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In preparation for a demonstration of optical stochastic cooling in Cornell Electron Storage Ring, we
have developed a particle tracking simulation to study the relevant beam dynamics. Optical radiation
emitted in the pickup undulator gives a momentum kick to that same particle in the kicker undulator. The
optics of the electron bypass from pickup to kicker couples betatron amplitude and momentum offset to
path length so that the momentum kick reduces emittance and momentum spread. Nearby electrons
contribute an incoherent noise. Layout of the bypass line is presented that accommodates optics with a
range of transverse and longitudinal cooling parameters. The simulation is used to determine cooling rates
and their dependence on bunch and lattice parameters for bypass optics with distinct emittance and
momentum acceptance.
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I. INTRODUCTION

Stochastic cooling as a mechanism to shrink the particle
phase space was proposed in 1972 [1] and has been
successfully implemented in a number of antiproton,
proton, and heavy-ion storage rings [2,3]. The cooling
rate is limited by the number of particles in the bunch and
the system bandwidth [4,5]. In 1993, Mikhailichenko and
Zolotorev proposed extending the stochastic cooling band-
width to optical wavelengths by using undulators as pickup
and kicker [6]. They suggested a gradient undulator as
pickup so that the intensity of the radiation (and the
momentum kick imparted in the kicker undulator) would
be proportional to the displacement from the undulator
axis. Ayear later, a transit-time method of optical stochastic
cooling (TTOSC) was proposed by Zolotorev and Zholents
[7]. In the transit-time method, the intensity of the radiation
is independent of the position in the pickup undulator.
Rather, the delay bypass is designed to couple betatron
amplitude and momentum offset to the arrival time of the
particle in the kicker undulator. The relative delay between
radiation and particle is adjusted so that the momentum
kick reduces emittance and momentum spread. Since then,
the dynamics of optical stochastic cooling have been

explored theoretically and numerically in some detail,
and experimental tests have been proposed [8,9]. Still,
there is no experimental demonstration to date.
Although many efforts have been devoted to the study of

optical stochastic cooling (OSC), there has not yet been a
particle tracking study of the OSC process that accounts for
all major effects. Part of the reason is the simulation that
needs a realistic ring lattice with a reasonable bypass
design, which requires dedicated resources and effort. In
addition, simulating the incoherent heating effect from
nearby particles can be challenging. The TTOSC theory is
well developed [7,10,11]. However, the synchrotron radi-
ation (SR) damping and excitation is not included in the
theory, which may be appropriate for hadron machines but
not for lepton machines where strong SR take places. Thus,
a realistic simulation of the OSC process including SR
will be valuable to validate the bypass design and demon-
strate OSC.
The Cornell Electron Storage Ring (CESR), built on the

Cornell University campus, stores counterrotating beams of
electrons and positrons and have operated as a collider for
high-energy physics program for many decades. Currently,
CESR serves as a synchrotron light source for x-ray users
as well as a test accelerator for studying beam physics
including electron cloud, intrabeam scattering (IBS), ion
instabilities, and wake fields [12]. The storage ring operates
with beam energies that range from 1 to 6 GeV. The
independent power supplies for all quadrupoles and sextu-
poles allow for a continuum of lattice configurations. In
CESR, positrons circulate in the clockwise direction and
electrons in the counterclockwise direction as shown in
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Fig. 1. There are two long straight sections which originally
served as the north and south interaction regions. Recently,
the southern arc was reconfigured to install more undu-
lators so as to accommodate more x-ray beam lines [13].
We plan to modify the north arc of the ring with beam
optics to enable an experimental demonstration of OSC.
Two types of bypass designs have been considered. One
early design is to modify the straight section (∼10 m) along
the northernmost rim of the ring to build a dog-leg bypass,
consisting of four dipoles and a center defocusing quadru-
pole. This style bypass is similar to that proposed at
Fermilab in the Integrable Optics Test Accelerator [14].
We designed a flexible bypass layout that is compatible
with path length delay up to 5 mm. The other option is an
arc-bypass design in which the light path is along a chord
that intercepts 30° of the ring arc [9,15]. The path length
delay of this bypass layout is significantly larger than
∼20 cm, which opens up the possibility of multipass or
staged amplification schemes [15].
In this paper, we discuss three distinct bypass lines with

the dog-leg type layout that have been matched into a full
ring CESR lattice. Multiparticle tracking simulations that
include the TTOSC process (coherent cooling and incoher-
ent heating) are developed, and then used to characterize
each set of optics, and in particular cooling times and
dependence on bunch parameters. The tracking simulation
confirms observable cooling for a 1-GeV bunch of 107

particles. With more particles in a bunch, the horizontal
profile of the beam shows a non-Gaussian shape during the
OSC process, which could provide a useful signature of the
OSC dynamics. The OSC damping rate and equilibrium
emittance extracted from our simulation results without
including SR effect agree reasonably well with the theory.
In addition, our simulations confirm the phase space
segmentation behavior expected from theory in the absence
of incoherent kicks.

The paper is organized as follows: In Sec. II, we briefly
review the theory of TTOSC. In Sec. III, a CESR lattice
including the bypass line layout is discussed. In Sec. IV, we
describe the tracking simulation and in particular the
method to account for the incoherent (heating) as well
as the coherent (cooling) resulting from the coupling
of optical radiation to particles in the kicker undulator.
Results of simulation for the distinct sets of bypass optics
are described in Sec. V. Conclusions are summarized
in Sec. VI.

