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We consider the capability of flexible spin-transparent polarization control and manipulation in
conventional synchrotrons at integer spin resonances by means of spin navigators. The latter are designed
as a couple of small solenoids separated by a constant beam bend. We formulate the requirements to the
navigator design considering the criteria for stability of the spin motion in the presence of synchrotron
energy oscillations. We propose the design of a novel spin-flipping system free of resonant beam
depolarization based on such a spin navigator. We discuss the possibilities of testing spin-flipping systems
at an integer spin resonance with protons in the Nuclotron ring at JINR in Dubna, Russia, and with
deuterons in the RHIC rings at BNL in Upton, New York. The results are relevant to the existing and future
facilities where the spin transparency mode can be applied for polarization control.
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I. INTRODUCTION

Polarized beam experiments are an essential part of the
scientific programs at the future colliders including the
accelerator complex NICA (Nuclotron-based Ion Collider
Facility) [1] in Russia and the Electron Ion Collider (EIC)
[2] in the USA. In these projects, the capabilities of
polarized beam experiments can be significantly expanded
using an advanced technique for polarization control called
a spin transparency (ST) [3].
The general definition of an ST control of a polarized

beam includes two principal properties: (1) the spin tune ν
on the design orbit is zero i.e., any spin orientation repeats
every orbital turn and the spin motion is degenerate; (2) the
degeneracy is then removed by introducing a spin navigator
(SN). An SN is a device composed of compact insertions of
weak fields giving a certain stable periodic polarization
direction n⃗ on the closed orbit and a small tune νN of the
spin precession about n⃗ [4,5]. The effect of such a navigator
on the spin should significantly exceed the influence of
perturbing fields due to errors of beam transport lattice and

beam emittances. An important advantage of this method is
its high flexibility and efficiency in manipulating the stable
spin including frequent spin flips at a constant ν during
beam operation. This avoids resonant depolarization when
manipulating the orientation of the beam polarization [6].
Birth and formation of the ST concept was stimulated by

inception of the figure-8 booster and collider rings in the
EIC design version proposed by Thomas Jefferson National
Accelerator Facility [7,8]. On a flat figure-8 orbit, the spin
tune is zero regardless of the particle energy. Spin degen-
eration is removed by insertion of a small solenoid [9]. This
avoids the resonance depolarization problem during accel-
eration and maintenance of the polarized hadron beams.
This property makes the figure-8 configuration a universal
ST booster and collider ring for all polarized ion beam
species. In particular, it arrives as a unique ST collider ring
to harbor high-energy polarized deuterons, for which
Siberian snakes are not practical.
The next crucial step in forming the ST concept was

replacement of a single solenoid with a more flexible
device, a spin navigator, which would be able to not only
control the spin tune but to also manipulate the direction n⃗
of the stable polarization. This has naturally led to a scheme
with two small solenoids separated by a fixed orbital bend
[10]. Such an expansion of the spin control concept allows
one to adjust the beam polarization to any desired ori-
entation at any point along the orbit. This adjustment can be
done not only as a static setting but also in real time during
collider operation.
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The ST concept as a whole was next expanded for use in
racetrack collider rings. The ST features can be imple-
mented there by introducing a system of Siberian snakes
resulting in a zero spin tune design. For example, two
solenoidal snakes allow the NICA collider ring to work in
the ST regime with polarized protons and deuterons in its
entire energy range of up to 13.5 GeV=c [11]. One or more
pairs of snakes are able to provide the ST regime for a
polarized proton or 3He beam in the RHIC rings of BNL in
the energy range of up to 275 GeV. It has been proposed
to experimentally verify this regime with protons in
RHIC [12].
The ST approach can be expanded for application in

future high-energy hadron colliders. Note that, at high
energies, an SN can be designed more efficiently using
transverse fields rather than solenoids. In addition, one can
employ the spin response function [13–16] technique to
develop an SN with transverse fields, which perturb the
entire closed orbit of an ST synchrotron in a particular way.
This special perturbation results in amplification of the
navigator strength through the spin response of the ring
lattice.
The ST concept in combination with the flexible SN

technique thus simultaneously can provide solutions for the
main aspects of spin control in polarized hadron beam
facilities: acceleration, maintenance and manipulation of
the coherent spin.
With certain limitations, the ST method of spin manipu-

lation can also be expanded to stationary situations in the
vicinity of resonance energies in racetracks without snakes
when

