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A novel method is developed to take into account realistic boundary conditions in intense nonlinear
beam dynamics. The algorithm consists of three main ingredients: the boundary element method that
provides a solution for the discretized reformulation of the Poisson equation as boundary integrals; a novel
fast multipole method developed for accurate and efficient computation of Coulomb potentials and forces;
and differential algebraic methods, which form the numerical structures that enable and hold together the
different components. The fast multipole method, without any modifications, also accelerates the solution
of intertwining linear systems of equations for further efficiency enhancements. The resulting algorithm
scales linearly with the number of particles N, as m log m with the number of boundary elements m, and,
therefore, establishes an accurate and efficient method for intense beam dynamics simulations in arbitrary
enclosures. Its performance is illustrated with three different cases and structures of practical interest.
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I. INTRODUCTION

Computational methods applied to nonlinear beam
dynamics are diverse [1–3]. The optimal choice of meth-
ods, algorithms, and codes are typically chosen based on
accuracy, efficiency, complexity of the underlying problem,
and computation time. At one end of the spectrum are the
tracking codes that assume collections of independent point
charges in prescribed external electromagnetic fields. At
the other end would be codes that solve the full set of
Maxwell equations, including self- and external fields, as
boundary and initial value problems, coupled to the
dynamical propagation of particle distributions in time.
The former are generally fast but include many simplifying
assumptions leading to inaccuracies for complicated sys-
tems. The latter usually necessitates unrealistic amounts
of computing power and time, rendering solutions unfea-
sible for many practical cases. The spectrum of numerical
methods widely varies in approach, assumptions, approx-
imations, and implementations to reduce complexity. In this
paper, an intermediate level of complexity is sought, with
emphasis on accurate and efficient methods for the inclu-
sion in the dynamics of realistic boundary conditions, while
taking into account the discrete and interacting nature of
charged particle beams. This approach assumes that there
is always a coordinate system in which the motion is

nonrelativistic, and, hence, the magnetic fields due to the
relative motion of particles in the beam can be neglected.
Additionally, the boundary conditions themselves must be
slowly varying with respect to the beam velocity.
Interactions between particles within the beam and feed-

back effects from beam-wall interactions are called collective
effects [2]. As increasingly higher beam intensities and small
losses are requested by various applications, effects due to
boundaries increase in magnitude as a function of beam
sizes relative to vacuum chamber sizes and as a consequence
of vacuum chamber asymmetries or inherent beam insta-
bilities [2–4]. Moreover, for bunched beams in synchrotrons,
collective effects can compound coherently to resonances
that eventually degrade the beam beyond the acceptance
of the machine [5]. Even if the collective instabilities do not
act coherently, they will still lead to a tune shift whose
magnitude is roughly proportional to the current density (and
inversely proportional to the beam size) due to the self-fields.
The effects of the indirect fields due to the boundary can
increase the tune shift further. This tune shift often places
an upper limit on the beam brightness. Collective beam
instabilities are at the forefront of accelerator design
and research, with the Fermilab Integrable Optics Test
Accelerator (IOTA) [6–8] and the University of Maryland
Electron Ring [9–13], for example, both dedicated to
studying nonlinear effects in high-intensity regimes.
Modeling collective effects for intense beams is a

challenging problem, in general, and even more so in
the complicated geometries of electromagnetic devices
in existing and planned machines. With the previously
mentioned assumption, the physical problem can be cast
mathematically into a Poisson equation with given
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boundary conditions and a charge density distribution
equal to a sum of Dirac delta functions [14]. The
Poisson problem, in turn, can be decomposed into two
parts: computing the self-fields on the beam with open
boundary conditions and computing the modifications of
those self-fields due to the presence of nontrivial physical
enclosures [15,16].
The first part of the problem is the efficient computation