II. THEORY BACKGROUND

The TTOSC theory can be found in Refs. [7,10,11].
Here, we briefly summarize the principles and reproduce
some of the major formulas relevant to our discussion.
A stochastic cooling system consists of a pickup, an

amplifier, and a kicker. For optical stochastic cooling, both
the pickup and the kicker are undulators which radiate with
on axis wavelength in the optical range. Stochastic cooling
is an intrabunch feedback system. Radiation emitted by a
particle at the characteristic wavelength of the pickup
undulator is amplified so that it can provide a momentum
kick to that same particle in the kicker undulator, with
phase shift suitable to reduce the particle’s betaron and
momentum error. In view of the relatively large undulator
parameter K and long period required to generate undulator
radiation at optical wavelengths (800 nm) for ∼1 GeV
electrons, we plan to use helical rather than planar
undulators. The advantage of helical undulator is that it
results in a higher energy kick to a particle than a planar
device when both have the same peak field, and also the
desired wavelength can be obtained with lower peak field
than a planar device [16].
The momentum kick to the particle is due to the

interaction with radiation that the same particle emitted
in the pickup undulator. We refer to this self-interaction as
the coherent kick. The cooling derives from the coherent
kick. The particle also receives incoherent kicks from the
radiation from nearby particles. The noise from the inco-
herent kicks comprises a heating term. The momentum
kick each particle receives in the kicker undulator is
represented as [7]�

δP
P

�
i
¼ −G sinðΔϕiÞ −G

XNs

j≠i
sinðΔϕi þ ψ ijÞ: ð1Þ

Here, Ns is the number of particles moving behind the test
particle i within a distance of Nuλ, Nu is the number of
undulator periods, ψ ij is the radiation phase difference
between the particle j and the test particle i, and Δϕi is the
phase shift relative to the reference particle which receives
zero momentum kick,

Δϕi ¼ kΔs; ð2Þ

N

+ ee −

North straight

South straight

FIG. 1. CESR layout showing two long straight sections.
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where k ¼ 2π=λ is the wave number, λ ¼ ½λuð1þ K2Þ�=2γ2
is the wavelength of the first harmonic radiation emitted by
the particles from the pickup undulator (helical), γ is the
Lorentz factor, λu is the undulator period, and K is the
undulator parameter. In Eq. (2), Δs is the particle’s
longitudinal displacement from the pickup to the kicker
relative to the reference particle which receives zero kick.
In a linear approximation where Δs is small so that
sinðkΔsÞ ≈ kΔs, it is written as

Δs ¼ M51xþM52x0 þM56

ΔP
P

; ð3Þ

where M5n are the elements of 6 × 6 transfer matrix from
the pickup to the kicker, x, x0, and ΔP=P are the particle
horizontal coordinate, angle, and relative momentum
deviation at the pickup center.
If at the kicker undulator, the dispersion ηk or the

dispersion derivative η0k are nonzero, the betatron amplitude
of the particle will change due to the momentum kick
according to

Δxi ¼ −ηk
�
δP
P

�
i
; Δx0i ¼ −η0k

�
δP
P

�
i
: ð4Þ

The changes to the horizontal phase space coordinates
reduce the horizontal betatron amplitude, and thus cool
the beam. If there exists xy coupling in the machine, the
vertical emittance can be reduced as well. The damping
rates (λx, λz) derived in the linear approximation using the
above relationships [10] are

λx ¼
kGðM56 − eM56Þ

2
; ð5Þ

λz ¼
kG eM56

2
; ð6Þ

where eM56 ¼ M51ηp þM52η
0
p þM56. ηp and η0p are the

dispersion and dispersion derivative at the pickup undulator.
When the particle has large oscillation amplitude such

that kΔs is large, the momentum kick will be nonlinear.
Accounting for this nonlinearity by averaging kicks over
betatron and synchrotron oscillations, one obtains the
cooling boundaries [ϵxmax, ðΔP=PÞmax] and the cooling
ranges (nx, nz) [10] as

ϵxmax ¼
μ2

k2ðβpM2
51 − 2αpM51M52 þ γpM2

52Þ
; ð7Þ

�
ΔP
P

�
max

¼ μ

k eM56

; ð8Þ

nx ¼
ffiffiffiffiffiffiffiffiffiffiffi
ϵxmax

ϵx

r
; ð9Þ

nz ¼
�
ΔP
P

�
max

�
σp; ð10Þ

where βp, αp, and γp are the Twiss parameters at the center
of the pickup undulator, ϵx is the horizontal equilibrium
emittance without OSC, and σp is the energy spread of
beam in the design lattice. The horizontal and longitudinal
cooling rates are comparable when μ ¼ μ0 ≈ 2.405. If
either the horizontal or the longitudinal cooling dominates
the other, the corresponding μ will be μ1 ≈ 3.832 [14,17].
The μ0 and μ1 are the first zeros of the zeroth and first
Bessel functions (J0 and J1), respectively [10].
The ϵxmax and ðΔP=PÞmax define the boundaries within

which the particles can be cooled by the TTOSC process.
For a Gaussian beam, nx and nz describe to how many
sigmas in phase-space amplitude a particle can be and still
be cooled. Large cooling ranges are desirable as it makes
it harder for a particle to escape from the cooling region
and be heated during, for example, a large IBS event. An
immediate drawback for a larger cooling range is a
reduction in the damping rate for a fixed kick amplitude.
In Ref. [11], Lee et al., derived the damping decrements

as well as the cooling dynamics equations when the
incoherent heating is included. The horizontal damping
decrement and cooling equation are listed as