ν ¼ γG ¼ k; ð1Þ

where γ is the relativistic Lorentz factor,G is the anomalous
part of the gyromagnetic ratio, and k is an integer.
The limitations are in general due to the presence of the

spin tune spread caused by the energy spread:

Δν ¼ GΔγ ¼ γGðΔγ=γÞ: ð2Þ

In practice, the relative energy spread can be maintained
small through acceleration and storage while the absolute
spreadΔγ grows with energy. With synchrotron oscillations
of Δγ in a conventional racetrack without Siberian snakes,
there is a growing probability of depolarization by the
satellite spin resonances:

ν̄≡ γ̄G ¼ kþmsνs; γ ¼ γ̄ þ Δγ; ð3Þ

where νs is the synchrotron tune, γ̄ is the relativistic factor
averaged over the synchrotron oscillations, and ms is the
satellite spin resonance number.
This paper specifies the requirements on the SN design

for conventional racetracks associated with synchrotron

oscillations. It then describes a spin-flipping system
allowing one to eliminate resonant depolarization during
spin reversals. The paper next considers the possibility of
testing a proton polarization control system in the ST mode
at integer resonances in Nuclotron, which is a polarized
proton injector of the NICA collider [17,18]. We also
discuss the possibility of testing a spin navigator for
deuterons in RHIC when use of helical snakes is not
practical.

II. SPIN NAVIGATOR IN A CONVENTIONAL
RACETRACK

A. Requirements on the spin navigator fields

Let us consider the limitation on the spin navigator
design when operating in the ST mode at integer spin
resonances in conventional racetrack rings. First of all, the
spin tune νN induced by the SN must significantly exceed
the ST-resonance strength ω [3]

νN ≫ ω: ð4Þ
The ST-resonance strength is the magnitude of the

average spin field ω⃗ determined by the deviation of the
trajectory from the design orbit. This deviation is caused by
construction and alignment errors of magnetic elements and
the beam emittances. In the absence of a navigator, the spin
rotates by an angle 2πω about the ω⃗ direction in one orbital
turn along the closed orbit. The spin completes its full
rotation about ω⃗ in 1=ω orbital turns around the ring. The
ST-resonance strength consists of two parts: a coherent part
arising due to additional transverse and longitudinal fields
on a trajectory deviating from the design orbit and an
incoherent part associated with the particles’ betatron and
synchrotron oscillations (beam emittances):

ω⃗ ¼ ω⃗coh þ ω⃗emitt: ð5Þ
The literature traditionally calls the coherent part of

the ST-resonance strength the “imperfection resonance
strength.” However, the incoherent part of the ST resonance
strength does not vanish even in an ideal collider structure
where the imperfection resonance strength is zero.
With increase in energy, the coherent partωcoh dominates

over the incoherent one ωemitt. In a stationary situation, the
coherent part does not cause beam depolarization and only
results in a coherent rotation of the polarization about the
spin field determined by the strength and alignment errors
of the collider elements. In principle, the direction and
magnitude of the coherent part of the resonance strength
can be measured and taken into account for polarization
control. To preserve the polarization, it is then sufficient to
satisfy a weaker condition:

νN ≫ ωemitt: ð6Þ
When a conventional collider without snakes is in the ST

mode at an integer resonance, the spin tune is proportional
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to energy. One must then consider the constraints imposed
on the navigator fields by synchrotron oscillations,
which lead to satellite resonances. The strengths of the
satellite resonances decrease sharply, when their numbers
ms ≫ Δν=νs. Therefore, implementation of the additional
condition,

νN ≫ maxðΔν; νsÞ; ð7Þ

excludes the effect of satellite resonances on the spin
dynamics [19].

