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Since the introduction of the radio-frequency (rf) photoinjector electron source over thirty years ago,
peak performance demands have dictated the use of high accelerating electric fields. With recent strong
advances in obtainable field values, attendant increases in beam brightness are expected to be dramatic. In
this article, we examine the implementation of very high gradient acceleration in a high frequency,
cryogenic rf photoinjector. We discuss in detail the effects of introducing, through an optimized rf cavity
shape, rich spatial harmonic content in the accelerating modes in this device. Higher spatial harmonics give
useful, enhanced linear focusing effects, as well as potentially deleterious nonlinear transverse forces. They
also serve to strongly increase the ratio of average accelerating field to peak surface field, thus aiding in
managing power and dark current-related challenges. We investigate two scenarios which are aimed at
unique exploitation of the capabilities of this source. First, we investigate the obtaining of extremely high
six-dimensional brightness for advanced free-electron laser applications. We also examine the use of a
magnetized photocathode in the device for producing unprecedented low asymmetric emittance, high-
current electron beams that reach linear collider-compatible performance. As both of the scenarios demand
an advanced, compact solenoid design, we describe a novel cryogenic solenoid system. With the high field
rf and magnetostatic structures introduced, we analyze the collective beam dynamics in these systems
through theory and multiparticle simulations, including a particular emphasis on granularity effects
associated with microscopic Coulomb interactions.
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I. INTRODUCTION

The radio-frequency (rf) photoinjector is a class of
electron source that has transformed numerous fields in
beam-based science, providing relativistic electron beams
with unprecedented short pulse length, high current, and
low emittance. This is accomplished by laser-gated photo-
emission from a cathode embedded in a very high field rf
cavity, liberating picosecond or faster electron pulses
through a prompt (as low as tens of femtosecond delay)
photoelectric emission. It is after emission that the true
innovation of the photoinjector begins, however, as if the
beam was simply accelerated from the cathode with no
additional optics it would experience strong correlated
emittance growth due to current-dependent transverse
space-charge forces. However, it was shown by Carlsten

[1] that such correlated emittance growth could be reversed
by focusing the beam soon after it emerges from the
cathode, and one can in fact retrieve the emittance the
beam was born with. This concept was developed further
by Serafini and Rosenzweig [2], where the process of
undoing current-dependent correlations, deemed emittance
compensation, became a prescribed process with well-
understood working points to seek out for optimal com-
pensation. The importance of these developments is
straightforward to appreciate—they enabled the robust
performance of the world’s first x-ray free-electron laser
(XFEL) [3].
The first generation of photoinjectors used in large

facilities provided beams which were of sufficient quality
to enable the world’s first XFEL. Today, however, we find
many innovative new applications for electron beams
which demand ever-brighter sources. Unsurprisingly, these
innovations in the use of high-brightness beams present a
concomitant challenge, to strongly increase the beam
brightness produced by the source. In regard to XFEL
applications, two recent initiatives indicate a necessity for
beams which far exceed the current state-of-the-art: the
ultracompact XFEL [4] and the MaRIE XFEL [5]. The
first, pioneered by a UCLA-centered collaboration, is an
ultracompact XFEL (UC-XFEL), which promises lasing,
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initially at soft x-ray wavelengths, with a total footprint
under 40 m in length. The fundamental feature allowing
the substantially shorter total length is the reduction of the
final beam energy, from the several GeV level down to
1 GeV. Doing so without dramatically reducing the FEL
power requires maintaining the geometric emittance of the
beam at the lower energy, thereby demanding a dramatic
reduction of the normalized emittance at emission. Further
insights into the demands on the electron beam brightness
result from the analysis presented in [4], where it is shown
that the key performance metric for source improvement is
the six-dimensional brightness, which also includes the
beam spectral density.
The second emergent FEL application, the matter

radiation interactions in extremes (MaRIE) XFEL, seeks
to provide a photon source at extremely high photon
energies exceeding 40 keV, or equivalently an x-ray
wavelength below one-third of an Angstrom. Due to the
stringent constraints imposed on beam emittance by the
FEL instability, early design work toward such an FEL has
struggled to identify a robust scenario, primarily due to
degradation to beam brightness during transport to ener-
gies in excess of 10 GeV. Even designs which utilize
200 nm rad normalized emittance, at the current state-of-
the-art of frontier injectors, meet performance metrics but
with uncomfortably little room for error. As such, this
project would benefit greatly from an enhancement of the
beam brightness at the source, as was demonstrated by the
work reported in Ref. [5].
Like the x-ray free-electron laser, conceptual designs for

a future electron-positron linear collider demand extremely
high-brightness beams with even higher charge [6]. The
beams required for a linear collider, however, go further
than requiring innovative approaches to high-brightness
beam development. In order to mitigate beam-beam radi-
ation effects at the interaction point, known as beams-
strahlung, one wishes for the beams to be transversely
asymmetric, or “flat,” and in particular have asymmetric
transverse emittances [7]. Although there are several
approaches to generating such beams, the only one capable
of maintaining high brightness and high charge without
excessive additions to footprint or cost is the photoinjector
operated with a magnetized photocathode. This entails
immersing the cathode in an axial magnetic field such that
the electron beam is born with a nonzero canonical angular
momentum which, as a conserved quantity, is converted to
mechanical angular momentum downstream of the
solenoid region. The presence of this mechanical angular
momentum enables the splitting of the emittances via use of
a skew quadrupole triplet [8]. In the case of the linear
collider, we must maintain an ultrahigh brightness beam
while purposefully immersing the cathode in a magnetic
field—a situation which is traditionally avoided (e.g., in
FEL applications) due to its potentially damaging effects on
the beam emittance.

Flat beams also find an application in dielectric laser
acceleration (DLA) [9], particularly in structures with slab
geometries, where, in order to generate extremely high
accelerating gradients, the structures necessarily have gaps
which are very small in one transverse dimension, and very
large in the other [10,11]. The use of an unmagnetized
photoinjector to produce these beams is hindered by the
single-nm emittance requirements in the small dimension.
However, if the emittance is split then the smaller trans-
verse dimension can achieve single-nm level emittance
without requiring the same level thermal emittance at the
photocathode.
The proposal that the path toward ever-brighter beams

lies in cryogenically cooled normal conducting rf structures
is at this point well established in theory and simulation, as
well as fundamental work on rf cavity performance [12].
Previous work on the subject [13,14] has demonstrated this
in the simplest terms: with a standard sinusoidal accelerat-
ing wave at the gun with 240 MV=m peak field, the beams
that can be produced exceed the state-of-the-art by an order
of magnitude in brightness. Beams with these performance
metrics—55 nm rad normalized emittance, 20 A current,
and sub-keV energy spread—have already been used in
simulation studies of the UC-XFEL and MaRIE XFEL
demonstrating excellent performance. However, new devel-
opments in the burgeoning field of cryo-rf accelerating
structures demand an updated treatment of such an injector.
These new developments revolve largely around advances
in the design of copper accelerating structures, both that of
the accelerating cavities themselves as well as the systems
used to couple rf power into them. The distributed coupling
linac [15] is unique among photoinjectors and accelerating
structures alike in its square-wave-like field profile. The
nonsinusoidal profile is indicative of the presence of higher
harmonic content in the accelerating wave, the effects of
which have been studied broadly in early studies of rf
photoinjectors but have never been studied in the context of
fields as high as we consider here, nor with beams as bright
as those we present.
The specific design requirements of the UC-XFEL have

also recently become mature. Reference [4] presents a
detailed summary of these requirements, which elucidated
not just the five-dimensional beam brightness B5D ¼ 2I=ϵ2n
demanded, but extended the analysis to identify the needed
six-dimensional brightness B6D ¼ 2I=ϵ2nσγ . The recently
published design study indicates the upper-bound on
allowed energy spread at the injector, which necessitates
a closer look at the physical processes that determine that
energy spread. In particular, it demands the inclusion
of the effects of microscopic space-charge effects asso-
ciated with short-range Coulomb interactions such as
intrabeam scattering (IBS). Capturing these effects in
simulation is, however, extremely difficult as they demand
a one-to-one treatment of the beam’s collective effects
at least between neighboring electrons. Such one-to-one
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simulations with a 100 pC beam associated with the
applications analyzed here are computationally unwieldy,
and demand a physics-based methodology for capturing
the appropriate effects with a more realistic computational
approach.
In this article we will present a robust design for a

cryogenically cooled rf photoinjector capable of meeting
the ambitious brightness demands of next-generation elec-
tron beam applications for both symmetric and asymmetric
emittance instruments. Although our primary emphasis will
be on beam dynamics rather than injector engineering, this
begins with a review of the physics which enables high-
field acceleration in normal conducting, cryo-cooled cop-
per, as well as the engineering designs of the gun, linac, and
solenoid which allow us to realize these benefits exper-
imentally. Once the engineering feasibility is reviewed, we
present an in-depth analysis of the impact of higher
harmonic field content in an injector—in particular in
the context of the present cell design and the high bright-
ness of the beams, but also more generally with regard to
modifications to linear beam dynamics and the strength of
deleterious nonlinear forces. This work is based on early
work on such effects and also builds on them, lending
understanding to their role in the upcoming generation of
high-brightness photoinjectors. After this, we will briefly
review the theory of emittance compensation in standard
nonmagnetized injectors so as to develop the language and
tools necessary to understand how compensation is modi-
fied when the cathode is immersed in a magnetic field.
Once we have established the theoretical tools involved

in the design of an injector in the present context, we will
present multiparticle simulation studies of several relevant
injector working points. The first, which we deem the
ultrahigh brightness working point, is a design extremely
well suited for driving a short-wavelength compact FEL, as
it yields a 19 A beam with 45 nm rad emittance and sub-
keV energy spread. This predicted brightness performance
notably exceeds that of even previously studied cryo-
cooled guns. We then proceed to a study of this working
point scaled down to a lower charge in order to facilitate
one-to-one space-charge studies in a computationally
feasible manner. This scaling, based on the observation
that short-range Coulomb interactions scale with the beam
charge density, allows us to estimate the energy spread from
microscopic effects in the full 100 pC bunch using a beam
with a charge, and therefore particle number, reduced by
three orders of magnitude. Finally, we introduce an addi-
tional bucking solenoid element in the photoinjector design
to permit cathode magnetization, and the associated pro-
duction of asymmetric emittance beams. We will show that
the four-dimensional beam brightness ϵ4D ¼ ffiffiffiffiffiffiffiffi

ϵxϵy
p can be

preserved down to nearly the level of the ultrahigh bright-
ness injector with a subsequent emittance-splitting by a
ratio of 400. This yields a beam with 4 nm emittance in the
smaller transverse plane at 100 pC bunch charge, which can

be scaled to meet the demands of either a DLA or a linear
collider. The physics involved in such a scaling procedure
are also discussed.

II. DESIGN OF PHOTOINJECTOR COMPONENTS

A. Optimized rf structure design

The use of cryogenic copper cavities to reach high
electric fields is motivated first by material properties.
At cryogenic temperatures, a number profound changes in
material response are noted. First, the power dissipation
due to surface currents is diminished strongly—a factor of
4-5 for relevant rf frequencies—by entry into the anoma-
lous skin effect regime. This causes the pulsed heating
suffered by the cavity surface to be ameliorated. Second,
the material properties—the coefficient of thermal expan-
sion and, to a lesser extent, the thermal conductivity,
change in beneficial ways that permit the deposited heat
to produce less stress on the rf cavity surface. Finally, the
yield strength is greatly increased at cryogenic temper-
atures, leading to a greater ability of the structure to
withstand the impulse of the electric field and associated
surface failure. Aspects of this microscopic model have
been verified, with the role of the magnetic field (pulsed
heating) [16] and the electric field [17], respectively,
experimentally studied. The definitive study examining
these effects jointly occurring in an acceleratorlike cryo-
genic copper structure is found in Ref. [12].
Based on this last study, a proposal was made to employ

this technique in very high field rf photoinjectors, as a way
to increase the brightness. Indeed, the rf gun design we
consider here is a more mature version of that first
introduced in previous work [13,14], which examined a
design with a field distribution very close to a pure standing
wave π-mode with negligible spatial harmonic content. In
the present work the field profile is modified from this pure
standing wave as a result of a detailed optimization of the
cell geometry, as is clear from Figure 1. The optimized rf
structure has a very high shunt impedance, owing both to
the increased quality factor Q and to a reentrant geometry
that is feasible in π-mode operation owing to a unique
distributed coupling architecture [15]. This structure geom-
etry is motivated by the goals of minimizing the surface
electric and magnetic field strengths. Taken together,
achieving these goals results in a structure which can
support peak on-axis electric fields in excess of
500 MV=m without suffering from excessive breakdown
(owed to magnetic field-induced heating and electric field-
driven stress). Further, we choose a peak design field for
injector operation of 240 MV=m specifically to avoid dark
current concerns, which are not a notable issue until the
peak fields reach the threshold of 300 MV=m found in
Ref. [18]. The residual issues of dark current are planned to
be managed in operations by limiting the rf pulse length
and employing active sweeping methods. These are
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evaluated to be adequate solutions, based on the previous
experimental results, for operation at the moderate (100 pC
and above) beam charges examined in this paper.
On the other side of the trade-off involved in this design,

the field profile is populated by many higher spatial
harmonics in addition to the primary resonant wave.
This feature of the field profile was not accounted for in
previous iterations of gun design, owing to the lack of
robust, detailed rf design, and introduces several unique
features to the emittance compensation process which we
explore in this article.
Although the present work’s emphasis is in beam

dynamics, we provide a more complete description of
the rf characteristics in Table I. The point of rf power
requirements merits some additional clarification. Presently
the two sections of the gun (full cell and 0.6 cell) are

planned to be fed individually. Each section will be
provided an initial 300 ns fill pulse followed by a
subsequent 300 ns pulse for maintaining the fill during
propagation of the beam. In Table I the values quoted as “A
+B” should be understood as corresponding to the power
contained in the first and second of these pulses in each gun
section, respectively. Furthermore, the repetition rate of
100 Hz has been chosen primarily for the UC-XFEL
context. At this rate, one dissipates 11 W at cryogenic
temperatures, for an estimated cryocooler power of 500 W.
This is thus easily feasible, and one can imagine pushing to
higher repetition rates when only the gun operation is
considered. One final point should be noted about the
impact of rf loading. For the FEL case, there is no need to
inject multiple bunches per rf fill, which is the context in
which loading can become a problem. Multipulse operation
is implicit in the linear collider case, however, in which case
the small beam loading effects can be dealt with by
adjusting the external rf feed. Additional details about
these high gradient structures—their capabilities, manu-
facturing techniques, and recent results—can be found in
Refs. [15,19] which represent the most current state-of-the-
art in published work about these cavities. Further details
about the rf studies in progress and planned at UCLA will
be provided in the conclusion.