αx ¼ 2GkI⊥e−u −
G2NsH
2ϵx

; ð11Þ

dϵx
dt

¼ −
2GkI⊥ϵx

T0

e−u þG2NsH
2T0

; ð12Þ

while u¼ 1
2
k2½ðβpM2

51−2αpM51M52þγpM2
52Þϵxþ eM2

56σ
2
p�

(the dispersion invariant at the kicker undulator), H ¼
γkη

2
k þ 2αkηkη

0
k þ βkη

02
k (curly H function at the kicker

undulator), T0 is the revolution period, and I⊥ is a
complicated term depending only on the bypass. The linear
G term in Eq. (11) describes coherent cooling while the
quadratic term is from incoherent heating. The competition
between coherent cooling and incoherent heating deter-
mines the OSC process. From Eqs. (11) and (12), the
optimum gain (Gopt) with maximum damping decrement
and the equilibrium emittance (ϵeq) can be found as

Gopt ¼
2kI⊥ϵxe−u

NsH
; ð13Þ

ϵeq ¼
GNsH

4kI⊥e−ueq
: ð14Þ

Here, ϵeq is also included in ueq, and can be obtained
by numerically solving Eq. (14). We will discuss these
equations and compare them to the simulated results in
detail in Sec. V.
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III. BYPASS LATTICE

The arrival in the kicker of the light emitted in the pickup
undulator is delayed by the intervening optical elements
(lenses, amplifiers, etc.) The electron beam must be
similarly delayed so that it arrives in the kicker coincident
with the radiation. The optics of the beam delay bypass also
serve to couple betatron amplitude and momentum offset to
path length. The delay length ultimately limits the com-
plexity of the optical components in the path of the light.
Two different types of bypass designs, namely the dog-leg
chicane bypass and the arc bypass, have been studied at
CESR. For the purpose of simulation, we focus on the dog-
leg chicane bypass in this paper, although the experimental
program at CESR is pursuing the arc-bypass which will be
briefly discussed in Sec. V E.
The layout of the dog-leg bypass is shown in Fig. 2(a),

which is designed to accommodate a delay of as much as
5.4 mm and beam energy over the range 300 MeV <
Ebeam < 1.5 GeV. In this paper, we discuss properties
of bypass optics with 2 mm delay at 1 GeV. As shown
in Fig. 2(a), the electrons pass the bypass line from the right
to the left. The four quadrupoles near the pickup and kicker
undulators are necessary to match the bypass line to the
CESR ring lattice. The four bends create the required 2 mm
delay for the electrons. The five quadrupoles between two
outer bends are used to manipulate the optics to get
adequate OSC cooling parameters. Four sextupoles are
added to eliminate the nonlinearity of the flight path [18].
The Twiss parameters βx, βy, and dispersion ηx of the 2-mm
delay bypass line are shown in Fig. 2(b).
The parameters of the CESR lattice are summarized in

Table I. The parameters of the helical pickup and kicker
undulators are Nu ¼ 8, λu ¼ 32.5 cm, and K ¼ 4.22 to
yield the wavelength of the first harmonic light at 800 nm.
The cooling boundaries with the 2-mm delay bypass line as
well as other parameters are summarized in Table II.
The cooling rates depend on the optical amplifier gain
(G) but the ratio of the horizontal and longitudinal cooling
rates is determined by the bypass optics according to

Eqs. (5) and (6). By design, the horizontal damping
dominates for the CESR bypass. The horizontal OSC
cooling range depends on the equilibrium emittance of
the storage ring which in turn depends on the number of
particles in the bunch due to IBS. For the design (zero
current) emittance (2.2 nm rad), the horizontal cooling
range is nx ¼ 3.3. Most of the particles will fall within the
cooling boundary.
The dependence of equilibrium emittance on bunch

current is shown in Fig. 3 [19]. With 107 particles in a
bunch ( I ¼ 0.625 μA), and assuming zero transverse
coupling, the equilibrium emittance ϵx is 3.91 nm rad with
an OSC cooling range of nx ¼ 2.5. The emittance increases
from 2.2 to 10.2 nm rad with 108 particles in a bunch. For a
bunch with 108 particles, the ratio of horizontal cooling
acceptance to equilibrium emittance drops to 1.5. The IBS
emittance growth can be mitigated by introducing trans-
verse coupling as indicated by the magenta line in Fig. 3.
The flexibility of the bypass and ring lattice will allow us

to explore alternative sets of cooling parameters in both
experiment and simulation.

IV. SIMULATION METHODS

The particle tracking is based on BMAD code library [20].
The bunch is modeled as a distribution of 1000 macro-
particles, which is sufficient to calculate the bunch

(a)

(b)

kicker pickup quadrupolebend

sextupole

x
y

FIG. 2. (a) Bypass layout matched to CESR. (b) The Twiss
parameters β and η of the bypass optics. The horizontal and
vertical betas are the black and blue curves, respectively. The red
curve shows the horizontal dispersion.

TABLE I. CESR machine parameters for OSC.

Beam energy (GeV) E0 1.0
Circumference (m) L 768.438
Transverse damping time (s) τx;y 0.5
Longitudinal damping time (s) τz 0.25
Momentum compaction αp 0.006
Nominal rf voltage (MV) Vrf 0.6
Synchrotron tune Qs 0.027
Horizontal tune Qx 16.593
Vertical tune Qy 13.413
Bunch length (mm) σz 11.0
Horizontal emittance (nm rad) ϵx ∼2.2
Energy spread σp 4.0 × 10−4

TABLE II. Undulator and cooling parameters.