B. Adiabatic capture of the polarization by a SN

When operating in the ST modewith a beam at an integer
spin resonance, one must ensure alignment of the polari-
zation orientation with the spin field direction induced by
the SN. Away from the integer spin resonance, the stable
polarization axis (the n⃗ axis) is determined by the arc
dipoles and points vertically. At the resonance point, the n⃗
axis is determined by the spin field of the SN and lies in the
synchrotron’s plane. The aforementioned matching is
automatically attained in the case of an adiabatic entrance
into the ST resonance region.
When the condition of Eq. (7) is satisfied, one can

adiabatically arrive at an ST resonance by ramping the
average energy γ̄mc2 at a rate meeting an additional
condition:

dγ̄
dt

≪
Ω0

G
ν2N; ð8Þ

whereΩ0 is the particle revolution frequency in the collider.
In this case, the spin oriented vertically far from the
resonance adiabatically tilts into the synchrotron plane
until it lies along the spin field induced by the SN. During
an adiabatic (slow) approach to the spin resonance point,
the beam polarization degree is preserved to a high
accuracy. In another limiting case, when the resonance is
reached quickly, the particle spins have no time to change
their orientation and remain vertical, i.e., transverse to the
SN field, at the ST resonance point. As a result, when
sitting after that at the ST resonance point, the polarization
is lost due to the spin tune spread.
In the described process, the beam polarization is

adiabatically captured into a stable state where it precesses
about the SN axis n⃗N with the tune νN . It can be viewed as a
“half” of the process of adiabatic crossing of an imperfec-
tion spin resonance using partial snakes widely used in
practice. For example, solenoidal and helical partial snakes
are used in the Alternating Gradient Synchrotron (AGS) at
BNL to cross these resonances without polarization loss
[20,21].

C. Spin navigators and partial Siberian snakes

A spin navigator and a partial Siberian snake have
different design criteria and application areas.
The original intention and use of partial Siberian snakes

is to overcome depolarization at imperfection resonances
during acceleration when full Siberian snakes cannot be
implemented or are not necessary. Partial snakes create
gaps in the spin tune around integer points [22]. Typically,
these gaps are made as large as possible to detune from the
imperfection resonance as far as possible and to allow for
adjustment of the betatron tunes so that the main intrinsic
resonances can be placed in the spin tune gap as well. The
field of a partial snake does not change in the short time of
crossing a resonance region. The spin tune does change
during the process of resonance crossing. It is important
that this change occurs adiabatically while polarization
orientation at the moment of resonance crossing does not
matter.
In contrast to a partial snake, the purpose of a spin

navigator is not to overcome the integer resonance but to
provide polarization control and the capability to manipu-
late it in real time when operating in the ST regime at a
fixed energy. To keep the polarization stable over the long
course of an experiment, manipulation of the spin orienta-
tion must be performed at a fixed spin tune. This prevents
resonant depolarization discussed below in Sec. IV.
Manipulation of the spin direction and control of the spin
tune are accomplished by appropriately combining the spin
effects of the navigator solenoids. Their fields are set and
dynamically varied accounting for the spin phase advance
between them.
The necessary strength of the spin navigator is deter-

mined by the requirement to provide polarization stability
against spin effects due to ring imperfections, beam
emittances and synchrotron motion as discussed above.
At the same time, it should not be so large as to approach
main intrinsic spin resonances in a stationary state.

III. SPIN NAVIGATOR BASED ON SOLENOIDS

Spin navigators can be technically realized in different
ways using longitudinal and transverse fields [4,5]. At low
and medium energies, it is most adequate to use weak
solenoids, which have no effect on the closed orbit.
A single solenoid stabilizes the longitudinal polarization

direction at its location. One can set any polarization
direction in the horizontal plane ðxzÞ at the detector by
introducing one more solenoid into the ring lattice.
Figure 1 shows a schematic of such a spin navigator [3].