of the Coulomb potentials among the beam particles. This
amounts to a pairwise sum of the interaction between all
of the particles, which natively requires OðN2Þ operations.
High-intensity beams will be comprised of Oð1010Þ (or
more) particles [6,13], which makes this part of the
problem extremely computationally expensive. The N-
body problem is not unique to beam physics, and many
methods have been devised to make this computationally
tenable. These approaches include approximating the
discrete distribution as a smooth continuous distribution
(space charge) [17], aggregating neighboring sources into
macroparticles (particle in cell) [18], a hierarchical method
computing nearby interactions directly and representing
distant interactions using macroparticles (Barnes-Hut algo-
rithm) [19], and a related hierarchical method which instead
represents far interactions using a far-field expansion of the
scalar potential [fast multipole method (FMM)] [20]. The
first two methods are inadequate in high-intensity regimes
where the stochastic part of the particle interactions is
important, since they smooth over the effects of close
interactions. The Barnes-Hut algorithm is effectively a first-
order multipole expansion (containing only monopole
terms), while the FMM includes higher-order terms that
give a better representation of the distribution of distant
sources. The FMM has effectively been applied to numer-
ous interdisciplinary problems from biology to chemistry,
cosmology, and physics [21–25]. The FMM has the addi-
tional benefit of providing rigorous error bounds [20] and is
shown to exhibit OðNÞ scaling for large N [26].
The second part of the problem is a Laplace equation

with modified boundary conditions. The conventional
approach for its solution is to use a volume discretizing
finite element method (FEM) such as COMSOL [27] and
MICHELLE [28] or the particle-in-cell codes VSim [18] and
WARP [29]. In the intense beam regime, this class of
methods suffers both from inaccuracy and from ineffi-
ciency. Coulombic self-field forces increase linearly with
increasing beam current (for constant beam size), and at
least quadratically with decreasing beam size; thus, the
representation of the beam as a continuous distribution
sampled over the discretized volume in the FEM will lead
to larger inaccuracies as the beam brightness increases in
this manner. Additionally, the increase in beam charge
gives rise to an increasingly nontrivial beam-wall inter-
action leading to a feedback effect. Increasing beam charge
necessitates including the physical boundary in the com-
putation rather than simply representing the boundary

effects by external applied fields. FEMs typically use a
regular grid (though some will adaptively modify the
element sizes) [18], which can form only a stepwise
discrete representation of the boundary. Fully discretizing
3D space and solving becomes increasingly inefficient as
smaller elements are required [30].
The boundary element method (BEM) [16] has unique

advantages that can be leveraged in the intense beam regime,
especially for beams whose size is of similar order to the
vacuum chamber size. The BEM forms a 2D discretization
of the boundary surface, which is both more efficient and
more accurate than the corresponding FEM process [31,32].
Where the FEM uses an approximate representation of the
differential equations evaluated throughout the discretized
volume, the BEM first transforms them into boundary
integral equations and then evaluates the equations exactly,
thus only approximating the boundary itself. Additionally,
this approximate boundary is more accurate than the
boundary representation of the FEM [16,30]. Furthermore,
the BEM can be accelerated with the FMM [15], which
allows for OðNÞ scaling in the computation of the direct
particle-particle and particle-wall interactions.
Both the FMM and the BEM are heavily reliant on

algorithmic differentiation, which can be easily achieved via
a differential algebra (DA) implementation. Incorporating
the differentiation operation (and its inverse) to the standard
addition and multiplication operations forms a differential
algebraic structure. This enables the treatment of functions as
continuous entities rather than relying on numerical methods
based on discrete function evaluation [33]. In particular, this
is achieved by casting the function as a truncated Taylor
series to specified order, providing the groundwork for the
formulation of both multipole expansions and translation
operators, the fundamental structures of the FMM [26].
The DA structure has been successfully implemented at a
language level in the Fortran-based COSY INFINITY [34], a
general purpose nonlinear-dynamics code in which this
algorithm was developed. The reader is referred to
Appendix A of Ref. [26] and Chap. 3.2 of Ref. [35] for
an introduction to differential algebras; Chap. 2 of Ref. [33]
provides an in-depth treatise on the development and
properties of differential algebras, and the subsequent
chapters develop their use in the computation of Poincaré
section maps for the study of the dynamic interactions
between charged particle beams and accelerator structures.
This work provides the mathematical and computational