λ (nm) 800
Ku 4.22
Bu (T) 0.14
λu (cm) 32.5
Nu 8
Bypass delay (mm) 2
ϵmax (nm) 24.1
nx 3.3
ðΔP=PÞmax (%) 0.29
nz 10
λx=λz 30
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properties (emittance and beam size) accurately. If SR
damping and quantum excitation (stochastic emission of
photons) are switched on, the distribution relaxes to the
equilibrium emittance and momentum spread after tracking
for a few damping times. If quantum excitation and
damping are switched off, the initial volume of the phase
space is preserved. On each turn, all the particles’ six-
dimensional coordinates (x, x0, y, y0, z, z0) at the pickup are
recorded in order to construct the sigma matrix, from which
the three normal mode emittances are calculated [21]. On
passage through the kicker undulator, each macroparticle
receives both coherent and incoherent kicks.

A. Coherent kicks

The coherent kick [see Eq. (1)] depends on the gain G
and the differential path length Δs. The path from the
pickup to the kicker (center to center) is recorded at each
turn, Δs ¼ zk − zp, where zk and zp are the same-turn
longitudinal coordinates of the particle at the middle of
the kicker and pickup undulator, respectively. The phase
shift is calculated based on Eq. (2). The coherent kick
Δpz-co ¼ −G sinðkΔsÞ is applied to each particle on
every turn.
The above formula for the coherent kick assumes

the undulators are long enough such that the particle
delay is negligible compared to the finite pulse length
emitted by a single electron, Δs ≪ Nuλ. To exactly
account for a finite pulse, a factor can be added: Δpz-co ¼
−Gð1 − Δs

Nuλ
Þ sinðkΔsÞ [22].

To simulate the coherent kick more accurately, we
calculate the energy change that an electron receives from
interacting with its own radiation at the kicker undulator as
a function of Δs [Fig. 4(a)] [23]. We then interpolate this
energy-delay curve to determine the energy change (ΔE) of
a tracked particle based on itsΔs every turn. In addition, the
energy change of an electron also depends on the transverse
separation between itself and its radiation at the kicker as

the calculated transverse field Exðx; yÞ indicates in
Fig. 4(b). Since the energy change is proportional to the
transverse field, the coherent momentum kick is scaled by

the correction factor Exðx;yÞ
Exð0;0Þ: Δpz-co ¼ ΔEðΔsÞ

E0

Exðx;yÞ
Exð0;0Þ. In sim-

ulation, we assume a single lens such that if a particle has a
transverse position xp in the pickup, its light is focused to a
transverse coordinate −xp in the kicker. Thus, in the kicker,
if the particle has a coordinate xk, it is separated from its
radiation centroid an amount x ¼ xk þ xp. As the formula
indicates, the separation depends on the bypass line. We
find below in Sec. V that the rms separations between the
particle and its radiation are about 0.4 mm horizontally and
0.03 mm vertically with an initial particle action of 2.2 nm
rad and 1% xy coupling.
Without amplification, the maximum energy change

of 183 meV shown in Fig. 4(a) corresponds to a G ¼
1.83 × 10−10 in Eq. (1). Thus, a scale factor is applied to
simulate a particular gain level while using the realistic
energy-delay curve to calculate the energy kick.

B. Incoherent kicks

The second term on the right side of Eq. (1) describes the
incoherent contributions from the radiation of trailing
particles. All particles trailing by distance less than Nuλ
behind the target particle will contribute to the noise.
Conceptually, we simply could compute the differential
path length for each of those trailing particles and add a
kick with the appropriate phase. As long as there is a
statistically representative number of particles within the
range that contribute incoherent kicks, such a technique
will be reliable; however, that turns out to be an impracti-
cally large number. For example, the simple approach
would be to track a number of macroparticles equal to the
actual number of particles in a bunch (>107), which is
prohibitive. On the other end, if the bunch is comprised of
1000 macroparticles, then for an undulator with Nu ¼ 8
periods, and λ ¼ 800 nm, and bunch length σz ¼ 1 cm,

100 101 102

I ( A)
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20
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30

x (
nm

 r
ad

)

N=107

N=108

N=109

FIG. 3. IBS-dominated horizontal emittance: no xy coupling
(black line) and 1% xy coupling (magenta line). The red, blue,
and green dashed lines indicate the CESR bunch currents with
107, 108, and 109 particles in the bunch, respectively.
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FIG. 4. (a) Calculated energy change of an electron at the kicker
as a function of the delay Δs (black line). The red dotted line
shows the energy change calculated from −g sinðkΔsÞ where
g ¼ 183 meV. (b) Calculated transverse field Exðx; yÞ of a single
electron radiation from the pickup undulator.
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there is typically less than 1 trailing particle in the range of
interaction with the leading particle, clearly insufficient to
represent the incoherent heating.
It would be more convenient to apply a single kick to

include the incoherent noise. We note that ψ ij ¼ kðzi − zjÞ
in Eq. (1) and 0 ≤ zi − zj ≤ Nuλ, and therefore ψ ij is
within the range ½0; 2Nuπ�. As long as Nuλ ≪ σz, we can
assume that the particles are randomly distributed longi-
tudinally within the slice ½zi − Nuλ; zi�. Then, ψ ij must be
randomly distributed within ½0; 2Nuπ�. If x is a random
number within ½0; 2Nuπ�, the probability distribution func-
tion of y ¼ sinðxÞ is