B. Cryogenic solenoid

To place a solenoid sufficiently close to the rf gun, it is
necessary that it also be located inside the cryostat. It has
been decided to employ a normal conducting, cryogeni-
cally cooled solenoid to avoid some of the complications
associated with superconducting solenoids. However, a
crucial consideration in the design of such a cryo-solenoid
is to balance the available, temperature-dependent cooling
power versus the resistivity of the windings: a potentially
catastrophic positive feedback loop where higher local
temperatures lead to greater resistivity and thus power
dissipation, overwhelming the cooling power, must be

FIG. 1. The axial field profile for the full cell design is plotted
on top of a cross section of the cell geometry with true-to-life
aspect ratio.

TABLE I. Several key rf design characteristics are reported.
The two numbers quoted for each input power value correspond
to the powers of the initial and secondary rf pulses, as explained
in the text.

Parameter Unit Value

Repetition rate Hz 100
rf frequency GHz 5.712
Operating temperature K 27
Input power (FC) MW 10.7þ 3
Input power (0.6C) MW 4.8þ 1.6
Dissipated energy (FC) J 0.72
Dissipated energy (0.6C) J 0.39
Shunt impedance MΩ=m 121
Pulse length ns 300
Quality factor 14000

RIVER R. ROBLES et al. PHYS. REV. ACCEL. BEAMS 24, 063401 (2021)

063401-4



avoided [Fig. 2(a)]. To this end, it is necessary to choose
a winding material with a low resistivity at cryogenic
temperatures; this is usefully summarized by the residual
resistivity ratio (RRR) which most often refers to the
ratio of resistivities between 300 K and 4 K, RRR≡
ρ300 K=ρ4 K. Depending on its purity, temper, and other
factors, copper may exhibit RRR values from 10 to more
than 5,000 [20].

The specific cryo-solenoid design under consideration is
shown schematically in Fig. 3. It relies on a conventional
iron yoke, RRR ¼ 2; 000 copper windings, and a copper
sarcophagus for mechanical and thermal purposes: the
sarcophagus serves to maintain alignment and indexing
during cool down, ensure tight contact between individual
wire turns, and, by virtue of being linked to the cryogenic
cold head by thermal braids, serve as a heat sink for the
winding Joule heating. The individual windings are to be
electrically insulated with a thin film of polyimide (often
referred to as Kapton, a registered trademark of DuPont)
which is well characterized at cryogenic temperatures [21].
At temperatures of interest, polyimide is approximately five
orders of magnitude less thermally conductive than copper,
therefore, the total thermal resistance between the heat
source (windings) and sink (sarcophagus) is dominated by
these polyimide layers. Electrothermal simulations incor-
porating temperature-dependent resistivity are conducted
[Fig. 2(b)] to determine the equilibrium thermal distribution
and ensure that the runaway scenario described above does
not occur. Having validated the design’s thermal perfor-
mance, field maps were generated using the magnetostatic
code Radia [22]. The final design produces the requisite
0.51 T field, employing a current density of 9.2 A=mm2,
while dissipating less than 3 watts; operated at room
temperature, such a solenoid would produce nearly two
kilowatts.

III. THE ROLE OF SPATIAL HARMONICS
IN RF PHOTOINJECTORS

A. Description of spatial harmonic content in rf fields

It is clear from the square-wavelike field profile that the
gun we consider here (again, see Fig. 1) is rich in spatial
harmonic content. In the following sections we will discuss
what effects these extra harmonics have on the transverse
and longitudinal beam dynamics of emittance compensa-
tion. Throughout these sections we will use a Floquet
expansion of the π-mode field to guide the discussion,
which defines coefficients an and E0 according to

Ezðz; tÞ ¼ E0Re
X∞
n¼−∞

an exp½iðnkrfz − ωrftþ ϕÞ�; ð1Þ

and with a−n ¼ a�n,

Ezðz; tÞ ¼ 2E0

X∞
n¼1

an cosðnkrfzÞ sinðωrftþ ϕÞ: ð2Þ

By the indicated convention the first harmonic coefficient
a1 ¼ 1 (see, for example, [23]). With this convention, E0 is
the accelerating gradient observed by an ultrarelativistic
particle resonant with the first spatial harmonic, having
constant phase which may therefore yield maximum
acceleration. Thus, in the field profile shown in Fig. 1,

FIG. 2. Plots of cryosolenoid thermal performance. (a) Power
curves as a function of temperature for a representative, single
stage Gifford-McMahon cold head and for the cryosolenoid, at a
uniform temperature. Additional heat loads will reduce the
effective cooling capacity. (b) Equilibrium thermal distribution
of winding cross section with 27 K sarcophagus assumed.
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E0 is not actually 120 MV=m (half the peak field) but
rather approximately 150 MV=m. The effects of this addi-
tional acceleration have not been yet examined in previous,
very high field photoinjector studies [4,14].
In Fig. 4 we plot the values of the first 13 Floquet

coefficients. We observe that the primary contributions to
the field profile come from the first and third spatial
harmonics with a1 ¼ 1 by definition and a3 ≈ −0.2. As
we will see in the following sections the addition of even a
single strong nonfundamental spatial harmonic is enough to
notably alter both the longitudinal and transverse beam
dynamics relative to a pure single harmonic structure.
We note in this regard that in recent decades, since the

introduction of high gradient (> 100 MV=m peak field in
S-band) rf photocathode guns, the emphasis has been on
use of two-cell structures having negligible higher spatial

harmonic content. This approach has been motivated by a
desire to avoid potentially deleterious nonlinear field
effects that can be associated with non-speed-of-light
spatial harmonics. These effects are discussed below.
Before engaging in this discussion, however, we examine
some positive aspects of structures with higher spatial
harmonic content—the introduction of strong second order
focusing effects and an enhancement of the accelerating
gradient for speed-of-light particles for a fixed peak field.
It is interesting to comment that rf structures with

reentrant nose features at the irises were indeed previously
used in first-generation rf photocathode guns at LANL [1].
In these pioneering devices, such rf design features were
employed to mitigate input power demands; here the same
motivation exists, but it is supplemented by the possibility
of obtaining strong rf-derived focusing in the gun structure,
an effect augmented by the foreseen very high field
operation. It is also relevant to point out that contributions
to the emittance in the LANL rf photoinjectors due to
nonlinear fields associated with higher spatial harmonics
were significant in these designs [1]. As wewill show, these
nonlinear effects are greatly reduced when the beam is
small enough—a fact which is naturally realized in an
ultrahigh brightness injector.

B. Linear beam dynamics with spatial harmonics

The primary transverse effect of higher spatial harmonics
in standing wave accelerating structures is to introduce
strong second-order ponderomotive radial focusing forces
[24]. The field-normalized strength of these forces is
characterized by a parameter η defined by

ηðϕÞ ¼
X∞
n¼1

a2n−1 þ a2nþ1 − 2an−1anþ1 cosðϕÞ; ð3ÞFIG. 4. The Floquet coefficients of the first 13 spatial harmon-
ics are plotted for the full cell π-mode structure.

FIG. 3. Render of the cryosolenoid design, showing the iron yoke, copper sarcophagus, and windings.
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where the coefficients an measure the amplitude of the
Floquet components of the on-axis axial electric field
profile as we previously defined. For pure traveling wave
linacs, η ¼ 0 and for pure single harmonic standing wave
linacs η ¼ 1. For the gun in question,

ηðϕÞ ¼ 1.12 − 0.5 cosðϕÞ: ð4Þ

The nominal value of η for peak acceleration is thus 1.12,
i.e., 12% larger than in a pure fundamental standing wave
device. Furthermore, this strength depends, with a notably
large coefficient, on the phase-dependent term. In this paper
we will consider primarily on-crest acceleration; however,
in the rf gun itself it is not possible to inject the beam on-
crest, as the velocity of the electrons changes rapidly within
the gun. Further refinements of the ponderomotive theory
based on the normalized velocity β < 1, variations in η and
rapid relative changes in γ may be useful, but are outside
the scope of this paper.
This effective focusing increase reduces the demands

placed on the focusing solenoid performance. This is a
welcome development, as the requirement of using a
compact, high field solenoid at relatively short rf wave-
length introduces non-trivial challenges in magnet design
and implementation, as discussed above.

1. Longitudinal capture dynamics

For high-gradient guns such as the one considered here,
the beam is accelerated from the cathode to β near unity
within the first cell. The longitudinal dynamics in this short
nonrelativistic portion of the gun are well described by
utilizing an effective DC field of strength 2μE0 sinðϕ0Þ
[25], where μ ¼ P∞

n¼1 an (for our structure μ ≈ 0.8) and ϕ0

is the injection phase. During this period an accelerating
electron is not perfectly resonant with the fundamental
spatial harmonic. As a result, its phase slips with respect to
the injection phase, and it is also accelerated by interaction
with all present harmonics, giving rise to the direct sum
over Floquet coefficients. The phase at which the particles
exit the gun is related to that at which they are injected by
the approximate relationship,

ϕ0 ¼ ϕ −
1

2μα sinðϕÞ −
1

10μ2α2 sin2ðϕÞ ; ð5Þ

where α ¼ eE0=krfmec2 [26]. As Kim in [26] considers the
case of a pure standing wave, he indicates the maximum
electric field as 2E0. Here, on the other hand, the maximum
field is given by Emax ¼ 2μE0. It is desirable for the beam
to leave the gun with the design particle experiencing the
phase of maximal acceleration, ϕ ¼ π=2, as this minimizes
the transverse emittance growth associated with the spread
in particle phases [26]. This yields an approximate optimal
injection phase, from the standpoint of minimizing the
brightness degradation from the final iris kick [27],

ϕ0 ¼
π

2
−

1

2μα
−

1

10μ2α2
: ð6Þ

It is useful to compare this result to that of the pure
standing wave case with μ ¼ 1. Keeping in mind that
μα ¼ Emaxkrf=2mec2, it can be seen that the injection phase
is dependent, in this approximation, on the peak field Emax.
This phase is thus not changed in this analysis by the
presence of additional spatial harmonics. As in the analyses
of [26,25] which assume that the slippage in phase is
controlled by the field in the region directly adjacent to the
cathode, this situation is indeed expected.
The presence of additional spatial harmonics does

change, however, the ratio of the final energy to the peak
field. If we approximate the field in the rf gun as a square
wave instead of a pure cosine form (as motivated by Fig. 1),
the total changes in energy due to rf acceleration over the
gun length Lg are

ΔU ≃
1

2
eEmaxLg ðn ¼ 1 onlyÞ; ð7Þ

and

ΔU ≃
2

π
eEmaxLg ðsquare waveÞ; ð8Þ

respectively. This result could be expected, as the ratio of
the acceleration field to the peak field deduced from the
spatial harmonic analysis, E0=Emax ≃ 0.4 for the square
wave, is nearly identical to the value estimated from Eq. (2).

2. Adjustments of external focusing elements

The standard layout of a modern photoinjector consists
of four basic elements. The first and most fundamental of
these is the initial high-field rf gun which rapidly accel-
erates the beam to a few MeV off of the cathode. This is
generally followed by a short solenoid which provides a
radial focusing kick to guide the beam toward a waist
downstream. The third element is a drift many rf wave-
lengths long (meter-scale for the C-band case considered
here) during which the beam undergoes a full transverse
plasma oscillation, arriving finally at the entrance of a
booster linac placed such that the beam reaches a space-
charge dominated waist near the entrance to the accelerat-
ing field.
The only mandatory external focusing in this standard

configuration is provided by the solenoid magnet. As we
have already described, higher spatial harmonics in the
field profile leads to strong ponderomotive focusing. As
such, a photoinjector employing fields with spatial har-
monic content may afford to haveweaker solenoid focusing
at what is otherwise the same operating point. Alternatively,
it can operate with a smaller spot size on the photocathode
as the ponderomotive focusing will mitigate excessive
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growth of the beam size in the gun due to space charge
defocusing. A smaller beam size at injection has the added
benefit that the intrinsic thermal emittance scales linearly
with the beam size on the cathode [28], such that for all
other parameters held constant, the photoinjector may be
operated with lower intrinsic emittance. The ability to focus
the beam directly as it comes off of the cathode is a unique
advantage of structure-based rf focusing, as an attempt to
do so using solenoidal focusing would magnetize the
cathode, which is not acceptable for many commonly
encountered applications.