foundations for a novel fast multipole-accelerated boundary
element method enabled by differential algebraic methods
and optimized for nonlinear beam dynamics at the intensity
frontier. The novelty of this approach comes from inter-
weaving the FMM and the BEM in the DA framework
and leveraging the robust flexibility this provides for the
application to 3D problems. Transforming the full 3D beam
physics problem into the quasistatic beam frame enables
the study of high-intensity beam-enclosure interactions
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even within novel electromagnetic structures. The quasi-
static assumption excludes modeling structures with high-
frequency variations in the boundary conditions and
dynamic effects such as traveling waves or trapped mag-
netic modes. The algorithm is benchmarked using various
electromagnetic structures. The outline of the paper is as
follows: Sec. II presents the application of a conventional
BEM to the Laplace boundary value problem; Sec. III
describes and references the adaptive FMM algorithm and
sets forth the formalism included in this algorithm; Sec. IV
describes the new DA FM-BEM algorithm; Sec. V provides
benchmarking analysis of the Poisson solver including
boundary element representation and a performance study
of both serial and parallel versions. The accuracy of the
method as a function of the algorithm parameters is
presented for three fundamental electromagnetic structures
with known analytic solutions. A brief summary is pre-
sented in the conclusion. Some elements of this work were
presented in a recent dissertation [35].

II. CONVENTIONAL BOUNDARY
ELEMENT METHODS

Boundary element methods are a class of solution
methods for boundary integral equations. Many differ-
ential equations of interest have an equivalent integral
formulation, which yields a unique solution for a given
set of boundary conditions. Conventional BEMs consist
of three primary steps. First, the boundary value problem
(BVP) is reformulated in terms of a boundary integral
equation (BIE). A numerical scheme is applied next,
which reduces the BIE to a linear system of algebraic
equations on the boundary. The solution (inversion) of the
dense matrix formed in this step represents the most
computationally expensive component of the BEM.
Finally, the boundary solution can be applied to obtain
the solution at any point in the region of interest. BEMs
can be broken up into two main classes: direct and
indirect methods [36].

A. Laplace boundary value problem

Consider an electrostatic BVP given by the Laplace
equation and relevant boundary conditions

∇2ψðxÞ ¼ 0 for x ∈ Ω;

ψðyÞ ¼ gðyÞ
or

∂ψ
∂ny ðyÞ ¼ hðyÞ

9>>=
>>; for y ∈ Γ; ð1Þ

where Ω ⊂ R3 is a bounded domain with a uniformly
continuous boundary Γ. A linear combination of g and h is
given such that at least one is specified at each point on the
boundary. Unless explicitly stated, Γ is assumed to be
smooth; indeed, the following derivation is still valid if

Γ ¼ Γ1 ∪ � � � ∪ Γm, where Γi is smooth for i ∈ ½1; m� [30].
This fact will be used to justify the validity of the solution
when Γ is discretized in the numerical quadrature scheme.
The partial derivative in terms of ny is shorthand for the
normal derivative at y, namely, the operator nðyÞ · ∇. By
convention, all surface normals are taken to be outward-
facing normals. A fundamental solution (or Green’s func-
tion) to Eq. (1) is one that satisfies

∇2Gðx; yÞ ¼ −δðx − yÞ for x; y ∈ Ω: ð2Þ

The existence of a fundamental solution is critical in
deriving and solving a BVP in the integral representation.
The well-known solution for the 3D Laplace equation,

Gðx; yÞ≡ 1

4πjjx − yjj ; ð3Þ

can be found in any electrodynamics textbook [14].
Utilizing Green’s second identity

Z
Ω
½u∇2v − v∇2u�dΩ ¼

Z
Γ

�
u
∂v
∂n − v

∂u
∂n

�
dΓ; ð4Þ

the direct formulation of the BIE is found by letting u ¼ ψ
and v ¼ G and including the relationships defined in
Eqs. (1) and (2):

ψðxÞ ¼
Z
Γ

�
Gðx; yÞhðyÞ − gðyÞ ∂G∂ny ðx; yÞ

�
dΓðyÞ: ð5Þ

The representation formula (5) exists because ψ and G are
both harmonic functions on the domain of Ω [37]. If both
gðyÞ (Dirichlet) and hðyÞ (Neumann) boundary conditions
are known, then, in principle, Eq. (5) naturally gives ψðxÞ
for all x ∈ Ω. However, for typical problems, only one set
of boundary conditions (g or h) is known a priori. More
significantly, Eq. (1) has a unique solution (at least up to
an arbitrary constant) when either Dirichlet or Neumann
conditions are specified on the boundary [14]. This
implies that simultaneously specifying both g and h will
lead to an overdetermined system which, in general, has
no solution.