fðyÞ ¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p ; y ⊂ ½−1; 1�: ð15Þ

The joint probability for a bunch, each with probability
fðyÞ is Ns convolutions of fðyÞ,

h ¼ f1ðyÞ⊛ f2ðyÞ⊛…⊛ fNs
ðyÞ: ð16Þ

We find numerically, that for large Ns, the convoluted
distribution approaches a Gaussian with a standard
deviation proportional to

ffiffiffiffiffiffi
Ns

p
. As shown in Fig. 5, indeed

for Ns as few as 6, the probability distribution function h is
very nearly Gaussian. Evidently, the incoherent contribu-
tion [the second term of Eq. (1)] can be simulated with a
Gaussian function with width (σin) that scales with Ns, the
number of particles in the slice.
Consider the incoherent contribution from the particles

in a central slice of a bunch of electrons. For a Gaussian
distributed bunch with length σz, the number within the
slice at −Nuλ=2 < z < Nuλ=2 is Ns ¼ Ns- max ¼ PN.
Here, N is the total number of particles in the bunch
and P is the probability for a particle to be located within
the range [−Nuλ=2, Nuλ=2],

P ¼
Z Nuλ

2

−Nuλ
2

1ffiffiffiffiffiffi
2π

p
σz

e
− z2

2σ2z dz: ð17Þ

For σz ¼ 11 mm, Nu ¼ 4, λ ¼ 0.8 μm, and N ¼ 108,
P ¼ 1.1606 × 10−4 so that Ns- max ¼ 11 606. Kicks from
each of Ns randomly distributed particles are computed in a
Monte Carlo simulation. Figure 6 shows the histogram of
the resulting incoherent kicks. The distribution of the kicks
is indeed Gaussian. The fitted standard deviation is
σin-max ¼ 76.24. Furthermore, we find that, for a slice that
is not at the bunch center (z ≠ 0) and if the bunch length σz
is different from σ0 ¼ 11 mm (e.g., shrinkage due to
cooling), then the width of the distribution of incoherent
kicks σin is

σinðzÞ ¼ σin- max

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NsðzÞ
Ns- max

s
ð18Þ

¼ σin-max

ffiffiffiffiffi
σ0
σz

r
e
− z2

4σ2z ; ð19Þ

whereNsðzÞ is the number of particles in the central slice of
the bunch. The validity of Eq. (19) requires that the
particles are Gaussian distributed along the length of the
bunch. If the longitudinal distribution is non-Gaussian,
which could be generated by OSC as shown later in Sec. V,
Eq. (18) will be used with NsðzÞ determined from the
interpolation of the histogram of the z distribution on every
turn during the tracking simulation.
Having determined the width σin, the incoherent kick is

applied to each particle according to

Δpz-in ¼ −GRσinðzÞ; ð20Þ

where R corresponds to a random normal distribution.
The total longitudinal kick Δpz ¼ Δpz-co þ Δpz-in is then
applied to the particle at the exit of the kicker undulator on
every turn to simulate the OSC cooling process.
As shown in Fig. 4(a), the amplitude of the realistic

energy change rapidly decreases below 10% when
jΔsj > Nuλ

2
. This effect is neglected in the above incoherent

kick calculation which could lead to an overestimate of the
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incoherent noise. To avoid the overestimate, we use Nu=2
as the undulator period in our incoherent kick estimation.

V. SIMULATION RESULTS

A. CESR lattice

We demonstrate cooling in simulation by tracking a
bunched distribution through the storage ring. The ring
lattice parameters are summarized in Table I and the
associated cooling parameters are in Table II. We assume
a bunch population of 107 and 1% emittance coupling so
that equilibrium emittance is the single particle emittance
(the contribution from IBS is negligible as indicated in
Fig. 3). With SR damping and excitation switched on, the
distribution relaxes to the single particle limit with hori-
zontal emittance ϵx ¼ 2.2 nm rad and longitudinal emit-
tance is ϵz ¼ 4.5 μm rad. In our initial simulation of the
OSC process, only the coherent kick is applied. The gain G
was set at 10−8 for demonstration here. The effect of
the coherent OSC kicks is to decrease both ϵx and ϵz in
Figs. 7(a) and 7(b), respectively. The horizontal and
longitudinal phase space are shown in Figs. 7(c) and 7(d)
on turn one, and Figs. 7(e) and 7(f) on turn 40 000, and
indeed indicate cooling of the distribution. The emittance
shrinks to ϵx ¼ 0.157 nm rad at turn 40 000.
Inspection of Fig. 7(e) indicates that one particle out of

the 1000 macroparticles is outside the cooling boundary
[red ellipse in Fig. 7(e)] and for that particle there is no
reduction in betatron amplitude. Recall that the change in
the electron’s average path length Δs through the bypass
is a monotonically increasing function of the betatron

amplitude in the pickup. If kΔs > μ0 (μ0 ≈ 2.405, the first
zero of J0), the subsequent momentum kick will increase,
rather than reduce that amplitude. The amplitude corre-
sponding to Δs ¼ μ0=k defines the cooling boundary. The
boundary that appears in simulation is consistent with
theory [10]. When the longitudinal cooling rate is small
compared to the transverse rate (λz ≪ λx), the transverse
cooling boundary can also be represented as kΔs=μ1 ≤ 1
(μ1 ≈ 3.832). Figure 8 shows the delay (Δs) distribution for
1000 particles as a function of their phase space coordinates
(x and x0) on the first pass through the bypass [(a) and (c)]
and then on turn 40 000 [(b) and (d)]. The bunch is cooled
and the phase offset kΔs shrinks to near zero.
The incoherent kicks are added to the simulation