3. Longitudinal dynamics in downstream linacs

In the present case the structure has been optimized to
achieve 240 MV=m peak surface fields on the cathode.
This is well below the maximum field achievable due to rf
breakdown (∼500 MV=m) [12], and is limited by choice,
in consideration of mitigating dark current and associated
cavity power losses [18]. As a result of the previously
discussed factor μ being less than unity, the field associated
with the primary spatial harmonic is increased relative to
the peak of the field profile. In the downstream linacs only
this wave remains resonant with the beam and subsequently
provides consistent acceleration, so the effective accelerat-
ing gradient downstream of the structure is increased
relative to that of a single harmonic baseline design by
25% for μ ¼ 0.8. This is a key advantage of structures with
rich spatial harmonic content: a linac structure with peak
field less than its fundamental harmonic contribution can
operate at a substantially larger accelerating gradient than is
nominally allowed by surface-field-induced breakdown and
dark current considerations. The physical explanation for
this is simply that the walls of the structure see the total field
at any given moment while an ultrarelativistic beam is
directly sensitive only to the field of the first harmonic. This
effect has a fundamental limit, at least for a π-mode cavity,
which is achieved when the field profile is an exact square
wave, a fact which we demonstrate in the Appendix A. The
enhancement factor over the peak physical field for the
squarewave is 4=π, corresponding to an approximately 27%
increase in the gradient overwhat onewould expect from the
peak field. The similarity of this ideal figure to the 25%
enhancement in the current structure is reflective of the
highly optimized nature of the cell design we consider here.

C. Nonlinear beam dynamics with spatial harmonics

1. Emittance dilution from nonlinear iris kicks

The time-dependent radial momentum kick incurred at
the exit iris of a 1.6 cell gun is awell-known potential source
of emittance growth. In standard guns with very little spatial
harmonic content the kick is perfectly linear in the radial
coordinate, and the emittance growth results only from the
phase spread of the electron beam in the rf wave. As wewill
show here, the presence of higher spatial harmonics also

implies the existence of nonlinear terms in this radial kick
which have the potential to dilute the beambrightness even if
all particles rested at the same rf phase.
In this section we compute the radial kick applied to the

beam upon exiting the gun. We do this first for a single
spatial harmonic, and then return to the Floquet expansion
to compute the total kick delivered by the full field. We
begin from the Floquet form of the axial electric field in the
π-mode including the radial dependence [23]

Ezðρ; z; tÞ ¼ 2E0

X∞
n¼1;odd

an cosðnkzÞ sinðωtþ ϕÞI0ðkn;ρρÞ;

ð9Þ
where the radial wave number is k2n;ρ ¼ n2k2 − ðω=cÞ2 and
In is themodified Bessel function. For now,wewill consider
only one harmonic, n, and leave the summing over spatial
harmonics for later. From the longitudinal electric field we
can straightforwardly find the radial electric field and the
azimuthal magnetic field using Maxwell’s equations

Eρ;nðρ;z; tÞ¼ 2E0

�
annk
kn;ρ

�
sinðnkzÞsinðωtþϕÞI1ðkn;ρρÞ

Bϕ;nðρ;z; tÞ¼ 2E0

�
anω
c2kn;ρ

�
cosðnkzÞcosðωtþϕÞI1ðkn;ρρÞ:

ð10Þ

The radial force on a speed-of-light particle sampling these
fields is

Fρ;nðρ;z; tÞ¼−eðEr;n−cBϕ;nÞ

¼−2eE0an
k
kn;ρ

I1ðkn;ρρÞ½nsinðnkzÞsinðωtþϕÞ

− cosðnkzÞcosðωtþϕÞ�: ð11Þ
Keeping with the traditions of similar calculations [29],

we extract the radial kick as a function of location in the
gun in the impulse approximation, with ρ held constant,
assuming that β ¼ 1 after the first 0.1 cell and taking z ¼ 0
to coincide with the end of that first 0.1 cell region in the
case of a 1.6 cell gun. Despite our explicit interest in the 1.6
cell case, this analysis holds in general for a gun of any
number of cells. By integrating the radial force expression
and using the fact that t ≈ z=c, we obtain

Δpρ;nðρ;zÞ¼
Z

z

0

dz0

c
Fρ;nðρ;z0; tÞ

¼−
2eE0anI1ðkn;ρρÞ

ckn;ρ
ðsinðϕÞ

−fsin½ð1−nÞkzþϕ�þ sin½ð1þnÞkzþϕ�gÞ:
ð12Þ
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For the kick at the end of the 1.6 cells of the gun we
evaluate this expression at z ¼ 3λ=4 ¼ 3π=2k. This gives

Δpρ;nðρÞ ¼ −
2eE0 sinðϕÞan

kn;ρc
I1ðkn;ρρÞ; ð13Þ

where we have employed the fact that we are interested in
only odd n. With this single harmonic kick we can evaluate
the full kick via a sum over each contributing spatial
harmonic,

ΔpρðρÞ ¼ −
e
c
2E0 sinðϕÞ

X
n

an
kn;ρ

I1ðkn;ρρÞ: ð14Þ

We therefore find the kick in the angular radial coordinate,

Δρ0 ¼ Δpρ

pz
¼ −

2eE0

γmc2
sinðϕÞ

X
n

an
kn;ρ

I1ðkn;ρρÞ: ð15Þ

where γ here is in particular the beam energy at the gun exit.
To extract the lowest-order correction to the common linear
approximation of the radial dependence, we expand to the
modified Bessel function describing this dependence, using
I1ðxÞ ≈ ðx=2Þð1þ x2=8Þ, to arrive at

Δρ0 ≈ −
2eE0 sinðϕÞρ

2γmc2
X
n

an

�
1þ k2n;ρρ2

8

�
ð16Þ

¼ −
2eE0 sinðϕÞρ

2γmc2
X
n

an

�
1þ

�
n2k2 −

ω2

c2

�
ρ2

8

�
ð17Þ

¼−
eEzð0ÞsinðϕÞρ

2γmc2

�
1−

ρ2ω2

8c2

�
1þ c2

ω2

E00
z ð0Þ

Ezð0Þ
��

: ð18Þ

We retrieve the familiar linear kick in the first term [29],
while the second term represents a third-order kick which
vanishes if there are no nonresonant spatial harmonics
present. This term is suppressed by a factor ρ2ω2=8c2

relative to the linear term. For reference, at 1 mm off-axis in
a C-band structure, this suppression is approximately three
orders of magnitude.
This radial angular kick corresponds to identical x and y

angular kicks,

Δx0 ¼ −
eEzð0Þ sinðϕÞx

2γmc2

�
1 −

ρ2ω2

8c2

�
1þ c2

ω2

E00
z ð0Þ

Ezð0Þ
��

:

ð19Þ

We use this expression to estimate the emittance growth
that results from the nonlinear term. For simplicity we
assume the beam to be at a waist at the exit of the gun. For
conciseness of notation we will write the kick in the form
Δx0 ¼ axð1 − ρ2δÞ, the relevant beam moments become

hx02i ¼ σ2x00 þ a2σ2x0 − 8a2δσ4x0 þ 21a2δ2σ6x0 ð20Þ

hxx0i ¼ aσ2x0 − 4aδσ4x0: ð21Þ

From this result we easily find the emittance

ϵ2x ¼ σ2xσ
2
x0 − σ2xx0

¼ ϵ2x0 þ a2σ4x0 − 8a2δσ6x0 þ 21a2δ2σ8x0 − a2σ4x0

− 16a2δ2σ8x0 þ 8a2δσ6x0: ð22Þ

In this expression we see the expected cancellation of the
linear order terms, as such linear effects do not cause
emittance growth, and interestingly we also see cancella-
tion of the terms coupling the linear and nonlinear kicks.
All that remains are the purely nonlinear contributions:

ϵx ¼ ϵx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 5a2δ2σ8x0

ϵ2x0

s
: ð23Þ

It is insightful to write down these terms in non-normalized
variables

aδσ4x0
ϵx0

¼
�
eEzð0ÞsinðϕÞ

mc2

�
βx0ðkσx0Þ2

16γ

�
1þ c2

ω2

E00
z ð0Þ

Ezð0Þ
�
: ð24Þ

The first quantity in Eq. (24) is the accelerating gradient in
units of electron rest energy; the second term contains the
beam beta-function at the gun exit and also a term
comparing the scale of the rf wavelength to the transverse
beam size. The last quantity indicates the relevant nonlinear
effects of spatial harmonics,

1þ c2

ω2

E00
zð0Þ

Ezð0Þ
¼ 1 −

P
nn

2anP
nan

: ð25Þ

Let us evaluate this effect for the current case. The sum over
harmonic contributions is roughly 1.35. As a numerical
example, we will take roughly the values corresponding to
the injector design presented in Sec. V: with σx ¼ 325 μm,
γ ¼ 14, ϵnx0 ¼ 45 nm, and the gradient 240 MV=m, we
find a roughly 1% increase in the emittance at 45 nm
corresponding to a sub-nm growth in the normalized
emittance. This is nearly ignorable value, largely as a
result of the relatively small beam size at the exit of the gun.
This result is quite encouraging for the case we consider

in the FEL injector section, where the beam parameters are
as indicated above. However, we would eventually like to
consider higher charge cases, in which the implicit scaling
of the beam dimensions as Q1=3 implies that the emittance
growth term in Eq. (24), assuming ϵx0 ∝ σx, grows as Q2.
Indeed, for two cases of interest—linear collider (discussed
below) and also wakefield accelerator drivers—we should
eventually consider increasing the charge by an order of
magnitude. In such cases the nonlinear contribution to the
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emittance from higher spatial harmonic focal effects
contributes nearly equally to the final emittance as com-
pared to more familiar effects (due to space-charge,
thermal, chromatic considerations). For the moment, how-
ever, we concentrate on lower charge, higher brightness
examples, which are relevant to the operation of the new
C-band high gradient photoinjector initiative at UCLA that
aims to enable new possibilities in both FEL and linear
collider applications.

IV. THE RMS ENVELOPE EQUATION FOR
ACCELERATING BEAMS

In order to prepare for the discussions of simulation
results that follow, we introduce here the rms envelope
equation for accelerating beams, and examine the behavior
of the solutions in various relevant limits. This discussion
serves the purpose of elucidating the results we will present
later which are found via numerical simulations. The
established approach to analyzing the dynamics of emit-
tance compensation [2] utilizes longitudinal slices of the
beam, designated by the variable ζ ¼ z − vbt ≃ z − ct. This
analysis assumes that each axially symmetric slice evolves
nearly independently under the rms envelope equation,
which in the limit vb ≃ c has the form

σ00xðz; ζÞ þ
γ0

γ
σ0xðz; ζÞ þ

�
ηþ 2b2

8

��
γ0

γ

�
2

σxðz; ζÞ

¼ ϵ2n
γ2σxðz; ζÞ3

þ IðζÞ
2I0γ3σxðz; ζÞ

: ð26Þ

Here we indicate the derivative with respect to the distance
along the beam propagation direction with a prime symbol,
d=dz ¼ ðÞ0, and the constant rate of change of γ due to
interaction with the resonant (speed-of-light) spatial har-
monic is γ0 ¼ eE0=mec2. Also, the local current IðζÞ is
normalized to the Alfven current I0 ¼ ec=re, the (constant
under linear transformations) rms normalized emittance
ϵn ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihx02i − hxx0i2

p
and b ¼ cBz=E0. Finally, we

note that the rms envelope equation self-interaction
term explicitly includes only linear forces, with nonlinear
effects implicitly entering only through the slice-emittance
evolution.
This emittance term on the right-hand side of Eq. (26)

derives mainly, however, from the thermal-like rms spread
in transverse momenta in the beam. Further, it is traditional
to follow the beam dynamics governing the emittance
compensation process by ignoring this term, which for
relevant parameters of high brightness beams (large I, small
ϵn) from rf photoinjectors is small compared to the space-
charge derived term. In the present work, we will examine
another scenario, in which the beam is magnetized upon
emission, by placing a nonvanishing solenoidal field on the
photocathode, Bc. In this case, one transforms the rms
envelope equation to

σ00xðz; ζÞ þ
γ0

γ
σ0xðz; ζÞ þ

�
ηþ 2b2

8

��
γ0

γ

�
2

σxðz; ζÞ

¼ ϵ2n þ L2

γ2σxðz; ζÞ3
þ Iðz; ζÞ
2I0γ3σxðz; ζÞ

; ð27Þ

where L ¼ eBcσ
2
x;0=mec is the canonical rms angular

momentum owed to the cathode magnetic field. Upon
leaving the solenoid region near the rf gun, this canonical
angular momentum is converted into mechanical angular
momentum. We will be concerned with cases where
L2 ≫ ϵ2n, and the term proportional to σ−3x may no longer
be ignored in the envelope evolution.
From this equation it would appear that the canonical

angular momentum behaves identically to an increased
thermal emittance. This is correct from the viewpoint of the
envelope behavior, but hides important differences in the
microscopic dynamics. In an emittance-dominated beam,
the dynamics are thermal, and phase-space trajectories
cross (they are nonlaminar). In the case of an angular
momentum-dominated beam, however, the particle flow is
laminar, and undergoes rotations. This laminarity is a
shared trait of space-charge-dominated beams. As a result,
the angular momentum differs from the thermal emittance
in that it is physically realized in linear correlations
between the two transverse planes, which may in principle
be removed by suitable downstream beamline elements.
In the following sections, we examine particular solu-

tions of the envelope equation in the space-charge-domi-
nated and angular momentum-dominated limits.