Its two solenoids separated by an arc section rotate the spins
by small angles φz1 and φz2. The navigator solenoids with
the longitudinal fields Bz1 and Bz2 are indicated in orange.
The black arrows indicate the field directions of the
solenoids. The arc dipoles located between the solenoids
rotate the spins by an angle φy.
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The required longitudinal field integrals of the navigator
solenoids are

Bz1Lsol ¼
φz1

1þ G
Bρ; Bz2Lsol ¼

φz2

1þ G
Bρ; ð9Þ

where Bρ is the magnetic rigidity.
Figure 2 shows a vector diagram of the navigator field

allowing one to calculate the polarization direction n⃗ in the
detector and the spin tune νN ≪ 1 induced by the navigator:

n⃗ ¼ Bz2 sinφye⃗x þ ðBz1 þ Bz2 cosφyÞe⃗zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
z1 þ B2

z2 þ 2Bz1Bz2 cosφy

q ; ð10Þ

νN ¼ ð1þGÞLsol

2πBρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
z1 þ B2

z2 þ 2Bz1Bz2 cosφy

q
; ð11Þ

where e⃗x and e⃗z are the radial and longitudinal unit vectors,
respectively. These equations show that one can set any
polarization orientation in the ring plane for any values of
φy except for integer multiples of π where sinφy ¼ 0 and
polarization becomes longitudinal for any field strengths of
the navigator solenoids. In this case, the spin fields φ⃗z1 and
φ⃗z2 are collinear and the navigator effect is equivalent to
that of a single solenoid.
The conditions for stabilization of the coherent spin

specified by Eqs. (4) and (7) are determined by magnetic
lattice imperfections and beam emittances as well as by
effect of synchrotron energy oscillations. They define the
navigator field requirements.
The presented scheme of polarization control in the ST

mode using two weak solenoids was first proposed for
deuteron and proton polarization control in a figure-8
collider [10] and then extended to proton and deuteron

polarization control in the NICA collider [5]. In these
colliders, the spin tune is zero at any energy. Therefore,
there are practically no additional limitations on the
navigator fields due to synchrotron oscillations.

IV. SPIN-FLIPPING SYSTEM

The spin-flipping schemes that have been experimentally
demonstrated to this date are based on adiabatically
sweeping an rf magnet’s frequency through an induced
spin resonance [23]. This technique is used in RHIC for
spin flipping polarized protons with a high efficiency of
97% in an energy range of 24 to 255 GeV [24]. However,
each crossing of an rf resonance causes some polarization
loss that can significantly limit the admissible number of
spin flips during an experiment.
The proposed spin navigator provides a capability for

adiabatic spin flipping using quasistationary solenoids
when the beam depolarization associated with resonance
crossing is eliminated. Manipulation of the spin direction
(n-axis) during an experiment, such as a spin flip, requires
the change of the navigator fields to be adiabatic:

���� ∂n⃗
∂Bz1

�
dBz1

dt

�����≪νΩ0;

���� ∂n⃗
∂Bz2

�
dBz2

dt

�����≪νΩ0: ð12Þ

Let us consider, for example, a flip of the longitudinal
polarization at the detector. According to Eq. (10), when
setting the longitudinal spin direction, only the field of the
first solenoid is turned on while Bz2 ¼ 0. The spin direction
along or against the particle velocity is defined by the sign
of Bz1. The fulfillment of the adiabaticity condition
depends on how we change the navigator fields from their
initial configuration (Bz1, Bz2) to the final one. If Bz1 is
changed slowly while Bz2 ¼ 0 the adiabaticity condition is
violated at the point (Bz1 ¼ 0, Bz2 ¼ 0) where the navigator
spin tune becomes zero. However, one can achieve the final
configuration while maintaining the adiabaticity condition
by getting around the resonance point with no change in the
spin tune at all. This requires moving along an ellipse in the
(Bz1, Bz2) parameter space:

ðB2
z1 þ B2

z2 þ 2Bz1Bz2 cosφyÞL2
sol

¼
�
2πνNBρ
1þ G

�
2

¼ const: ð13Þ

This avoids beam depolarization due to the spin reso-
nance crossing.
When cosφy ¼ �1, the ellipse equation reduces to a

straight line:

jBz1 � Bz2jLsol ¼
2πνNBρ
1þ G

: ð14Þ

In this case, as noted earlier, one can stabilize only the
longitudinal polarization. The polarization can only be

Arc dipoles

Solenoid Solenoid

Detector

FIG. 1. Schematic of a spin navigator for control of the ion
polarization direction in the ring plane.