assuming 107 particles in a bunch according to the same
trend. Simulations assuming various levels of gain
(G ¼ 10−6,…, 10−10) show that horizontal cooling is
obtained when 10−10 ≤ G ≤ 2 × 10−8 no matter whether
SR damping and excitation is turned off or on [Fig. 9(a)
and (b)]. When G > 3 × 10−8, instead of cooling, the
heating is observed. This is understandable because the
coherent cooling depends linearly on G while the incoher-
ent heating is proportional to G2 as Eq. (11) shows. When
G is large, the heating will dominate [7,11]. From Eq. (13),
we estimate the optimum gain is Gopt ≈ 3 × 10−8 while
u ¼ 0.32, I⊥ ¼ 0.0032, H ¼ 2.64, and Ns ¼ 1000 are
calculated from our bypass lattice and undulator parame-
ters. As shown in Fig. 9(a), the cooling is indeed observed
at this optimum gain for the first 7000 turns and the
horizontal emittance shrinks down to 1.25 nm rad.
However, the beam starts to heat up drastically after
7000 turns. This is likely because the heating starts to
dominate when ϵx decreases and Ns increases to a certain
level as Eq. (11) indicates. After 7000 turns, most particles
are cooled and stay inside the core (within 1.25 nm rad) but
the dominant incoherent heating gradually brings more and
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more particles outside the core and even outside the cooling
boundary so that the emittance continues to increase.
The OSC damping rates λx and equilibrium emittances

ϵeq obtained from exponential fits to the emittance
cooling curves [Figs. 9(a) and 9(b)] are plotted in
Figs. 9(c) and 9(d), respectively. The fitting function is
ϵx ¼ ϵ0e−2λxt þ ϵeq, while ϵ0, λx, and ϵeq are the fitting
parameters. As shown in Figs. 9(a) and 9(b), the emittance
curves at G ¼ 2 × 10−8 fluctuate a lot after 10 000 turns.
This is due to several particles outside the cooling boundary
that are not cooled and that contribute noise to the
emittance calculation. Therefore, we exclude them from
emittance calculation to obtain new emittance curves
[dotted symbols in Figs. 9(a) and 9(b)] and then perform
the exponential fits. For the results from simulation with
SR damping and excitation switched off, the cooling rate
increases with gain G, consistent with the theory [10,11].
Note here, Eq. (5) describes the damping for a single
particle. For a bunch of particles, the average damping rate
will be λavg ¼ λxe−u [11]. At higher gains, the damping rate
deviates a little more from the theory, indicating more
incoherent heating. The extracted equilibrium emittance
also agrees well with the theory [Eq. (14)]. For the results
from simulation with SR damping and excitation turned on,
both damping rate and equilibrium emittance deviate more
from the theoretical calculation. This is understandable
because SR damping and excitation are not included in the
theory. At lower gains, the OSC process is weak and

negligible compared to SR damping and excitation. When
G approaches zero, the total damping rate approaches the
SR damping rate and the equilibrium emittance reaches the
design zero current emittance. From Fig. 9(d), there exists
an optimum gain (5 × 10−9) at which the minimum
emittance can be achieved from OSC. It is worth noting
here that SR is strong in our lepton machine so that SR
cannot be ignored.

B. Intrabeam scattering (IBS)

If the number of particles in a bunch is increased to 108,
the equilibrium horizontal emittance in the absence of
stochastic cooling will grow to 10.2 nm rad due to IBS,
assuming no transverse coupling. In addition, the heating
effect of the incoherent kicks increases with number of
particles within each slice. IBS is not dynamically included
in the simulation. In order to model the larger initial
emittance due to IBS, the SR damping and excitation is
switched off. The radiation damping will otherwise reduce
(restore) the emittance to the zero current equilibrium. The
phase space at turn 50 000 with coherent but no incoherent
kicks included is shown in Figs. 10(a) and 10(b). The
horizontal cooling range for an initial 10 nm rad bunch is
small nx ¼ ðϵxmax=ϵxÞ ¼ 1.5, and many particles are out-
side the cooling aperture. As shown in Fig. 10(a), the
betatron amplitude is reduced only for those particles inside
the cooling aperture. Particles outside the cooling aperture
migrate to other locations in the phase space. This
segmentation of the phase space is anticipated [24,25].
We will discuss this phenomenon in the Sec. V C in more
detail. With the addition of the incoherent kicks, the
segmentation is smeared as shown in Fig. 11.
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C. Bypass nonlinearity

As Figs. 10(c) and 11(c) show, the phase delay at kΔs
has a nonlinear dependence on displacement x, x0 in the
pickup. With the addition of four sextupoles into the bypass
as indicated in Fig. 2(a), the nonlinearity of the particle path
is mitigated [26]. The sextupoles are turned off in Fig. 11 as
well as in Figs. 7 and 8, whereas Figs. 12(c) and 12(d) show
the tracking results after correcting the nonlinearity with the
sextupoles. Linearity is very nearly restored and the number

of particles within the cooling boundaries increases from
80% to 90% after correction.