A. Space-charge-dominated beam behavior with
acceleration

In the limit that the beam is space-charge dominated and
possesses no appreciable angular momentum, and there is
no local solenoid field (b ¼ 0), we omit the angular
momentum and emittance terms in Eq. (26), and the
resultant differential equation admits a particular solution,
for current I, known as the invariant envelope [2]

σx;invðzÞ ¼
2

γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I

I0ð2þ ηÞγ

s
: ð28Þ

The invariant aspect of this behavior is the phase space
angle of the envelope [2],

Θσ ≃
γσ0x;inv
σx;inv

¼ −
γ0

2
: ð29Þ

It should be noted that this corresponds exactly to the first
angular kick due to entry into the linac fields [24],

Δx0 ¼ −
γ0x
2γi

; ð30Þ
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where γi is the initial value of γ in the linac. Thus the
matching of the beam to the invariant envelope in the post
acceleration linac is accomplished by injecting the correct
initial value [γ ¼ γi in Eq. (28)] at a waist (σ0x ¼ 0).
The emittance compensation process begins before

injection into the linac, with the beam focused by a solenoid
to the waist described above at the linac entrance that is
similar in transverse size to that found at emission from the
photocathode. At this point, the errors in trace space
orientation between the various ζ-slices are minimized,
leaving an emittance that is a local minimum [30]. It is,
however, not a global minimum, as the addition of the post-
acceleration linac further decreases the emittance, while
adding energy to the point of the “freezing” of the space-
charge induced effects, which scale in strength as γ−2.
The diminishing of the emittance due to compensation in
the linac is due to two effects: the further rearrangement
of the slices’ relative trace-space orientation; and the slow
reduction of the beam size as it tends to follow the invariant
envelope. In order to understand the behavior of the
nonmatched slices, one should examine the perturbed
envelope equation for conditions close to the invariant
envelope.
This analysis begins with the writing of the perturbed

envelope equation [2], wherewe consider envelope behavior
near the invariant solution, σxðz;ζÞ¼ σx;invðz;ζÞþδσxðz;ζÞ.
This can be written as

δσ00xðz; ζÞ þ
γ0

γ
δσ0xðz; ζÞ þ

�
1þ η

4

�
γ0

γ

�
2
�
δσxðz; ζÞ ¼ 0:

ð31Þ

We note that this differential equation is now independent of
current I. The solution for a slice beam envelope having an
error in rms size δσx;0ðζÞ is

δσxðz; ζÞ ¼ δσx;0ðζÞ cos
� ffiffiffiffiffiffiffiffiffiffiffi

1þ η
p

2
ln

�
γ

γi

��
; ð32Þ

with derivative

δσ0xðz;ζÞ¼−
ffiffiffiffiffiffiffiffiffiffi
1þη

p
2

γ0γi
γ

δσx;0ðζÞsin
�
1þη

2
ln

�
γ

γi

��
: ð33Þ

FromEqs. (32) and (33), we can deduce that the area in trace
space scales as γ−1, and the phase space area is conserved.
This area we term the offset emittance, and designate it as
ϵδ ≈ γjhδσx;0iζhδσ0x;0iζj, where h:iζ indicates an average over
bunch slicesweighted by the current distribution. For awell-
optimized design, this should be close to the thermal
emittance at the cathode, perhaps increased by effects
associated with rf and nonlinear space-charge.
The normalized beam emittance consists of a contribu-

tion from this offset emittance, magnified by the distance

from the phase space origin to its center—the invariant
envelope. We may write an approximate expression for the
behavior of the normalized emittance as

ϵn ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2δ þ ðγσx;invσ0x;invÞ2

q

≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2δ þ

4I2

ð2þ ηÞ2I20γ02γ2
s

: ð34Þ

This expression ignores the dynamics of slice realignment
with respect to the invariant envelope trace space direction,
but captures the overall behavior—the normalized emit-
tance approaches an asymptotic value ϵδ due to the secular
diminishing of the beam envelope.

B. Angular-momentum-dominated beam
behavior with acceleration

In an accelerating beam, because of the relatively strong
decrease in the space-charge forces as a function of
increasing energy, a beam eventually becomes emittance
dominated as it attains high enough energy. In this case, one
may ignore the term proportional to the peak current in
Eq. (26), and write a particular solution of the resulting
equation as

σϵ;x ¼
�
8

η

�
1=4

ffiffiffiffiffi
ϵn
γ0

r
: ð35Þ

Because of opposing γ-dependencies of the focusing and
adiabatic damping of the emittance, the emittance-domi-
nated solution yields simply a constant beam size. This
stands in contrast to the secularly diminishing invariant
envelope solution for space-charge-dominated beams. Note
also that formally we may apply this result to the angular-
momentum dominated case by substituting L for ϵn
in Eq. (35).
In the space-charge-dominated case, one chooses to

operate at the particular solution of the envelope equation
for two reasons: it is associated with a phase space angle
which is independent of the local current, and it is
monotonically decreasing at a rate sufficient for diminish-
ing of the correlated emittance. This is clearly not the case
in the angular-momentum-dominated case. The constant
beam size associated with the particular solution in this case
would not facilitate the emittance approaching the offset
emittance asymptotically, rather once the beam becomes
completely angular-momentum-dominated the space-
charge oscillations no longer play a role in the envelope
dynamics. This is highly undesirable, and as such one
should inject the beam into the linac at a size large enough
that the beam is still partially space-charge dominated, and
in particular at a size which is notably larger than the
particular solution indicated by Eq. (35). This naturally
prevents one from operating at the optimal spot size usually
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reached for a space-charge-dominated beam which is
ideally close to the spot size at the cathode. This is one
fundamental reason why emittance compensation with
angular momentum-dominated beams is naturally less
efficient. In fact, in practical scenarios, the beam spends
much of its time in the injector partially space-charge-
dominated, but in such a way that angular momentum
cannot be ignored.
There are yet other physics concepts at play which

distinguish emittance compensation with angular momen-
tum from that without. In fact, there are two sources which
contribute to the inefficiency of emittance compensation in
magnetized photoinjectors. The first is that the rms
envelope equation with angular momentum has no solution
which has a phase space angle independent of the local
current for all energies, as we show in Appendix B. There is
thus no clear working point analogous to the invariant
envelope which achieves ideal compensation through
analytical methods, rather the beam envelope must be
optimized numerically. To understand the second source
of inefficiency we must consider, instead of mismatch in
the phase space angle, mismatch in the local beam size. In
the standard, non-magnetized case, dependence of the local
slice beam size on the current contributes to what we
identified already as the offset emittance, and part of the
goal of numerical optimizations is to minimize this mis-
match at the booster entrance. In the case of a magnetized
photoinjector, reduction in the beam size mismatch is
inherently less efficient. This is because in addition to
the usual contributions to the emittance, a mismatch in the
beam size also implies that there is no rotating frame in
which every slice ceases to rotate [31]. This results from the
fact that all slices are born with the same size and thus the
same canonical angular momentum, and will therefore
rotate at different rates if they have different sizes further
downstream. Since in practice one can never achieve
perfect matching of all slice sizes, the process of minimiz-
ing the offset emittance is inherently less efficient.
In the following sections we will give some quantitative

analysis of the beam behavior in various parts of the
injector and in particular discuss the ramifications of this
section’s discussion on the ideal injector operating point in
the presence of angular momentum.

C. Beam dynamics with angular momentum
in the prebooster drift

After leaving the compensating solenoid the beam is
moderately space-charge dominated, in order that the
emittance oscillations may proceed toward their eventual
second minimum. In particular, for reasons elucidated in
the previous section, one should ensure that the beam
remains space-charge dominated until it enters the booster
linac downstream. Since the angular momentum here is, by
assumption, large, overfocusing could cause the beam to
temporarily become angular-momentum dominated near

the transverse waist, thereby interfering with the evolution
of the emittance oscillations. In this section we will study
the dependence of the size of the beam waist on the beam
parameters upon exiting the solenoid. In this region the
beam satisfies the envelope equation in the absence of
acceleration and focusing,

σ00 −
L2

γ2σ3
−

I
2I0γ3σ

¼ 0: ð36Þ

This regime is particularly difficult to deal with analytically
for two reasons. First of all, as is expected, this equation
does not have an analytic solution in general which is not an
unwieldy infinite series. Second, although the beam is
moderately space-charge dominated upon exiting the
solenoid, the two terms can contribute nearly equally near
the beam waist even in an optimized design, as we will see
below. Nevertheless, we may determine the size of the
beam at the waist by extracting a conservation law from the
equation of motion. We accomplish this by multiplying
the envelope equation by σ0 and interpreting the subsequent
terms as exact derivatives,

d
dz

�
1

2
ðσ0Þ2 þ L2

2γ2σ2
−

I
2I0γ3

logðσÞ
�
¼ 0: ð37Þ

This implies that the quantity in brackets is conserved along
this section of the transport. In particular then, we may
relate the waist beam size σmin to the parameters at the
solenoid exit σ0 and σ00 as

σ020 þ
L2

γ2σ20
−

2I
2I0γ3

logðσ0Þ¼
L2

γ2σ2min

−
2I

2I0γ3
logðσminÞ: ð38Þ

Rewriting this in a slightly more interpretable form,

2I0γ3σ020
I

¼2I0γL2

Iσ20

σ20
σ2min

�
1−

�
σmin

σ0

�
2
�
−2log

�
σmin

σ0

�
: ð39Þ

In this form we may identify the term S≡ 2I0γL2=Iσ20 as
the relative strength of the space-charge and angular
momentum terms in the envelope equation at the exit of
the solenoid. If we additionally define A≡ 2I0γ3σ020 =I and
x ¼ σmin=σ0, this relation can be written in simpler form as

A ¼ S
x2

ð1 − x2Þ − 2 logðxÞ: ð40Þ

The solution x to this equation provides the size of the beam
at its waist relative to the size at the exit of the solenoid. Of
particular interest is the case when the beam waist corre-
sponds to the beam size at which the angular-momentum
and space-charge terms become equivalent, as past this
point one can consider the angular-momentum term dom-
inant, thereby interfering with the emittance compensation
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process. Under this condition, x0 ¼ ðL=σ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2I0γ=I

p ¼ffiffiffi
S

p
. Thus A ¼ 1 − S − 2 logð ffiffiffi

S
p Þ. If A exceeds this value,

the beam over-focuses and becomes angular momentum
dominated at the waist. As a result, one should design the
injector such that A is below this cutoff. In the simulations
studies we present below, we find through numerical
optimization that in fact the ideal scenario is to operate
such that xmin ≈

ffiffiffi
S

p
. This is unsurprising: in general the

emittance compensation process is more efficient with
smaller beam size and this represents the smallest beam
size that allows emittance compensation to proceed without
interruption.