FIG. 2. Vector diagram of the navigator field in the detector.
The red and blue arrows correspond to the spin fields φ⃗z1 and φ⃗z2
induced in the detector by the first and second navigator
solenoids, respectively.
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flipped by changing the signs of the solenoid fields, which
leads to variation of the spin tune and subsequently
crossing of the ST resonance.

V. ST MODE IN NUCLOTRON FOR PROTONS OF
UP TO 3.5 GeV=c

Nuclotron is a conventional strong-focusing synchrotron
with an eightfold symmetry [25]. Navigator solenoids are
placed in two adjacent superperiods and are separated by a
section of arc magnets bending the orbit by an angle of π=4.
With the betatron tunes of νx ¼ 7.40 and νy ¼ 7.56, there is
no problem with preservation of the proton polarization
during beam acceleration in the Nuclotron momentum
range of up to 3.5 GeV=c, since there are no strong
intrinsic resonances [18].
To determine the required field strengths of the navigator

solenoids, let us provide a calculation of the resonance
strengths using the response functions for the ST mode
[13]. The contribution of the perturbing fields ΔBx, ΔBy,
and ΔBz to the spin field of the ST resonance is given by

ω⃗ ¼ 1

2π

Z
L

0

�
ΔBx

Bρ
F⃗x þ

ΔBy

Bρ
F⃗y þ

ΔBz

Bρ
F⃗z

�
dz; ð15Þ

where L is the Nuclotron’s circumference, z is the coor-
dinate along the orbit, and F⃗x, F⃗y, and F⃗z are the radial,
vertical, and longitudinal periodic spin response functions
determined by Nuclotron’s lattice.
In Nuclotron, vertical perturbing fields ΔBy have no

effect on the spin dynamics in the linear approximation in
particle deviations, since F⃗y ¼ 0. The magnitude of F⃗x

grows with energy as shown in Fig. 3 while the magnitude
of F⃗z is independent of energy: jF⃗zj ¼ 1þ G.
The rms value of the coherent part of the ST resonance

strength ωrms is obtained using the statistical model
allowing one to account for random perturbations of the
magnet fields [13]:

ω2
rms ¼

P
elemðΔB2

xjF⃗xj2 þ ΔB2
z jF⃗zj2ÞL2

el

4π2ðBρÞ2 ; ð16Þ

where ðΔB2
xÞ1=2 and ðΔB2

zÞ1=2 are the rms values of random
perturbations of the radial and longitudinal magnetic fields
due to lattice imperfections and Lel is the length of each
element. Distortion of the radial magnetic field ΔBx in
Nuclotron can be caused by random quadrupole misalign-
ments in the vertical direction Δyq and dipole roll Δαz
about the longitudinal direction. Perturbation of the longi-
tudinal field ΔBz occurs due to random dipole pitch Δαx
about the radial direction.
The magnitude of the incoherent part of the spin field

ωemitt caused by the betatron oscillations is not zero only in
the second order approximation in the particle oscillation
amplitude and is proportional to the betatron beam emit-
tances [3]. The incoherent part of the resonance strength is
numerically obtained using a spin-tracking code, ZGOUBI
[26]. A particle is launched with a longitudinal spin and a
given betatron amplitude and is tracked over multiple turns.
A graph of the longitudinal spin component versus the turn
number is used to determine the number of orbital turns it
takes the spin to return to the longitudinal direction.
Table I lists the rms values of the coherent ωrms and

incoherent ωemitt parts of the integer spin resonances in
Nuclotron. The calculations assume Δyq of ∼0.1 mm, Δαz
of∼0.1 mrad,Δαx of∼0.03 mrad and the radial and vertical
normalized betatron emittances of 4.5π mm mrad. With
these errors, the rms vertical closed orbit distortion in
Nuclotron is about 1 mm.
The value of the navigator tune for Nuclotron is

primarily limited by synchrotron oscillation parameters.
In the indicated energy range, the synchrotron tune νs and
the spin tune spread Δν do not exceed 10−3. Therefore, a
navigator tune value of νN ¼ 0.01 is sufficient to control
the proton polarization.
Table II provides the maximum field integrals of the

navigator solenoids giving the spin tune value of νN ¼ 0.01.
For the γG ¼ 4 resonance, φy ¼ π and the navigator

allows one to stabilize only the longitudinal polarization
n⃗ ¼ �e⃗z. For the other resonances, the navigator can
provide “any” orientation of the polarization in the plane
of the Nuclotron ring. The polarization can be flipped by

FIG. 3. Magnitude of the radial response function jFxj in units
of γG as a function of z in a single superperiod of Nuclotron for
γG ¼ 2, 3, 4, 5, 6. The green boxes indicate arc dipoles while the
black bars show quadrupoles.