D. Phase space segmentation

We described above the segmentation of the phase space
if there are a significant number of particles outside of the
cooling aperture (Fig. 10). This behavior is due to the
appearance of multiple cooling or heating boundaries in
the phase space. For simplicity, if momentum cooling is
considered exclusively and particles have no synchrotron
motion (rf off), the boundaries are defined by multiple
solutions to sinðkΔsÞ ¼ 0 [see Eq. (1)]. When sinðkΔsÞ
changes its sign, as kΔs increases through π, the momen-
tum kick likewise changes sign and will increase rather than
decrease, the momentum offset. The boundaries in the
longitudinal (zz0) phase space with only longitudinal cool-
ing are defined as

kM56

ΔP
P

¼ 2nπ; ð21Þ

where n is an integer. When 0 ≤ kΔs ≤ π, sinðkΔsÞ is
positive, the particles will be cooled and evolve to an
equilibrium where kΔs ¼ 0. When π < kΔs ≤ 2π,
sinðkΔsÞ < 0, the particle amplitudes are increased and
attracted to the n ¼ 1 boundary where kΔs ¼ 2π. This
behavior is discussed in Refs. [24,25].
When both the horizontal and longitudinal cooling are

included, the emittance decrements averaged over betatron
and synchrotron motion can be found as [10]

hΔϵxi ∝ −GJ1ðkAxÞJ0ðkAzÞ; ð22Þ

hΔϵzi ∝ −GJ1ðkAzÞJ0ðkAxÞ; ð23Þ

where Ax and Az are defined as

Ax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵxðβxM2

51 − 2αxM51M52 þ γxM2
52Þ

q
; ð24Þ

Az ¼ gM56

ΔP
P

: ð25Þ

Here, ϵx is the particle’s invariant betatron amplitude. For
cooling in both the horizontal and longitudinal planes,
kAx ≤ μ0 and kAz ≤ μ0 are both necessarily satisfied,
to obtain the cooling boundaries [ϵxmax, ðΔP=PÞmax] as
in Eqs. (7) and (8).
Since the locations of the boundaries depend on the

details of the bypass line beam optics [Eqs. (22)–(25)], we
can explore segmentation in a “real” simulation by con-
structing a CESR ring lattice that includes a bypasss that
may be incompatible with measurable cooling. We show
how multiple boundaries appear in the phase space for two
distinct sets of bypass optics with the OSC parameters
listed in Table III. Both sets of optics show horizontal and
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longitudinal cooling but with very different cooling rates.
In one instance (“Optics A”), the longitudinal cooling rate
is much greater than the horizontal (λl ≫ λx) and in the
other (“Optics B”), horizontal dominates over longitudinal
cooling. Consequently, the horizontal emittance acceptance
is large (∼70 nm rad) but the energy acceptance is very
poor in Optics A, while in Optics B horizontal emittance
acceptance (∼6.8 nm rad) is poor but the energy accep-
tance is large.
Refering to Table III, in the Optics A bypass line M51

and M52 are small, and M56 ≈ eM56 so that the Δs depends
almost exclusively on the longitudinal synchrotron motion.
In this case, when kAx ≤ μ0 and J0ðkAxÞ is positive, the
longitudinal cooling or heating will be determined by the
sign of J1ðkAzÞ. Thus, the cooling boundaries are deter-
mined by J1ðkAzÞ ¼ 0, which defines the attraction rings in
the longitudinal (zz0) phase space. That is kgM56

ΔP
P ¼ μ2n,

where μ2n is the 2n zeros of the first Bessel function. In the
tracking simulation, the initial horizontal emittance of the
bunch (104 particles) was set to ϵx0 ¼ 5 nm rad and
the initial longitudinal distribution was set with the design
values of bunch length and energy spread (σz ¼ 10 mm,
σE ¼ 2.92 × 10−4) as determined by radiation excitation.
In order to see the phase segmentation effect more clearly,
we tracked the bunch for 105 turns including only coherent
kicks and with a high gain G ¼ 10−6. Figures 13(a) and (b)
show the xx0 and zz0 phase space at turn 105. In the zz0
phase space [Fig. 13(b)], the particles are indeed attracted
to the fixed rings, in good agreement with the prediction
(kgM56

ΔP
P ¼ μ2n, the red dashed lines). Figure 14(a) shows

the kAz vs kAx of all the particles, displaying the particles
indeed aggregate at kAz ¼ μ2n. In the xx0 phase space
[Fig. 13(a)], the green line shows the horizontal cooling
acceptance ϵxmax ¼ 69.6 nm rad. The particles inside
the boundary are cooled toward zero while the particles
outside are heated and attracted toward the ϵxmaxðμ1=μ0Þ2
boundary.
The tracking simulation in Optics B was started with an

initial bunch distribution of horizontal emittance of 22 nm

rad and design bunch length of σz ¼ 10 mm and energy
spread of σE ¼ 4.07 × 10−4. The tracking was done with
1000 particles for 5 × 104 turns. In the Optics B bypass
line, eM56 is small so that the kAz is small and the cooling or
heating is determined by the sign of J1ðkAxÞ. In order to
observe the particle segregation effect, the gain level was
set high (G ¼ 10−6) and the incoherent kicks were not
included. Figures 13(c) and 13(d) show the particle dis-
tributions in the xx0 and zz0 phase space, respectively, at
turn 5 × 104. In the zz0 space, all the particles are inside the
cooling range [ðΔP=PÞmax ¼ 2.91 × 10−3] so that they all
migrate toward zero. In the xx0 space, the particles are
attracted to the isosurfaces of emittance ϵxn, satisfying
J1ðkAxÞ ¼ 0. Thus, ϵxn ¼ μ22n=k

2=ðM2
51βx þM2

52γx−
2M51M52αxÞ. In Fig. 13(c), the dashed lines are plotted
with emittances ϵxn using the Twiss parameters at the
pickup undulator without the dispersion contribution.
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TABLE III. OSC parameters of the bypass in CESR lattices.