D. Beam behavior in the booster linac
of a magnetized photoinjector

In a traditional high-brightness (unmagnetized) injector
the aim of the booster linac is to facilitate the transition of
the beam from space-charge dominance to emittance
dominance without interrupting the final stage of emittance
compensation, in particular by optimally damping the
transverse beam size with increasing energy. This increase
in energy serves to diminish the relative strength of the
space-charge forces. To optimally make the transition to
emittance domination, one operates at or near the invariant
envelope, where the beam size drops as σx ∝ 1=

ffiffiffi
γ

p
, and the

dominant slice dynamics are independent of the local beam
current, thereby achieving the goal of allowing the emit-
tance compensation dynamics to proceed to their eventual
minimum-emittance configuration. As we demonstrated in
previous sections, such a solution does not exist in the
presence of notable emittance or angular momentum
effects. Furthermore, the predominance of angular momen-
tum in the magnetized beam case implies that the described
transition occurs at a much lower energy, thereby occurring
earlier for equal accelerating gradients. In order to operate
at moderate gradients while arresting the emittance evolu-
tion near the minimum of the emittance oscillations, this
implies placing the booster linac slightly further down-
stream than the transverse beam waist—consistent with the
qualitative analysis of [31]. Furthermore, to facilitate the
diminishing of the emittance we would like to employ an
alternative approach to reducing the beam size, inspired by
the 1=

ffiffiffi
γ

p
dependence of the invariant envelope. This

indeed implies operation far from the equilibrium beam
size associated with the pure angular-momentum-domi-
nated solution, thus an accurate analytic description of the
envelope progression for ideal compensation in this case
demands a relatively elaborate approximation scheme.
Here we present a simple model for the beam envelope

evolution in the relevant regime, where the beam enters the
booster under space-charge dominated conditions, but
becomes angular momentum dominated rapidly thereafter.
This analysis is intended to elucidate the dominant proc-
esses involved in the envelope evolution in the booster linac

of an injector with angular momentum. It will also serve to
provide a method for describing how the beam transitions
from a space-charge-dominated state to an angular-momen-
tum-dominated one.
At entrance into the booster linac the space-charge

contribution to the envelope equation only slightly exceeds
that from angular momentum. This situation is described
clearly by Fig. 5 where we have plotted the ratio of the
space-charge and angular momentum terms in the envelope
equation through the injector design presented in more
detail in Sec. VII. As discussed above, at the beam waist the
space-charge and angular momentum terms contribute
nearly equally to the envelope oscillations, and the optimal
solution requires allowing the beam to expand to a state in
which it is more heavily space-charge dominated before
injecting it into the linac. When the beam does enter the
booster at roughly z ¼ 1.6 m, the transition to angular-
momentum-dominance is rapid due to the effects of
acceleration and occurs before the beam size changes
appreciably. As such, we anticipate that the contribution
of space-charge to the beam dynamics may be sufficiently
captured by approximating the space-charge term in the
envelope equation by evaluating it only employing the
beam size at linac entrance,

σ00 þ γ0

γ
σ0 þ η

8

�
γ0

γ

�
2

σ ¼ L2

γ2σ3
þ κ

γ3σ0
: ð41Þ

Since we assume the dynamics along the majority of the
length of the linac will be dominated by the angular
momentum contribution, we will separate the envelope
solution into two terms: σðzÞ ¼ σAMðzÞ þ σSCðzÞ. We will
consider space-charge as a perturbation such that σAMðzÞ
satisfies

FIG. 5. The ratio of the space-charge and angular momentum
terms in the envelope equation is plotted along the injector
studied in Sec. VII.
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σ00AM þ γ0

γ
σ0AM þ η

8

�
γ0

γ

�
2

σAM ¼ L2

γ2σ3AM
ð42Þ

This equation has an exact solution, given by [32]

σ2AMðzÞ ¼ σ2i cos
2ðψðzÞÞ þ 4

ffiffiffi
2

p
σiγiσ

0
i

γ0
ffiffiffi
η

p sinðψðzÞÞ cosðψðzÞÞ

þ 8

γ02η

�
L2

σ2i
þ γ2i σ

0
i
2

�
sin2ðψðzÞÞ; ð43Þ

where

ψðzÞ ¼
ffiffiffi
η

8

r
log

�
γ

γi

�
: ð44Þ

Here, in the absence of space-charge forces, σi and σ0i
would be the transverse size and angle at the start of the
linac, but for now they should be thought of as arbitrary
values which we will fix after describing the space-charge
contribution.
Next, we show that there is a more accurate way to

approximate the dynamics, by modifying these initial
conditions in the angular momentum envelope beyond
inclusion of the space-charge term in the constant beam
size approximation. Returning to this space-charge term,
we determine the evolution of σSC by linearly expanding
Eq. (41) about σAMðzÞwhile neglecting the residual angular
momentum term, a choice which we justify retroactively by
demonstrating the validity of these approximations through
numerical integration of the envelope equation. With this
choice, we now write

σ00SC þ γ0

γ
σ0SC þ η

8

�
γ0

γ

�
2

σSC ¼ I
2I0γ3σ0

: ð45Þ

The particular solution to this equation is

σSCðzÞ ¼
4I

I0γ02γð8þ ηÞσ0
ð46Þ

We further note that this does not have σSCð0Þ ¼ 0 and
σ0SCð0Þ ¼ 0, thus if we assume σi ¼ σ0 and σ0i ¼ σ00 in
Eq. (43) we would be contradicting our initial conditions.
We can resolve this in one of two ways: either including the
homogeneous solution in the space-charge solution and
choosing its coefficients accordingly, or by taking, in
Eq. (43),

σi ¼ σ0 −
4I

I0γ02γið8þ ηÞσ0
σ0i ¼ σ00 þ

4I
I0γ0γ2i ð8þ ηÞσ0

: ð47Þ

With this choice our initial conditions are consistent for the
total beam envelope σðzÞ ¼ σAMðzÞ þ σSCðzÞ.

The seemingly arbitrary choices made in developing this
derivation demand some justification, which we provide in
Fig. 6. In this figure the beam and accelerator parameters
used correspond to those for the first booster linac
presented in Sec. VII. In it we have plotted four different
solutions to the envelope equation. The first, the blue line
which is concealed by the red line, is obtained by numeri-
cally integrating the envelope equation with no approx-
imations or assumptions. The second, labeled “Analytic,
No SC” is simply Eq. (43) with σi ¼ σ0 and σ0i ¼ σ00. The
third, labeled “Analytic, Hom. SC” is the sum of the
analytic angular momentum and space-charge envelopes
with σi ¼ σ0 and σ0i ¼ σ00 and the homogeneous terms
included in Eq. (46) to make σSCð0Þ ¼ 0 and σ0SCð0Þ ¼ 0.
The final line, labeled “Analytic, Inhom. SC” is the solution
we have presented as optimal in the derivation. This claim
appears to be fully justified by the figure, where this
solution lies on top of the numerical integration. The
analytic solution ignoring space-charge finds a transverse
waist which is both too small and occurs too early due to
the complete absence of the space-charge defocusing force.
The solution with homogeneous terms maintained in the
space-charge contribution approaches a waist too early and
with too large of a minimum value.
Unlike the result of the previous section, this analysis does

not rely on the beam entering the linac near the constant
envelope solution associated with the angular-momentum-
dominated dynamics. For the reasons stated above, this is
much more relevant to the practical optimization of an
injector with a high degree of angular momentum.

V. ULTRA-HIGH BRIGHTNESS MODE FOR AN
XFEL DRIVER

A. Beam requirements for an advanced XFEL

We next concentrate on a highly relevant example of
high brightness, unmagnetized beam production in the high

FIG. 6. The beam envelope in the booster linac presented in
Sec. VII is determined four different ways, with each described in
the text.
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field photoinjector, which is applied to a frontier x-ray free
electron laser (XFEL) scenario. In this regard, recent work
toward the design and realization of an ultracompact XFEL
(UC-XFEL) with a footprint on the order of 40 m has
highlighted the necessity of producing beams with excep-
tional 6D brightness [4]. The existence of such a device is
largely predicated on the ability to use ultrahigh gradient
accelerating structures to produce a GeV-scale beam in only
10–20 meters. The linac design required to achieve this
goal has largely been demonstrated [15], and further studies
aimed at realizing mature devices based on this technology
are currently being pursued by a SLAC-UCLA-LANL-
INFN collaboration [4]. Nevertheless, scaling the energy of
the electron beam down to 1 GeV while fixing the x-ray
photon energy demands a notable, ambitious decrease in
the electron beam normalized emittance to enable robust
lasing. Thus, the state-of-the-art status of free-electron laser
photoinjectors, producing some 10’s of ampere beams with
0.2 μm rad scale normalized emittances, is not adequate to
realize an ultracompact XFEL on the desired scale.
In previous work [13,14] it was determined via simu-

lations employing ideal rf and solenoid field maps that with
a 240 MV=m peak field on a photocathode, an electron
beam of 55 nm rad normalized emittance and 17 A current
could be produced. It has additionally been demonstrated in
simulation that this exceptional brightness can be preserved
with minimal degradation during transport, acceleration (to
1 GeV) and longitudinal compression [4,33] by a factor of
200. The ultrahigh brightness operating regime for the
presently considered photoinjector serves to explore and
validate the ability to produce beams of similar quality to
those proposed in previous iterations of the gun when a
more complete view of the rf and solenoid fields used is
employed. Further, we deepen the previous studies by
including a simulation study of an important effect in such
unprecedented 6D brightness systems, that of intrabeam
scattering (IBS) [34]. This effect, which until now has not
been examined by detailed simulations of the beam’s
microscopic behavior, may have notable negative implica-
tions for 6D phase space dilution—introduction of
unwanted additional slice energy spread.
It is also worth noting that constraints similar to those of

the UC-XFEL regarding beam brightness can be found in
large-scale XFEL applications demanding high photon
flux at high photon energy, such as the proposed MaRIE
XFEL. A design study of this particular potential machine
found that a beam source of the quality we seek to
demonstrate here would substantially decrease the diffi-
culties associated with reaching these extreme perfor-
mance metrics [5].

B. Comment on thermal emittance

In order to understand the low emittance presented in the
simulations to follow, a discussion of the factors which
enable such a low emittance is demanded. This discussion

naturally begins with the thermal emittance at the cathode.
We recall that this has the form [28]

ϵn;th ¼ σx

ffiffiffiffiffiffiffiffiffiffiffi
MTE
3mc2

r
ð48Þ

where the mean transverse energy MTE is defined by
MTE ¼ ℏω − ϕeff where ℏω is the photon energy of the
cathode drive laser and ϕeff is the effective cathode work
function after the Schottky effect has been accounted
for [35]. In the present scenario we envision an MTE of
140meV, consistentwith a cathode drive laser of 262.1 nm in
this simplemodel. This results in a thermal emittance, quoted
in the usual way, of 0.3 μm=mm. This value, although
slightly ambitious, is not far from the state-of-the-art for
copper cathodes in photoinjectors [36], and iswell above that
achieved at test stands [37]. Further, it has been proposed that
notable improvements may be made with cryogenic oper-
ation of the injector and thus the photocathode [38]. This and
other approaches promise to lower the thermal emittance in
the near future, and the subject of exploiting much smaller
MTE is actively being explored at present [39].
The use of low thermal emittances to enable the high

brightness we seek here implies a small beam size on the
cathode of roughly 100 μm, assuming adequate quantum
efficiency. This question of the impact of and questions
surrounding quantum efficiency will be discussed within
the experimental context in the conclusion. This small spot
size injection is enabled by several features of the injector
design presented already: namely strong ponderomotive rf
focusing and rapid acceleration in a high-field environment.
Furthermore, since the emittance is already so small, any
unexpected increases to the thermal emittance would
roughly add in squares to the optimal value achieved in
simulations below and would be unlikely to require much
in the way of changes to the injector operating point we
consider. This is expected to be the case as long as
emittance does not grow large enough so as to jeopardize
the space-charge-dominated nature of the envelope evolu-
tion. Thus even with more standard thermal emittance
figures we would not expect the final emittance to exceed
55 nm rad, which is the value found in previous iterations of
this very gun design. The reason for this is that the final
emittance is determined roughly in equal parts by thermal
emittance considerations and other factors such as rf and
nonlinear space-charge emittance growth.

C. Photoinjector performance

The simulations for both the high-brightness operating
conditions and those relevant to flat beam (magnetized
photocathode) operation are performed using the General
Particle Tracer (GPT) code with 350k macroparticles with
the “accuracy” parameter set to six [40]. In these initial
studies we employ a mesh-based three-dimensional space-
charge routine suitable for capturing the complex collective
physics in the gun but which elide over microscopic
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space-charge effects such as IBS and disorder-induced
heating (DIH) [41]. These effects are discussed in detail
in later sections. For both operating modes, the beam
distribution is uniform in the longitudinal coordinate and a
Gaussian cutoff at 1σr in the transverse coordinates. The
high-brightness operating mode of the injector consists of
the high-gradient 1.6 cell gun, whose complete on-axis
field profile in shown in Fig. 7, a cryogenically cooled
compensating solenoid, and a 40 cell C-band booster linac
structure of roughly one meter length [15].
The ultrahigh brightness working point has been opti-

mized to generate the smallest possible normalized emit-
tance with just under 20 A peak current at 100 pC bunch
charge, as was found in previous, less mature iterations of
the gun design. The final parameter set, found through
numerical minimization of the beam emittance, is given in
Table II. The result of this optimization is found in Fig. 8.

Here we show the normalized emittance in blue alongside
the root-mean-square spot size in red as the beam travels
through the injector. In addition, we include graphics
displaying the locations of the gun, the solenoid, and the
1 m-long booster linac. We note that in these simulations,
we have employed the spatial harmonic-rich structure
described in detail above for both the gun and booster linac.
The emittance compensation profile evolution is rela-

tively standard, with injection into the linac occurring at the
usual “Ferrario working point” at which the beam enters the
booster at its waist. Further, the beam is very nearly on
the invariant envelope corresponding to the parameters of
this high gradient standing wave linac. This invariant
envelope initiates at a 64 μm spot size waist according
to Eq. (28), which is nearly exactly the 63 μm waist found
through numerical optimization. As a result we observe the
expected simultaneous damping of both the emittance
and the beam size, as described qualitatively above—
the emittance has a value of roughly 45 nm rad as it exits
the booster linac, a 10 nm rad improvement over previous
iterations of the gun. This enhanced performance may be
attributed to the beneficial effects associated with spatial
harmonic content in the gun and linac. Furthermore,
the transition to emittance-dominated beam transport is
almost ideally accomplished in this first booster linac, as
the beam finds an asymptotic value of 37 μm, which
is almost exactly equal to the quadrature sum of the
invariant envelope and the emittance dominated solu-

tion σϵ;x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið8=ηÞp

ϵn=γ0
q

.

