. For the dipole
modes, Eq. (46) confirms our previous conclusion for the
growth rate ∝ N5, while for the quadrupole ones the power
is even higher, ∝ N7.
In case the CB tune shift is much larger than the SB one,

the SB term in Eq. (38) can be omitted, leading to the
Sacherer type dispersion relation [1],

−2mW̃μm

Z
Î

0

F0ðIÞIm
Δωþ jΩ0jI dI ¼ 1: ð49Þ

For the dipole mode without frequency spread it leads to
Δωμ1 ¼ Γμ ¼ W̃μ1=π. For the quadrupole mode, assuming
W̃μ2 ≃ 0.5W̃μ1=s2bb, it yields that the CB growth rate is
suppressed as

Δωμ2=Δωμ1 ≃ σ2=s2bb: ð50Þ

V. SUMMARY

This paper may be considered as a further research in the
direction of recent breakthrough results of I. Karpov, T.
Argyropoulos, and E. Shaposhnikova [8]. A general ana-
lytical description is suggested here for collective longi-
tudinal modes of a bunched beam with repulsive inductive
impedance, corresponding to either space charge below
transition or the chamber inductance above it. It is shown
that the eigensystem problem is reduced to a Hermitian
parameter-less 1D integral equation, which kernel depends
on the multipolarity. Due to threshold-less loss of Landau
damping, even a tiny coupled bunch interaction makes the
beam unstable. The mode structure and the coupled-bunch
growth rates are analytically found for any multipolarity. In
practice the LLD threshold may be determined either by the
high-frequency roll-off of the impedance, or by the intra-
beam scattering, which damping rate is proportional to the
wave number squared. Above the threshold, one may
expect that the instability should result in producing
persistent nonlinear oscillations with size a determined
by that of the leading mode, a ≃ 0.5α, and the amplitude
z̃—by the nonlinear saturation, z̃ ≃ a. Similar conclusions
are suggested for a class of impedances ZðqÞ ∝ ð−iqÞκ
above transition.
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