Bypass line Optics A Optics B

M51 −7.48 × 10−4 3.17 × 10−4

M52 (m) −5.81 × 10−3 −1.38 × 10−2

M56 (m) 9.81 × 10−3 3.59 × 10−3gM56 (m) 9.56 × 10−3 1.05 × 10−4

ϵxmax (nm rad) 69.6 6.77
ðΔP=PÞmax 6.38 × 10−5 2.91 × 10−3

λx=λz 1=28.8 33.1
E (GeV) 0.5 1.0
ϵx0 (nm rad) 5.0 22.0
σE 2.92 × 10−4 4.07 × 10−4
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As we can see, the predicted rings reasonably match the
simulation. It can also be seen clearly in Fig. 14(b) that the
particles are attracted to kAx ¼ μ2n.
If the incoherent kicks are taken into account, the

particle segmentation in the phase space is smeared and
no sharp boundaries are observed. However, the micro-
bunching structures could be evident if the gain is reduced
to G ¼ 10−7 and the bunch contains no more than 5 × 106

particles.

E. Discussion

In the proposed test of OSC at CESR, we expect to
observe passive cooling. In this dog-leg style bypass layout,
the maximum length of the pickup and kicker undulator is
∼2.6 m. With the undulator parameters λu ¼ 32.5 cm and
K ¼ 4.22, the maximum energy gain of a single particle at
the kicker undulator is estimated to be ∼183 meV [10,16],
which corresponds to a G ¼ 1.8 × 10−10 at 1 GeV. As
Fig. 9 shows, a bunch with the emittance of 2.2 nm rad is
observed to be reduced to 1.6 nm rad atG ¼ 2 × 10−10 with
passive OSC including incoherent as well as coherent
kicks. Observation of the expected emittance reduction
using the synchrotron visible-light beam size monitor
with a normal CCD camera will be difficult since the
SR from 107 particles in a bunch at 1 GeV is much less than
the intensity (1010 particles at 5 GeV) at which the visible-
light beam size monitor normally operates [27]. Thus,
a high-sensitive camera will be extremely useful and
necessary [28].
When the number of particles in a bunch increases, the

beam emittance will increase due to IBS. The phase space
is segmented as particles outside the cooling ranges are
heated and attracted to the cooling boundaries. We
observed the segmentation in simulation at the high-gain
levelG ¼ 10−6 and excluding incoherent kicks as shown in
Fig. 13. With the addition of incoherent kicks, the phase
space segregation is diluted, especially at lower gains.
However, the emittance of the core part of the bunch that is
within the cooling boundary is reduced. Therefore, in
the proposed passive experiments, with many particles
(108–109) in a bunch, observing distortion of the horizontal
beam profile (Figs. 10, 11, and 12) with direct imaging of
transverse beam profile [27] will indicate OSC dynamics.
As shown in Fig. 3, the horizontal IBS effect can be

reduced and transferred to the vertical plane. Thus, with
more particles in a bunch, increasing the xy coupling
will increase the cooling range in the horizontal so as to
enhance the visibility of the OSC process. In addition,
because of xy coupling, the vertical emittance can be
reduced along with the horizontal creating another observ-
able signature of OSC.
Above, we have discussed the simulation results on the

dog-leg bypass layout. The same simulation principals
apply to the arc-bypass layout. Compared to the dog-leg
bypass, the arc-bypass design in CESR has two advantages:

larger path length delay (∼20 cm) and more space for the
undulators (∼5.2 m), leading to higher passive energy kick.
However, the path lengths from the pickup to the kicker for
both the particle and light are much longer, setting more
strict stability requirement for the intervening dipoles. In
Ref. [15], we have characterized the stability requirement
of dipoles in this arc-bypass in detail. Similar particle
tracking simulations were also performed to demonstrate
the dependence of OSC damping rates on various levels of
bend noise.
Finally, we note that our method to simulate the

incoherent kicks can be applied to other transit-time
cooling methods such as coherent electron cooling [29]
and microbunched electron cooling [30]. Similarly, for
these two cooling methods, the energy kick that an ion
receives from its corresponding electron density spike (or
bunched electrons) depends on the longitudinal distance z
between this ion and its corresponding electron density
spike. Assuming the energy kick function is fðzÞ, which to
result in cooing needs to be an odd function for z [31],
besides this coherent kick, the ion will also receive
incoherent kicks (shot noise) from random electron density
spikes created by other ions:

PNs
i fðziÞ. Here, Ns repre-

sents the number of ions within a slice ½−z0; z0�, that
provide nonzero kicks to the ion. Similar to TTOSC,P

fðziÞ with random zi within the slice can be approxi-
mated by a Gaussian function. Then, tracking simulation
including the incoherent kick for these two cooling
methods will be treated similarly as TTOSC. There are
other methods to apply random kick as the incoherent kick
in coherent electron cooling [32] and microbunched
electron cooling [33] processes as well.

VI. CONCLUSION

We have developed tools to simulate realistic coherent
kick as well as the incoherent noise in the TTOSC process.
These simulation tools helped us understand the TTOSC
concept and provided some guidance in the OSC lattice
design. With both coherent and incoherent kicks included
in the tracking simulation, cooling was observed in a
bypass line at CESR at very low gain level
(G ¼ 2 × 10−10, the passive cooling mode). In addition,
the phase space segmentation was evident in two bypass
lines with either small energy acceptance or emittance
acceptance. These observations agree very well with the
prediction from theory.
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