We also highlight the dramatic expansion of the trans-
verse distribution through the gun and solenoid, at the peak
of which the beam has grown relative to its size at the
cathode by roughly an order of magnitude. This is con-
sistent with the findings of the authors of Ref. [30], who
showed that emittance compensation is most effective when

FIG. 7. The on-axis field profile of the 1.6 cell gun design is
shown.

TABLE II. The injector parameters relevant to emittance
compensation for ultrahigh brightness operation are listed.

Parameter Unit Value

Charge pC 100
Laser spot size (Pre-Cut) μm 151
Laser spot size (Post-Cut) μm 76
Injection phase ° 44
Laser length ps 5.8
Peak cathode field MV=m 240
Solenoid field T 0.51
Solenoid FWHM cm 7.4
Solenoid center cm 12.5
Booster gradient MV=m 77
Booster entrance m 1.165
Booster phase ° 90

FIG. 8. The emittance and beam size evolution of the ultrahigh
brightness operating point are shown through the first
booster linac.
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the beam propagates far from equilibrium. In this way, local
phase space wave-breaking due to nonlinear field effects is
avoided. This rapid expansion also serves to rearrange the
beam distribution to produce more linear self-fields,
through the transverse “blowout” effect.
We next explore the beam distribution at the linac output

in Fig. 9. Here we plot in the blue figure the current profile
as a function of longitudinal position in the bunch,
referenced by the time-of-flight parameter, and in red the
normalized slice emittance. We see that the beam current is
very nearly uniform with a peak of 19 A. The slice
emittance is seen to be relatively uniform itself, with an
average value in the core nearly equal to the value of the
projected emittance at the exit of the booster linac. This
feature is indicative of a highly optimized emittance
compensation process. The only slice parameter of interest
which is not plotted is the slice energy spread, which has a
roughly uniform value of 300 eV across the bunch length.
The small value of the energy spread as compared to state-
of-the-art FEL injectors can be attributed to two features of
our design: the relatively high accelerating gradient, and the
C-band design frequency which naturally allows less time
for space-charge-induced slice energy spread to develop.
These results also present the opportunity to discuss the

five-dimensional beam brightness, defined as B5D ¼ 2I=ϵ2n
with I the current and ϵn the normalized emittance. We
show the slice-dependence of the five-dimensional bright-
ness in Figure 10, where it is seen to take an average value
of 2 × 1016 A=m2. This should be compared to the state-of-
the-art photoinjectors driving modern XFELs, such as the
present SwissFEL injector where the 20 A current and
200 nm rad emittance yields B5D ≃ 1015 A=m2 [42]. This is
a dramatic increase in brightness, an advance that has few
comparisons in the recent history of high brightness
electron beam production.

VI. MICROSCOPIC SPACE-CHARGE EFFECTS

A. Short-range Coulomb interactions in photoinjectors

The injector design as presented thus far produces, in
addition to an extremely low emittance, an energy spread
which is well below the state-of-the art. Where a standard
photoinjector produces a beamof several keVenergy spread,
we have presented here a beam with a final slice energy
spread of just a few hundred eV. While in a traditional FEL
architecture this difference has relatively small impact, as the
use of a laser heater downstream would purposefully
increase the energy spread, we now find applications which
could not only make use of this exceedingly low energy
spread but may also require it. Indeed, the novel UC-XFEL
design presented in [4], does not utilize a laser heater and in
fact has an upper bound on input energy spread of 10 keV.
Additionally, such a source, if operated at lower charge,
would be interesting for ultrafast electron diffraction and
microscopywhere the uncorrelated energy spread presents a
limit on achievable resolution [43].
In part because the predicted low energy spread of this

source is quite promising, it is also subject to high levels of
scrutiny concerning the validity of the space-charge inter-
action model employed in the simulations up to this point.
Mesh-based space-charge algorithms inherently elide over
the microscopic physics associated with short-range
Coulomb interactions which can give rise to phase space
dilution in two different forms. The first, intrabeam
scattering (IBS), is a result of the short-range predomi-
nantly binary scattering events between neighboring elec-
trons which can lead to phase space dilution, primarily
through an increase in the uncorrelated energy spread of the
beam [34]. The second, disorder-induced heating (DIH),
results from an initially spatially disordered beam distri-
bution seeking out a pseudocrystalline configuration of

FIG. 9. The time-dependence of the current (blue) and nor-
malized transverse emittance (red) are plotted for the FEL injector
case. FIG. 10. The time-dependence of the five-dimensional bright-

ness, B5D ¼ 2I=ϵ2nx, is plotted for the FEL injector case.
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lower potential energy, similarly mediated by short-range
Coulomb interactions [41]. In lowering the potential energy
of its charge configuration, the beam increases its uncorre-
lated kinetic energy, a fast process (time-scale ω−1

p ) by
which an increase in both the emittance and the energy
spread is realized. These granular effects demand a space-
charge algorithm capable of taking into account point-to-
point space-charge effects, at least for electrons which are
near each other, while avoiding large numerical errors
from close encounters. This may be realized in a full
point-to-point space-charge calculation, which is compu-
tationally unwieldy, or more practically with a Barnes-Hut
approach [44].
Of these two effects, it is expected that IBS presents a

more important limit to the applicability of the high field
photoinjector operated with 100 pC charge since it is
expected to yield a contribution to the uncorrelated energy
spread on the order of a keV for the beam charge
considered [4]. While present injectors can be evaluated
acceptably by either ignoring or estimating the approximate
IBS energy spread, as was done in both [45,4], in the
present design the IBS contribution may be comparable to
or even larger than the non-IBS spread. DIH, on the other
hand, has the primary effect of increasing the beam
emittance and is typically much smaller than the thermal
emittance employed in the 100 pC gun. It can, however,
become relatively more important in a design scaled down
to the much lower charges relevant to UED and UEM, since
the thermal emittance scales linearly with the beam size on
the cathode, or the charge as Q1=3, while the space-charge
contribution scales as Q2=3.
Analyzing both of these effects is computationally

unwieldy for the 100 pC operating point we have discussed
so far, with its associated 625 million electrons. However,
both effects are expected to scale with the beam density
Ne=σ2xσz, so we can quantify the IBS-induced energy
spread in the 100 pC gun by scaling all beam dimensions
down an order of magnitude while dropping the charge by
three orders of magnitude to 100 fC. This procedure
preserves the space-charge dominated beam dynamics of
the beam, including emittance compensation, in the rel-
evant low-energy region. The resulting beam has 625,000
electrons, a number which is feasible to simulate with a
Barnes-Hut space-charge algorithm and which is thus able
to capture the essential features of short-range Coulomb
interactions.

B. Scaled simulations of IBS energy spread

We have performed the aforementioned scaled simula-
tions of the ultrahigh brightness injector by reducing the
charge by three orders of magnitude and all physical beam
dimensions by one order of magnitude so as to preserve the
beam charge density which determines both the emittance
compensation dynamics and the strength of the short-range
Coulomb interactions. The reduction in the transverse size

at emission implies a concomitant reduction in the thermal
emittance, which changes linearly with the spot size on the
cathode. In fact, the translation of the 100 pC case to the
100 fC case is not quite exact because of certain effects
which do not scale with the beam density: in particular the
contribution to the emittance owed to time-dependent rf
effects and the space-charge field of the image charges in
the cathode. As a result, the emittance compensation profile
is not perfectly retrieved at low charge without modifying
other parameters in the injector. Nevertheless, since we are
primarily interested in the effect on the energy spread and
would like tomaintain a proper comparison between the two
cases, we will neglect the effects on the emittance compen-
sation and consider the energy spread growth which occurs
only up to the entrance to the booster linac. This is allowable
because the dominant source of energy spread growth
occurs when the beam is densest—at the waist ahead of
the booster—and thus by stopping the simulation at this
point we will have captured the majority of the IBS
contribution in the injector. The scaled simulations are also
performed using GPT. In order to properly account for the
cathode image charge effect, three space-charge routines are
employed simultaneously: the Barnes-Hut simulationwhich
does not account for image charges in the cathode, a mesh
algorithm including the image charges, and a mesh algo-
rithm not including the image charges with an overall minus
sign applied to the space-charge field. In this way, one can
take into account the image charge field using a mesh
algorithm and the real beam space-charge field using a
Barnes-Hut algorithm without redundant application of the
beam’s own space-charge field. This is the same procedure
described in the GPT manual [46].

1. Scaled simulation results

We have run this scaled simulation and extracted the
uncorrelated energy spread of the beam throughout the gun
and drift prior to the booster linac, which we display in
Fig. 11 alongside similar data from another scaled simu-
lation using a mesh-based space-charge algorithm. We
observe that, as expected, the energy spread is increased
by the short-range Coulomb interactions included in the
Barnes-Hut simulation. In particular, the corresponding
energy spread growth is most dramatic as the beam
approaches a transverse waist at the entrance to the booster
linac at z ¼ 1.165 m, as this is the point where the beam
density is at its largest value. In these simulations, as we
will see in Fig. 13, this waist actually appears closer to
z ¼ 1.05 m, hence the peak in the gradient of the uncorre-
lated energy spread occurring nearer to this point. When the
full booster linac is included, the energy spread only
increases by roughly an additional 100 eV.
We may attempt to contextualize this energy spread

growth by comparing it to the theoretical predictions made
in [47]. In that work, it was found that the energy spread
growth rate satisfied
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1

σγ

dσγ
dz

¼ r2eNb

σxσzϵnxσ
2
γ
; ð49Þ

where re ¼ e2=4πϵ0mc2 is the classical electron radius and
Nb is the number of particles in the bunch. The original
paper [47] treated the rms beam quantities which appear in
this expression in an averaged sense over the length of the
injector, however one can just as easily include their z
dependence. This may be more conveniently written in the
form of the derivative of the square of the energy spread,

dσ2γ
dz

¼ 2r2eNb

σxσzϵnx
: ð50Þ

In Fig. 12 we have plotted the Barnes-Hut simulation
energy spread along with the analytic prediction, which we
have obtained by numerically integrating Eq. (50) using the
beam size, beam length, and emittance arrays from the GPT
simulation. We note that although the final energy spread is
comparable between the two cases, the analytic growth rate
seems to overestimate the IBS contribution in the drift prior
to the waist and underestimates the contribution from the
waist itself.

2. Validation of charge scaling

As previously discussed, short-range Coulomb effects
intuitively scale roughly with the bunch charge density,
hence our approach to making this problem tractable. More
precisely we see from the theoretical predictions repro-
duced in Eq. (50) that the true scaling is not quite with the
charge density but involves the beam angle through the
emittance with the term Q=σxσzϵnx. For the sake of
extrapolating the results of these scaled, 100 fC simulations

FIG. 13. The two ratios of interest, the charge density (top) and
Q=σxσzϵnx (bottom), are plotted for the 100 pC mesh simulation
and the 100 fC Barnes-Hut simulation.

FIG. 12. The uncorrelated energy spread is shown as computed
by the analytic formula (orange) and as produced by the Barnes-
Hut simulation (blue).

FIG. 11. The uncorrelated energy spread is shown from two
different simulations of a scaled 100 fC injector. The Barnes-Hut
simulation (blue) demonstrates the energy spread growth from
short-range Coulomb effects relative to a baseline case (orange)
which utilizes a mesh-based space-charge algorithm.
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to the original 100 pC gun, we should thus demonstrate that
this ratio, as well as the beam density, is roughly preserved
throughout the gun when the scaling is performed. We
validate this numerical approach in Fig. 13, where the
charge density (top) and the ratio Q=σxσzϵnx (bottom) are
plotted for the 100 pC simulation and for the 100 fC
Barnes-Hut simulation. As expected from the envelope
equation and emittance compensation theory, there is good,
though not perfect, agreement between the two simulations
for both quantities of interest. Quantitatively, they differ
from each other by no more than a factor of two at the
transverse beam waist where short-range Coulomb inter-
actions are strongest. Since the square of the energy spread
has been shown to be proportional to these ratios, one may
then interpret our 100 fC result as giving an estimate of the
IBS contribution to the 100 pC gun energy spread within
roughly 50%. This additional energy spread, of roughly
600 eV magnitude, is added in quadrature with the energy
spread from the 100 pC simulation.

3. Emittance growth estimate from
disorder-induced heating

Finally, we will attempt to estimate the magnitude of the
expected emittance growth from DIH in this scaled sce-
nario. Associated with disorder induced heating is an
increase in the effective transverse temperature of the
electron beam [41],

kBTDIH ¼ 0.45e2

4πϵ0a
; ð51Þ

where a ¼ ð4πnb=3Þ−1=3 is the Wigner-Seitz radius asso-
ciated with the electron number density nb at the cathode.
This temperature increase is achieved on the timescale of a
single plasma oscillation, similar to the emittance com-
pensation dynamics themselves. This corresponds to an
increase in the transverse beam emittance of magnitude

ϵDIH ¼ σx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTDIH

3mc2

r
: ð52Þ

As what will be an overestimate of the DIH effect, let us use
the parameters as they are at the cathode, although in reality
the temperature increase is achieved over a single plasma
period and thus samples something closer to the average,
lower beam density. For the parameters at the cathode we
find an effective DIH temperature increase of 4.2 meV,
resulting in an emittance growth of 0.06 nm rad. This
implies a negligible contribution to the beam dynamics,
validating our emphasis on IBS effects. Indeed this mag-
nitude is completely ignorable relative to the 10’s of nm
scale of the 100 pC emittance, however can become
important as the charge is scaled down for potential
UED and UEM applications.