B. Direct formulation

The regularized form of Eq. (5) for smooth boundary
elements (see the Appendix) can be written in the single- or
double-layer potential form

Sðh;xÞ≡
Z
Γ
hðyÞG ðx; yÞdΓðyÞ

¼
Z
Γ
gðyÞ ∂G∂ny ðx; yÞdΓðyÞ þ

1

2
gðxÞ; ð6Þ
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Dðg;xÞ≡
Z
Γ
gðyÞ ∂G∂ny ðx; yÞdΓðyÞ

¼
Z
Γ
Gðx; yÞ hðyÞdΓðyÞ − 1

2
gðxÞ; ð7Þ

for x ∈ Γ with known Dirichlet or Neumann boundary
conditions, respectively. The factor of 1=2 comes from the
regularization of the BIE in the limit that x ∈ Ω → x ∈ Γ
assuming a smooth boundary, as discussed in the
Appendix. What remains is to solve Eq. (6) for h or
Eq. (7) for g and use the result in Eq. (A6) to determine
ψðxÞ for x ∈ ΩnΓ. If values on the boundary are desired,
then ψðxÞ for x ∈ Γ is either given by the boundary
conditions (Dirichlet) or computed as the solution to
EQ. (7) (Neumann).
It should be noted that Eq. (6) has a unique solution

when g is continuous; however, Eq. (7) is not uniquely
solvable even when h is continuous [37]. Moreover, it is
necessary that the net flux (given by h) across the boundary
be equal to zero. Since ψ is a potential, solving Eq. (7) will
return g to only within a constant. Under these conditions,
it is possible to modify Eq. (7) such that it is uniquely
solvable [38].

C. Indirect formulation

Alternately, an analogous Laplace problem to Eq. (1) can
be solved for the exterior region Ωe, by utilizing the Kelvin
transform T K∶R3nf0g → R3nf0g by [Eq. (9.1.19) in
Ref. [37] ]

T Kðx; y; zÞ≡ 1

r2
ðx; y; zÞ; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q
; ð8Þ

which represents a reflection along the radial direction
through the unit sphere. Applying Eq. (8) to the exterior
Laplace problem results in an equivalent interior problem,
i.e., ∇2ψeðxÞ ¼ 0 for x ∈ Ωe ⇔ ∇2ψ̃ðxÞ ¼ 0 for x ∈ Ω̃
(where Ω̃ ¼ Ωnf0g), whose solution has the form of
Eq. (5). Since T −1

K ¼ T K, ψe is given by T Kψ̃. This
inverse transform is undefined for the origin. Considering
the intersection of the interior and exterior solutions at Γ,
we can define the charge density η and dipolar density σ
functions:

σðxÞ≡ ∂ψ
∂ny ðxÞ −

∂ψe

∂ny ðxÞ; for x ∈ Γ; ð9Þ

ηðxÞ≡ ψðxÞ − ψeðxÞ; for x ∈ Γ: ð10Þ

By this construction, both σ and η are harmonic functions
on the boundary.
Analogous to the electrostatic image charge approach,

assume the existence of a continuous charge distribution
external to the boundary, which exactly reproduces the

boundary conditions on Γ [16]. This charge density can be
constructed from monopoles or dipoles without loss of
generality. As it is necessary only to match either the
potential at (Dirichlet) or the flux through (Neumann) the
boundary, only one ansatz (monopoles or dipoles) is
required. While the charge density must be exterior to
the boundary, i.e., some distance ζ from Γ, the approach
remains valid in the limit as ζ → 0. This limit is typically
taken in practice [39], and with ζ ¼ 0þ, the monopole
and dipole densities converge, respectively, to σ and η as
defined in Eqs. (9) and (10).
The solution to the Laplace problem (1) can, thus, be

represented simply as either the single- or double-layer
potentials applied to the ansatz:

ψðxÞ ¼ Sðσ;xÞ
ψðxÞ ¼ Dðη;xÞ

�
for x ∈ Ω: ð11Þ

The solution (11) is called indirect, because it is dependent
on a potential density function (either σ or η), which has
no physical interpretation, in contrast with the direct
solution (5), which is derived directly from the representa-
tion formula (4) and depends explicitly on the physical
boundary conditions g and h. Given Dirichlet conditions,
and considering the limit x → Γ for Eq. (11), the unknown
densities must satisfy