TABLE I. Proton integer spin resonance strengths in Nuclotron.

γG ¼ k 2 3 4 5 6

ωrms; 10−4 0.24 0.57 1.27 2.81 6.88
ωemitt; 10−4 0.36 0.26 0.35 0.55 1.07

TABLE II. Maximum field integrals of the navigator solenoids
for control of the proton polarization in Nuclotron.

γG ¼ k 2 3 4 5 6

pc, GeV 0.46 1.26 1.87 2.44 3.00
n⃗ direction Any Any �e⃗z Any Any
jBziLjmax, Tm 0.035 0.13 0.07 0.26 0.23
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adiabatically adjusting the proton polarization direction in
the Nuclotron plane. The spin tune must be kept constant
during the entire reversal process to avoid resonance
crossing and associated polarization loss.
Figure 4 shows the relation between the field integrals

(Bz1Lsol) and (Bz2Lsol) of the navigator solenoids at γG ¼ 3
that maintains the spin tune at a constant value of νN ¼
0.01 as the polarization orientation changes. The red dots
indicate the solenoid field integrals when the polarization is
oriented along the particle’s velocity nz ¼ �1. The blue
dots mark the solenoid field integrals when the polarization
is radial nx ¼ �1.
To preserve the polarization, the rate of change of the

polarization direction must satisfy the adiabaticity condi-
tion that can be written in terms of the spin-flipping
time τ as

τ ≫
T
νN

; ð17Þ

where T is the particle revolution period in Nuclotron. This
condition gives a proton spin-flipping time of 1 ms.

VI. ST MODE FOR DEUTERONS IN THE EIC

Deuteron beams with adjustable polarization orientation
may complement 3He beams as a source of high-energy
polarized neutrons in the EIC [27]. Due to the small
anomalous magnetic moment of a deuteron, spin rotators
are not practical as means of deuteron polarization control.
Since one of the RHIC rings will serve as the ion collider

ring of the EIC, adjustment of the longitudinal deuteron
polarization at integer spin resonances in RHIC has been
considered in paper [28]. It analyzed the possibility of
preserving the deuteron polarization during acceleration
over the entire energy range of the EIC using two detector
solenoids. They are located in adjacent superperiods of
RHIC and are separated by arc dipoles bending the orbit by

an angle of π=3. The paper notes that, when using the two
solenoids, the polarization is longitudinal in both detectors
at γG ¼ 3k resonances. However, according to Eq. (10),
control of the polarization orientation is not possible at
these points.
Assuming successful acceleration of a polarized deu-

teron beam to the integer spin resonance energy [28], the
two detector solenoids can be used as a spin navigator
described in Sec. III of this paper. It allows one to adjust the
deuteron polarization in any direction in the horizontal
plane of the EIC. It can also provide multiple spin flips of
the beam without resonant depolarization at γG ≠ 3k
resonances.
Paper [28] provides information about the strengths of

imperfection resonances and parameters of the synchrotron
motion. On its basis, the limit on the navigator solenoids at
RHIC’s low and medium energies, as in Nuclotron, is
mainly related to the synchrotron energy modulation.
A navigator tune of νN ¼ 0.01 is sufficient to control the
deuteron polarization.
Table III lists the maximum field integrals of the

navigator solenoids providing a deuteron spin tune of νN ¼
0.01 for the first five resonances at the low to medium
energies of RHIC. At the γG ¼ −3 and γG ¼ −6 reso-
nances, the spin rotation angles accumulated in the arc
between the solenoids are φy ¼ π and φy ¼ 2π, respec-
tively. The navigator can only stabilize the longitudinal
polarization n⃗ ¼ �e⃗z. The spin cannot be flipped at these
resonances using the navigator (detector) solenoids without
violation of the adiabaticity condition given by Eq. (12). Its
violation results in resonant depolarization. At the other
resonances with γG ≠ 3k, the navigator can provide any
polarization direction in RHIC’s orbital plane. In this case,
the navigator solenoids allow one to go adiabatically
around the resonance point without any change in the
navigator tune.
Figure 5 shows the relation between the field integrals