VII. MAGNETIZED OPERATION FOR
ASYMMETRIC EMITTANCE BEAMS

In the following sections we describe an alternative
operating point for the injector in which the photocathode is
magnetized by an additional solenoid placed behind it. The
beam generated at the cathode is imbued with canonical
angular momentum: an emittancelike contribution to the
transverse beam dynamics which is physically realized in
linear correlations between the phase space variables x − y0
and y − x0. These correlations may be removed downstream
of the injector via skew quadrupole magnets, but only after
the radial emittance is properly compensated. The resulting
beam can have asymmetric transverse emittances with
ϵx=ϵy on the scale of 100 while maintaining a four-
dimensional emittance, ϵ4D ¼ ffiffiffiffiffiffiffiffi

ϵxϵy
p , on the scale of the

ultrahigh brightness FEL injector. Such a beam is attractive
for several applications: at low charge this “flat” beam is
ideal for injection into a dielectric laser accelerator with a
slab geometry. At higher charge, on the order of 1 nC, flat
beams are demanded for a future linear collider in order to
mitigate beamsstrahlung at the interaction point. In order to
maximize the versatility of the design and physics we
present here, we will identify an operating point with
100 pC charge which may be scaled up or down according
to the requirements of the application.

A. Beam requirements for a future linear collider

Linear collider designs require an asymmetric beam at the
final focus,where the ratio of horizontal to vertical beam size
is nearly two orders of magnitude [6], to mitigate the
negative effects of the strong beam-beam interaction [7].
This in turn implies an emittance ratio ϵx=ϵy ≃ 100, with the
smaller emittance, ϵy, at the 10−8 m rad level. In order to the
provide the needed collider luminosity, there should also be
a significant charge in the beam. Traditionally, such phase
space requirements are met by damping rings, which
naturally produce asymmetric beams. However, such rings
are costly, and it has long been speculated that one might
replace the electron damping ring with an asymmetric
emittance-producing photoinjector.
Production of asymmetric beams with a photoinjector is

indeed enabled by strongly magnetizing the photocathode,
and subsequently removing the beam’s angular momentum
with a skew-quadrupole array [48]. In the process, one may
produce a large splitting of the transverse emittances. As
we shall see below, the conservation laws at play imply that
to reach linear collider-appropriate performance levels, one
must press the state-of-the-art in beam brightness produced
by the source. Thus the very high field photoinjector is of
interest in this application. This approach requires an
understanding of beam brightness limitations of a magnet-
ized beam due the effect of beam angular momentum on the
emittance compensation process. Further, one must opti-
mally perform the removal of angular momentum through a
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“flat-beam transform.” This second step is discussed first,
as it sets the requirements for the first.

B. Flat beam transform of magnetized beams

In principle there are several approaches to producing
flat electron beams from photoinjectors. By utilizing a
blade array geometry for the photocathode [49] or by
shaping the transverse laser profile [50], for example, one
can produce beams with large transverse emittance ratios
directly. However, emittance compensation is difficult
when the beam is not cylindrically symmetric, just one
reason for which being that the Larmor rotation of the beam
in subsequent solenoid magnets can cause growth of the
projected emittances through unwanted coupling between
transverse phase space planes. For an azimuthally sym-
metric beam this entails no deleterious effects, but for an
asymmetric beam this rotation can spoil the beam
emittance.
Partially on account of these limitations, in this design

we utilize a robust approach based on introducing canoni-
cal angular momentum to the beam through immersion of
the cathode in an axial magnetic field using an external
solenoid magnet [51]. This technique has the significant
advantage that the beam maintains its cylindrical symmetry
up until its emittance is fully compensated; only after
space-charge effects are strongly diminished is the beam
permitted spatial asymmetries in design. Insofar as tracking
the transverse envelope dynamics is concerned, the angular
momentum acts effectively like additional emittance, as
noted above, added in quadrature to the thermal emittance
of the cathode. Unlike the thermal emittance, however, the
canonical angular momentum may be removed by skew
quadrupole magnets placed downstream of the injector
[48], which introduce the asymmetries mentioned above,
and serve to split the transverse emittances. Indeed, in the
process of removing the cross-correlations in the transverse
phase space, this transformation leaves the beam with a
nonunity transverse emittance ratio which can in principle
be quite large, often exceeding 100 [51].
We begin the discussion of applying this scheme to the

high field photoinjector by reviewing the basic principles of
flat beam generation from a magnetized photocathode. An
electron released with a nonvanishing axial magnetic field
at the cathode Bzð0Þ will have a conserved canonical
angular momentum L ¼ eBzð0Þr2=2 such that a bunch
of transverse size σr is characterized by a canonical angular
momentum value of L ¼ eBzσ

2
r=2. Such a beam is then

characterized by split geometric eigenemittances ϵ� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ24D þ L2

p
� L where ϵ4D ¼ ffiffiffiffiffiffiffiffi

ϵxϵy
p is the geometric 4D

emittance and L ¼ L=2pz is the geometric analogue of
the conserved rms canonical angular momentum. In the
limit that L ≫ ϵ4D the eigenemittances are approximately
ϵþ ¼ 2L and ϵ− ¼ ϵ24D=2L. Thus the emittance ratio is
ϵþ=ϵ− ¼ ð2L=ϵ4DÞ2. This implies a complicated tradeoff

which goes into maximizing the transverse emittance ratio:
a larger axial field on the cathode will increase the ratio,
however it will also make compensation more difficult and
potentially increase the effective ϵ4D in the final beam
through poor compensation. Similarly, both the canonical
angular momentum and the thermal emittance increase with
the spot size on the cathode with the latter scaling linearly
and the former quadratically.

C. Baseline injector performance

The geometry of the injector for flat beam mode is
similar to the ultrahigh brightness mode with the addition
of a secondary solenoid placed behind the cathode to
provide an axial magnetic field on the cathode surface. This
solenoid has a similar engineering philosophy as the
original magnet described in Sec. II. We will distinguish
between this and the existing solenoid by referring to the
latter as the compensating solenoid. Additionally, the
injector is followed by three skew quadrupole magnets
which perform the flat beam transformation after the
emittance is properly compensated.

1. Emittance compensation

We will begin the discussion of the injector performance
in the flat beam mode by summarizing the results of the
emittance compensation. The relevant parameters for the
operating point are given in Table III and the compensation
profile is plotted in Fig. 14. The on-axis field profile is the
same as in the ultrahigh brightness case, see Fig. 7.
Since there are relatively few examples of magnetized

beam compensation, we will take some time to discuss the
features of this profile and compare it to our arguments in
Sec. IV. We note that upon exiting the compensating
solenoid the beam is converging with an envelope angle
σ0x ¼ −620 μrad. Neglecting space-charge defocusing, this
corresponds to an angular momentum dominated waist
beam size of σx;0 ¼ −L=γσ0x ¼ 250 μm, which is only

TABLE III. The injector parameters relevant to emittance
compensation for magnetized beam operation are listed.

Parameter Unit Value

Charge pC 100
Laser spot size (precut) μm 151
Laser spot size (post-cut) μm 76
Injection phase ° 44
Laser length ps 5.8
Peak cathode field MV=m 240
Bucking solenoid field T 0.58
Compensation solenoid field T 0.48
Compensation solenoid FWHM cm 7.4
Compensation solenoid center cm 12.5
Booster gradient MV=m 52
Booster entrance m 1.6
Booster phase ° 90
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slightly smaller than the waist realized in the simulation
indicating that the angular momentum derived defocusing
forces are comparable to those derived from space-charge
during the drift prior to the linac. This is in notable contrast
to the FEL operating point, for which an equivalent
calculation using the normalized emittance instead of the
angular momentum yields a 7 μm beam size. This is very
small relative to the 63 μm spot realized in the FEL injector
simulation, which is indicative of the highly dominant
space-charge defocusing effects in that scenario. Note that
the implications of this are interesting: the beam sizes
associated with space-charge are naturally much smaller
than those associated with angular momentum when the
angular momentum is this large even when the two forces
are strictly equal in magnitude. This justifies a perturbative
approach to solving for the envelope dynamics even when
angular momentum is not completely dominant.
It is worth noting that the booster linac entrance is not

coincident with the location of the first emittance maximum
as it usually is and was in the FEL operating mode. This
was foreshadowed in Sec. IV—the large angular momen-
tum contribution makes it such that the beam becomes
angular momentum dominated at a much lower energy.
Subsequently, for similar accelerating gradient one must
place the booster linac closer to the final emittance
minimum. If one tries to inject at the waist the required
accelerating gradient will be too low and the beam will not
properly focus. It is worth noting that in the case presented
here, the emittance is frozen almost exactly at the value
when the beam size drops below the constant beam size
solution associated with the angular-momentum-dominated
dynamics σ ¼ ð8=ηÞ1=4ðL=γ0Þ1=2 ≈ 210 μm.
We have also included in the design a second 1 m linac

structure located 10 cm downstream of the initial booster
linac. The emittance compensation process is complete

before the beam enters this additional linac as indicated by
the flat emittance profile between the two linacs. The
second linac is placed before the skew quadrupole con-
figuration for two purposes. First, the beam energy at the
exit of the booster is relatively low at just 55 MeV. This
relatively low energy beam is susceptible to space-charge
effects during the very sensitive skew quadrupole trans-
formation; we thus use a second structure operated at the
maximally allowed accelerating gradient to increase the
energy to 210 MeV. Furthermore, the second linac provides
additional focusing to the beam to minimize deleterious
nonlinear effects associated with the second-order quadru-
pole transfer matrix components.
The final normalized radial emittance produced before

the skew quadrupoles is quite good, reaching a minimum
value of 85 nm rad as shown in Fig. 14. Based on this we
may estimate an optimal transverse emittance ratio of
nearly 500 with γϵþ ¼ 1.9 μm rad and γϵ− ¼ 3.8 nm rad.

2. Skew quadrupole transformation

The second linac is followed immediately by a
skew quadrupole triplet (SQT). We model the magnets
as 8 cm long with their consecutive edges placed 1 m apart.
The first magnet edge is located 4 m downstream of the
cathode. The gradients are −14.53 T=m, 9.27 T=m, and
−5.36 T=m, respectively. These optimal values were
obtained initially using ELEGANT [52] for fast optimization,
then simulated in GPT to account for 3D transverse space-
charge effects.
The transverse phase spaces after the SQT are plotted on

top of each other in Figure 15. As indicated in the figure,
the SQT leaves the normalized transverse emittances split
between 4.2 nm rad in x and 1.74 μm rad in y. This

FIG. 14. The emittance and beam size evolution of the
magnetized operating point are shown up to the entrance to
the skew quadrupole triplet. FIG. 15. The transverse phase spaces are plotted on top of each

other after the emittances have been split by the skew quadrupole
triplet.

RIVER R. ROBLES et al. PHYS. REV. ACCEL. BEAMS 24, 063401 (2021)

063401-22



amounts to a transverse emittance ratio of 414, which is in
excess of the requirements of the linear collider. This falls
short of the factor of 500 predicted by our simple
theoretical estimates. We have determined through com-
parison of ELEGANT and GPT results that roughly 0.5 nm rad
of the final smaller emittance is directly derived from a
combination of space-charge effects during the skew
quadrupole transformation, chromatic effects owing to
the nonlinear longitudinal phase space, and nonlinearities
in the quadrupole magnetic fields, none of which are
accounted for in the theory employed for the estimate. If
this approximately 0.5 nm rad contribution is ignored we
retrieve roughly the theoretical prediction of 3.8 nm rad for
the smaller emittance. Further, we show in Fig. 16 the x-y
projection of the beam.

D. Charge scaling

As we saw in the previous sections, the presented
injector design is highly versatile as one can move between
an ultrahigh brightness FEL operating point and a mag-
netized asymmetric emittance operating point with rela-
tively minor adjustments to the gun operating conditions.
This versatility has been demonstrated thus far for a 100 pC
beam. 100 pC is ideal for FEL applications, but it may be
too low to be practical in a linear collider scenario and too
high for DLA. For a linear collider, at least in common
present-day designs, one would like to obtain an operating
point with a similar emittance ratio but with 1 nC bunch
charge. Here we will discuss the relevant fundamental
photoinjector scaling laws that govern such an increase to
the bunch charge. We will conclude with a discussion of the
corresponding challenges for scaling down to the single pC
scale for DLA.