Sðσ;xÞ ¼ gðxÞ; ð12Þ

−
1

2
ηðxÞ þDðη;xÞ ¼ gðxÞ; ð13Þ

from the limits (A3) and (A5). Equations (12) and (13) are
Fredholm equations of the first and second kind, respec-
tively. If Neumann conditions are given, taking the normal
derivative at x of Eq. (12) and using arguments analogous
to those in the derivation of Eq. (A5) yields

−
1

2
σðxÞ þ ∂S

∂nx ðσ;xÞ ¼ hðxÞ: ð14Þ

The solution to Eq. (1) is, thus, obtained in the indirect
form by solving Eq. (12), (13), or (14) for σ or η and then
solving (11) for ψðxÞ. As in the direct case, the specifi-
cation of the Neumann problem will give the potential only
up to an arbitrary constant.

III. A NOVEL ADAPTIVE FAST
MULTIPOLE METHOD

The fast multipole method is used to efficiently compute
the Coulombic interactions between a set of discrete
charges and can also be used to evaluate the impact those
charges would have on a test charge placed at specified
locations. In typical FMM parlance (see Ref. [26], espe-
cially Appendix B), sources are the entities that generate
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the potential, while targets refer to the locations at which to
evaluate that potential. In the case of the particle beam, the
sources and targets refer to the same list including each
particle. Given a system of N particles, the electric scalar
potential at a given target location x is given by [Eq. (1.17)
using Eq. (1.6) in Ref. [14] ]

φðxÞ ¼ 1

4πε0

XN
i¼1

qi
kx − xik

; ð15Þ

where xi are the source positions. The FMM approximates
this equation by breaking the sum into a set of near and far
evaluations. The near evaluations are calculated exactly,
while the far evaluations are expressed instead as a sum of
multipole expansions, leading to an algorithm which scales
asymptotically as OðNÞ [20]. Much of Sec. III A follows
the presentation in Ref. [26].

A. A Cartesian DA adaptive FMM

1. Domain division and structuring

A critical component of the FMM is the hierarchical
subdivision and structuring of the simulation domain.
First, the full three-dimensional space that encompasses
the particle beam and enclosing structures is scaled to the
unit cube, referred to as the root box. The root box is said to
be at level 0. The first level of subdivision involves dividing
the root box into eight congruent boxes and so on with
the lth level consisting of 23l congruent boxes [40].
A multilevel FMM implementation utilizing congruent
boxes at each level enables efficient error control when
incorporated as a part of dynamics simulations.
If the particle distribution is fairly uniform, fully sub-

dividing the system down to a specified level (given by the
desired accuracy or efficiency trade-off) would be suffi-
cient. However, most systems of interest are far from
uniform, and even a uniform system will evolve complex
structure under external (and internal) forces, especially
considering nonlinear effects. Thus, a regular FMM will
lose efficiency due to empty boxes in low-density regions
and overfilled boxes in high-density regions. A better
general approach is an adaptive FMM, where, throughout
the subdivision process, empty boxes are ignored and
overpopulated boxes are further divided. The adaptivity
of this process is governed by the clustering parameter q,
which delineates the maximum number of sources permit-
ted in the neighborhood of a given target.
The neighborhood consists of the target box and every

box of the same level that shares a side or vertex with the
target box (27 boxes in 3D for an interior target box).
Conversely, boxes are said to be well separated from the
target box if they are not in its neighborhood. An important
data structure in the FMM is the interaction list. For a given
box, its interaction list includes all child boxes of the boxes
in its parent’s neighborhood excluding its own neighbors

(up to 189 boxes in 3D space). In the adaptive FMM, it is
possible for boxes to have an empty interaction list.
Computationally, this process makes use of octree data

structures, in which each box (parent) is recursively
divided into eight child boxes [40]. The source list may
be substantively different from the target list, so optimal
efficiency occurs when structure partitioning is fully
adaptive with respect to both the targets and the sources.
Thus, in the FMM formalism, two sets of data structures,
referred to as trees, are generated. A set of boxes constitutes
a tree if parent-child relationships can be established among
them. The D tree grows from the root box (level 0) and
includes each successive child box that contains at least one
target up to the finest level specified by the clustering
parameter q. Using the structure of the D tree, the C forest is
a disconnected set of trees whose root boxes are all level-2
boxes in the D tree which contains sources. Each C tree
grows from its root box (a level-2 D-tree box) and includes
each successive child box in the D tree that contains at
least one source. The C trees direct the collection of
multipole expansions given by the sources at the second
level, while the D tree directs the translation of the
expansions from the second level to each target at the
highest level. Put another way, if a box needs a local
expansion anywhere in the algorithm, then it is in the D
tree; if a box needs a multipole expansion anywhere in the
algorithm, then it is in the C forest.