(Bz1Lsol) and (Bz2Lsol) of the navigator solenoids allowing
for a spin flip at γG ¼ −2. The polarization direction is
adjusted in the RHIC ring plane at a constant deuteron
navigator tune of νN ¼ 0.01. The red and blue dots
correspond to the longitudinal and radial deuteron polar-
izations, respectively.
It is important to note that, for deuterons in the ST mode

at integer resonances, the main constraint on the navigator
solenoid strengths comes from the energy dependence of

FIG. 4. Change of the solenoid field integrals that keeps νN
constant while setting the required proton polarization direction.

TABLE III. Maximum field integrals of the navigator solenoids
for deuteron polarization control in RHIC.

jγGj ¼ k 2 3 4 5 6

pc, GeV 26.2 39.4 52.6 65.8 78.9
n⃗ direction Any �e⃗z Any Any �e⃗z
jBziLjmax, Tm 7.4 4.8 14.8 18.6 9.6
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the spin tune. In a figure-8 collider where the spin tune is
zero at any energy, the limitation of the navigator solenoid
strengths is determined only by the ST resonance strength
[29]. Deuteron polarization control then requires signifi-
cantly lower field integrals of the navigator solenoids. For
example, a navigator tune of νN ∼ ωcoh ∼ 10−4 is sufficient
to control the deuteron polarization in the momentum range
of up to 100 GeV=c. With an optimal placement of two
navigator solenoids, this requires a field integral of 0.25 Tm
of each solenoid.
Finally, let us note that two solenoids located in available

straight sections of RHIC can be used to set up a proton
spin-flipping system in RHIC in the ST mode with two
identical snakes. As in a figure-8 collider, the proton spin
tune in this case is energy independent. The requirements
on the detector (navigator) solenoids are then determined
mainly by the coherent part of the ST resonance strength
νN ∼ ωcoh, which is of the order of 10−3 − 10−2 in a wide
energy range [30]. Note that spin flipping in the ST mode
does not have the problem of the mirror spin resonance
occurring when RHIC operates in its regular mode at a half-
integer spin tune [24]. Instead of using rf fields as in
RHIC’s regular mode, quasistatic fields of an SN can be
used to coherently reverse the spins in the ST mode with
identical snakes.

VII. CONCLUSIONS

Our study demonstrates the feasibility and proposes an
experimental verification of a new SN-based polarization
control system for synchrotrons operated in the ST mode.
We analyzed the possibilities of applying such systems with
protons in the Nuclotron ring and with deuterons in one of
the RHIC rings. The ST mode is implemented at discrete
values of the beam energy corresponding to integer spin
resonances. Use of the ST mode presents a unique
opportunity to control the deuteron polarization in RHIC

where application of full Siberian snakes and strong spin
rotators is not practical.
The proposed navigator based on two weak solenoids

allows one to realize a spin-flipping system avoiding
depolarization associated with spin resonance crossing.
The limitation on the navigator solenoid strengths in the

aforementioned rings is mainly determined by the synchro-
tron energy modulation. It is most convenient to conduct
initial testing at low energies where the spin tune spread is
minimal and there are no issues with preserving the beam
polarization during acceleration to the experimental energy.
The proposed spin navigator is universal and can be used

to control the polarizations of deuteron, proton and helium-
3 beams in the ST modes of the existing and future
machines such as NICA, EIC, EicC [31] in China, and
COSY [32] in Germany.
An experimental verification of the spin transparency

concept will provide new opportunities for high-precision
experiments with polarized beams and will expand the
toolkit of polarization control techniques for colliders.
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