The standard approach for scaling the charge of a
photoinjector design is to correspondingly scale the beam
dimensions at the cathode such that the beam density is
unaffected, thereby preserving the plasma frequency which
sets the length scale for emittance compensation. In this
way we may say that the transverse beam size and the beam
length at injection will scale with the cube root of the beam
charge. Recall also that the canonical angular momentum
scales as the square of the beam size on the cathode, L ∝ σ2x
whereas the thermal emittance scales linearly with the same
quantity. Under the assumption that the final emittance is
nearly equal to the thermal emittance, an assumption we
will study in more detail further below, we may conclude
that ϵ4D ∝ σx. As a result, the emittance ratio will scale as
ϵþ=ϵ− ¼ ð2L=ϵ4DÞ2 ∝ σ2x ≃Q2=3. Thus, one might expect
that increasing the bunch charge by an order of magnitude
would in fact improve the final emittance ratio by roughly
102=3. Meanwhile, the smaller emittance ϵ− ¼ ϵ24D=2L is
insensitive to the charge scaling in this limit, so the sub-
10 nm smaller emittance would also be preserved in
accordance with the requirements for a collider.
This analysis holds only under the original assumption

that the final emittance scales with spot size in the same
way as the thermal emittance, which is not necessarily the
case. In particular, lengthening the bunch at the cathode
may enhance the emittance contribution from the rf wave,
which is caused by different portions of the beam sampling
different phases of the accelerating wave at the exit iris
thereby picking up a time-dependent angular kick. This
effect is represented by a contribution to the emittance of

ϵrfx ¼ eE0

2mc2
σ2xk2rfσ

2
z ; ð53Þ

which is added in quadrature to the other contributions to
the total emittance. For the operating conditions in the
magnetized photocathode scenario scaled according to the
prescription described above, this contribution comes to be
about 750 nm rad, much larger than the sub-100 nm
rad thermal emittance. Therefore, one expects that in this
case the four-dimensional emittance will be dominated by
the rf contribution, leading to the modified scaling
ϵ4D ∝ σ2xσ

2
z ∝ Q4=3. Correspondingly, the emittance ratio

scales as Q−4=3 and the smaller emittance as Q2=3. The new
smaller emittance will still be of order 10 nm rad, however
the ratio will be reduced to be of order 10 itself, which is
insufficient for the collider. The most obvious way to
resolve this issue is by lengthening the rf wavelength,
perhaps by moving instead to S-band (as studied in [14])
where the rf frequency is a factor of 2 smaller and thus the rf
emittance is reduced by a factor of four assuming all other
variables are held constant. Indeed, such a change reduces
the rf emittance to the 200 nm rad level. This prediction
corresponds to experience; when one is attempting to
produce nC-class high brightness beams, one should
operate at an rf wavelength of at least 10 cm.

FIG. 16. The x-y projection of the beam is shown after the skew
quadrupole triplet.
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In the opposite case, one might naturally imagine scaling
down the bunch charge to appeal to DLA applications.
In this case rf effects only become weaker, so we may
return to the scaling arguments made previously finding
ϵþ=ϵ− ∝ Q2=3. Thus the emittance ratio is reduced by a
reduction in the charge, however for the DLA the quantity
of higher performance is the smaller emittance ϵ− ¼
ϵ24D=2L which is independent of the beam charge in this
limit. The smaller emittance is the more important quantity
here because it determines whether the beam can be
properly matched into the DLA section: the size of the
beam in the larger plane is largely irrelevant. We note that
the minimal emittance observed in the current injector
design, 4 nm rad, is consistent with the constraints noted in
[53] required for DLA experiments at the UCLA Pegasus
Lab. It is worth noting also, however, that the reduction in
the emittance ratio makes it such that this scaling is only
worthwhile when the photocathode itself cannot be oper-
ated with sufficiently low thermal emittance.

VIII. CONCLUSIONS

We have presented here a versatile, cryogenically-cooled
photoinjector which promises beams of unprecedented six-
dimensional brightness. The fundamental innovation
allowing this step toward ever brighter beams is the use
of normal conducting rf cavities at cryogenic temperatures to
launch the beam from the cathode at extremely high fields.
This work for the first time has considered a feasible
engineering design for all injector components, in the
process revealing as of yet largely unconsidered physics
concepts related to the presence of nonresonant spatial
harmonics in the rf field. Indeed we have found that the
inclusion of these harmonics, demanded by the structure’s
power efficiency, serves to enhance the emittance compen-
sation by providing stronger focusing on the beam both as it
leaves the cathode and as it is accelerated toward an
emittance dominated state downstream, yielding an unprec-
edented 45 nm rad emittance at 100 pC and 20 A level
current. With the cryogenic nature of the gun comes addi-
tional engineering difficulties with the solenoid required to
facilitate emittance compensation, whichwe have addressed
with a design for a cryo-solenoid which can rest in the same
cryostat as the gun.
In addition to exploring critical new aspects of the concept

of a high-field cryogenic injector, we have presented a
unique study of the effects of microscopic collective beam
dynamics on the performance of a photoinjector. Our
approach, which takes advantage of the fundamental prin-
ciples driving these short-range Coulomb interactions, has
allowed us to estimate the scale of the energy spread incurred
by a beam due to intra-beam scattering in an injector—an
estimate which is not just novel but also critical for the
feasibility of an ultracompact x-ray free-electron laser using
cryo-rf accelerators.

We have further shown that the same fundamental injector
design may be modified by the inclusion of a photocathode-
magnetizing solenoid behind the gun to realize beams with
unprecedentedly small, asymmetric transverse emittances
and a comparably small four-dimensional emittance. This
entails a uniquely detailed study of the process of emittance
compensation in the presence of canonical angular momen-
tum. The beam demonstrated in these simulations—with
100 pC charge, an emittance ratio of 400, and a smaller
emittance of 4 nm rad—sheds light on the efficiency of
emittance compensation in this regime and additionally
provides a first step for developing a scaled beam at a larger
charge suitable, for injecting into a linear collider.
The experimental realization of this gun is in progress at

the UCLA SAMURAI laboratory, for testing both FEL and
linear collider applications. Before commissioning this
gun, early tests will seek to demonstrate the efficiency
gains induced by using a high-field, strongly focusing
distributed coupling linac as the booster for an existing
injector—the UCLA hybrid gun [54]. Simultaneously,
UCLA is developing a 0.5 cell C-band test cavity for
dedicated study of the properties of beams emitted from
cryogenically cooled photocathode surfaces. This naturally
includes the possibility of studying cryo-emission in depth,
in addition to the behavior of cryogenically cooled cath-
odes exposed to high intensity UV lasers. Developing a
proper understanding of the details of emission in this
physical scenario is critical for the small spot size operation
we envision. UCLA has acquired a 5 MWC-band klystron,
which is being commissioned and is capable of feeding this
half-cell structure. With this variety of beam sources soon
to be available at the SAMURAI lab, early experimental
work will also focus on demonstrating the utility of these
linac structures and gun designs in permitting robust FEL
lasing. The first iterations of this will entail lasing at optical
and EUV wavelengths with a several hundred MeV beam.
Such an initial step allows for early investment into the
other enabling technologies of the UC-XFEL, such as
meso-scale cryo-undulators and IFEL modulation-based
compression schemes. These first steps will enable the
realization of the full UC-XFEL, producing soft x-ray
photons with a 1 GeV electron beam in just 40 m.
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APPENDIX A: OPTIMAL π-MODE FIELD
PROFILE FOR GRADIENT ENHANCEMENT

The acceleration of ultrarelativistic particles in a standing
wave cavity has the interesting property that the rate of

RIVER R. ROBLES et al. PHYS. REV. ACCEL. BEAMS 24, 063401 (2021)

063401-24



energy gain by the particles is sensitive only to the
fundamental spatial harmonic, while the walls of the cavity
itself are sensitive primarily to the net field strength. As
indicated in previous sections, this implies that the accel-
erating gradient observed by an ultrarelativistic particle
may be higher than the peak longitudinal electric field in
the cavity if the field contains higher-order spatial harmonic
content. This in turn suggests that structures which support
high harmonic content will naturally be more efficient at
supporting high gradients, a claim which seems to have
been validated by the numerical optimizations of [15]
which yielded our particular field profile. In this section
wewill demonstrate that the theoretical limit of this effect is
achieved by a perfect square wave field profile, for which
the accelerating gradient exceeds the expected value by the
factor 4=π.
To start we should formally state the problem to be

solved. This is to determine for what valid π-mode field
profile is the maximum value of the field a minimum
relative to the strength of the fundamental accelerating
wave. We propose that the answer is a square wave defined
according to

E0ðxÞ ¼
�
2=π −π=2 < x < π=2

−2=π π=2 < x < 3π=2
: ðA1Þ

Of course, a π-mode field profile is any field profile
which may be expressed in the form of an odd-frequency
cosine series,

EðxÞ ¼
X∞
n¼0

a2nþ1 cosðð2nþ 1ÞxÞ; ðA2Þ

in which we force the normalization a1 ¼ 1. We will prove
that the square wave E0ðxÞ is the answer to the posed
problem by contradiction, by supposing that in fact another
field has a smaller maximum than the square wave when
both have a1 ¼ 1. We will define this field according to its
difference from the square wave,

EðxÞ ¼ E0ðxÞ þ E1ðxÞ; ðA3Þ

where by necessity E1ðxÞ is itself expressible as an odd-
frequency cosine series,

E1ðxÞ ¼
X∞
n¼0

b2nþ1 cosðð2nþ 1ÞxÞ: ðA4Þ

Since the square wave achieves its maximum value at every
location in the range ð−π=2; π=2Þ, EðxÞ can only have a
lower maximum if E1ðxÞ is negative everywhere in this
range. The reason is simply that if at any point E1ðxÞ is
positive, then EðxÞ will at that point exceed the constant
maximum value of the square wave. Simultaneously how-
ever, EðxÞmust maintain a fundamental wave strength of 1.

SinceE0ðxÞ itself already has fundamental coefficient equal
to 1, we must have that the corresponding coefficient of
E1ðxÞ vanishes. In other words,

b1 ¼
1

π

Z
3π=2

−π=2
E1ðxÞ cosðxÞdx ¼ 0: ðA5Þ

Since both E1ðxÞ, on account of its form, and cosðxÞ have
the property that fðxþ πÞ ¼ −fðxÞ, this is equivalently
written as

b1 ¼
2

π

Z
π=2

−π=2
E1ðxÞ cosðxÞdx: ðA6Þ

Of course, if E1ðxÞ is negative across the entire integration
range, then this cannot vanish. Thus E1ðxÞ must become
positive at some point in this range, thereby granting EðxÞ a
maximum which is larger than that of the square wave.
With this fact established we may consider its ramifi-

cations for an ideal—under the present consideration—π-
mode field profile. The Floquet form of a square wave
accelerating field is

EðzÞ ¼ 2E0

X∞
n¼0

ð−1Þn
2nþ 1

cosðð2nþ 1ÞkrfzÞ: ðA7Þ

It follows that the maximum of the field profile is related to
the amplitude of the fundamental wave by

Emax ¼ 2E0

X∞
n¼0

ð−1Þn
2nþ 1

¼ π

2
E0: ðA8Þ

The expected accelerating gradient from a purely sinusoidal
field profile is half of the peak field, so we conclude that the
accelerating gradient E0 for an ultrarelativistic particle is
E0 ¼ ð4=πÞðEmax=2Þ, implying an enhancement over the
equivalent purely sinusoidal accelerating gradient of
4=π ≈ 1.27. Stated more explicitly, the square wave field
profile achieves a 27% higher accelerating gradient for the
same peak field strength relative to a pure first harmonic
wave. In particular, this implies a 27% higher allowed
gradient before rf breakdown becomes problematic.

APPENDIX B: ABSENCE OF INVARIANT
ENVELOPE TYPE SOLUTIONS IN
MAGNETIZED PHOTOINJECTORS

The invariant envelope is attractive as a particular solution
to the envelope equation in a booster linac largely due to the
invariance of the associated phase space angle with respect
to local current. This guarantees that as the beam is
accelerated, first-order correlations in the phase space
are removed by the time the beam becomes emittance-
dominated. Ideally one would like to find an analogous
solution in the presence of angular momentum, however we
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will show here that no such solution exists. This is not to say
that there are not solutions which facilitate compensation,
just that there is no solution with the property that mðzÞ ¼
σ0ðz; IÞ=σðz; IÞ is independent of the current, and therefore it
is more difficult to guarantee efficient compensation.
Proving this statement begins by replacing σ0ðzÞ in the

envelope equation by the trace space angle mðzÞ defined
above. This yields

m0ðzÞ þmðzÞ2 þ γ0

γ
mðzÞ þ η

8

�
γ0

γ

�
2

¼ L2

γ2σðz; ζÞ4 þ
I

2I0γ3σðz; ζÞ2
: ðB1Þ

If we ask that the trace space angle not vary with current,
then the left-hand side is independent of ζ. As a result we
must also have the right-hand side independent of the
current. Let us define

gðzÞ ¼ L2

γ2σðz; ζÞ4 þ
I

2I0γ3σðz; ζÞ2
ðB2Þ

where the function gðzÞ is explicitly independent of the
current. This expression can be inverted to write the beam
size in terms of this function,

σðz; ζÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I
4I0gðzÞγ3

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8I0gðzÞL2γ4

I

r �s
: ðB3Þ

Under our original assumptions, the trace space angle
corresponding to this envelope solution should satisfy
dm=dI ¼ 0. Enforcing this condition returns a condition
on gðzÞ,

dg
dz

¼ −
4gγ0

γ
ðB4Þ

This of course can be solved simply

gðzÞ ¼ gð0Þ
�
γi
γ

�
4

ðB5Þ

If one plugs this back into the envelope, and subsequently
into the envelope equation, there is no solution. Thus, the
envelope equation with angular momentum does not permit
solutions with constant phase space angles throughout the
booster linac.
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