2. Multipole expansion and translation
in a differential algebra

Once the data structures have been generated, multipole
expansions of Eq. (15) are calculated at the highest-level
boxes in the C trees. This is accomplished through the
introduction of DA variables [26]

dx ≡ x − x0
r2

; dz ≡ z − z0
r2

;

dy ≡ y − y0
r2

; dr ≡ 1

r
; ð16Þ

which represent an expansion about the point x0 ¼
ðx0; y0; z0Þ and where r≡ kx − x0k. Assuming the box
is centered at x0, the potential given by Eq. (15) can be
expressed in terms of the DA variables in Eq. (16) leading
(after simplification) to a multipole expansion about the
center of the box:

φðdÞ ¼ dr
4πε0

Xn
i¼1

qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kxi − x0k2d2r − 2ðxi − x0Þ · d

p
¼ kdrφm; ð17Þ

where n gives the number of sources in the particular box,
k includes the constant terms (typically normalized to 1),
φm represents the multipole expansion, and the DAvector is
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defined d≡ ðdx; dy; dzÞ. Unlike the typical form of φm

which sums monopole, dipole, and higher-order terms due
to a collection of sources [Eq. (4.10) in Ref. [14] ], Eq. (17)
instead forms a high-order expansion for each source and
sums over all relevant sources. Here, dr ¼ jjdjj is the
Euclidean norm of the DA vector and cannot be expanded.
Rather, it is carried through the following calculations and
evaluated in the final step.
The potential φm in Eq. (17) is expressed as a truncated

Taylor series in the DA framework. It should be noted
that the series expansion in the given DA variables will
converge only if r is larger than the side length of a box
[26], which enforces the requirement that the DA variables
in Eq. (16) be small. This establishes the radius of
convergence and limits the region of validity for the
expansion to beyond the neighborhood of the box in which
it originated.
The multipole expansion φm is then translated from the

child box to the parent box, with center x0s. This multipole-
to-multipole (M2M) translation forms a transform
T M2M∶R3 ↦ R3 where the translation is expressed as
the composition

φ0
m ¼ φm∘T M2M

and where φ0
m is again valid only for observers far from the

parent box. T M2M represents a map from one set of DA
variables (dr;d) to a new set (d0r;d0) centered about x0

s:

d0 ≡ x − x0
s

r02
;

d0r ≡ 1

r0
;

r0 ≡ kx − x0
sk ð18Þ

and is explicitly defined as

T M2M ≡
�
dr ¼

ffiffiffiffi
R

p
d0r;

d ¼ R½d0 þ ðx0
s − x0Þd02r �;

ð19Þ

where the radial differential scaling factor R is given by

R≡ ½1þ kx0
s − x0k2d0r2 þ 2ðx0

s − x0Þ · d0�−1: ð20Þ

The electric potential (17) can be expressed in terms of the
translated multipole expansion via Eq. (19) as

φðd0Þ ¼ k
ffiffiffiffi
R

p
d0rφ0

m:

The M2M translation is then recursively applied to the
potential φ0

m, traversing the C tree from child to parent
boxes until the level-2 box in the tree is reached.
From this point, the multipole expansion is translated

to a well-separated box at the same level, containing the

observer location (x), whose center is given by x0
t.

This multipole-to-local (M2L) translation forms another
transform T M2L∶R3 ↦ R3 where the translation is again
expressed as the composition

φ0
l ¼ φ0

m∘T M2L:

Unlike φm and φ0
m, the local expansion φ0

l is convergent for
targets within a radius that includes the local box (and, by
construction, all children of that box) [26]. The variables
for the local expansion are simply given by

d00 ≡ x − x0
t; ð21Þ

where d00 is guaranteed to be small because the target is
near the center, hence a local expansion. The M2L trans-
lation is explicitly defined by

T M2L ≡
�
d0r ¼

ffiffiffiffiffi
R0p
;

d0 ¼ R0ðd00 þ ðx0
t − x0

sÞÞ;
ð22Þ

where the new radial differential scaling factor R0 is
given by

R0 ≡ kd00 þ ðx0
t − x0

sÞk−2: ð23Þ

In terms of the local expansion, the electric potential is
given by

φðd00Þ ¼ k
ffiffiffiffiffiffiffiffi
RR0p

φ0
l:

The process of transforming multipole-to-local expan-
sions in 3D becomes increasingly inefficient and represents
the greatest computational expense in the FMM for higher
expansion orders [26,35,41]. This process can be accel-
erated by introducing a 3D rotation R which aligns the z
axis of the multipole expansion φ0

m with the translation
direction (x0

t − x0
s) and applying a 1D translation along that

axis. Since R is an orthogonal matrix, the rotated M2L
translation is expressed by the composition

φ0
l ¼ φ0

m∘R∘T 1D
M2L∘RT;

where T 1D
M2L has the same form as Eq. (22) but contains

only the z component of the transformation. More
details on this process can be found in Appendix C
of Ref. [26].
Analogous to the M2M translation but in reverse, a local-

to-local (L2L) translation is defined which represents a map
from parent to child boxes in the target D tree. This can be
expressed as the transform T L2L∶ R3 → R3, and the new
potential is again expressed as the composition

φl ¼ φ0
l∘T L2L:
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With the potential expressed in terms of a local expansion
(φ0

l), T L2L gives the translation to a child box with center xl

in terms of the new DA variable d000 ≡ x − xl and can be
defined as the map

T L2L ≡ fd00 ¼ d000 þ ðxl − x0
lÞ; ð24Þ

which is a simple translation. The L2L translation is
recursively applied to disseminate φ0

l down the D tree
(from level 2) to the highest-level boxes containing targets.
For completeness, the final form of the electric potential in
terms of the local expansion at each target box will be

φðd000Þ ¼ k
ffiffiffiffiffiffiffiffi
RR0p

φl: ð25Þ

3. The fast multipole algorithm

With the preliminaries in place, this section sets forth the
order and process of the adaptive FMM algorithm. The
algorithm is initialized with the specification of the source
and target sets, the source charges, and the clustering
parameter q. Following Sec. III A 1, the spatial domain is
scaled and recursively subdivided to form the target D tree
as constrained by q, and the D tree is traversed in reverse to
form the source C forest (whose trees grow from level-2
boxes). Once the data structures have been constructed,
the remainder of the process can be subdivided into three
stages: the upward pass, the downward pass, and the final
summation [26].
During the upward pass, the multipole expansion (17) is

computed at the finest level boxes in each of the C trees.
These expansions are then translated from child to parent
nodes up the C tree via the M2M operator (19). At each
parent node, the source contributions from each child node
are summed together to form a single composite multipole
expansion; this can be done directly in the DA framework.
This process is iterated until all source contributions are
represented by multipole expansions about the center of
level-2 boxes.
The downward pass begins with the transformation of

the multipole expansions into local expansions (22) and is
guided by the D tree. This transform must be applied from
each level-2 box containing a multipole expansion to all
well-separated boxes at the same level. More significantly,
the multipole expansions of all higher-level boxes with a
nonempty interaction list must be distributed via the M2L
transform to each box in the interaction list. The sheer
number of applications of the transform required in this
step leads to its significant computational expense, a factor
that is somewhat mitigated in the high-accuracy regime by
the inclusion of the rotated M2L. The local expansions
are then translated from parent to child down the D tree via
the L2L operator (24), summing together respective M2L
interaction list contributions.

The final summation phase occurs once all local expan-
sions have been transferred to the highest-level boxes in the
D tree. Local expansions are evaluated at each target point,
an elementary operation in DA. This operation is often
referred to as the local-to-point (L2P) evaluation. Finally,
the contributions of sources in the target neighborhood are
directly summed via Eq. (15) and added to the result of the
L2P evaluation. In some applications, the electric fields
may be desired in addition to the electric potential. The
fields in the neighborhood are directly given by

E≡ −∇φðxÞ ¼ −
1

4πε0

XN
i¼1

qiðx − xiÞ
kx − xik3

; ð26Þ

using Eq. (15). The far-field contributions are obtained by
applying the gradient to the local expansions (resulting in
an expansion for each field component) and evaluating the
results again with the L2P evaluation.
It is worth noting that this formulation uses a straightfor-

ward Cartesian representation for all expansions and trans-
lations, in contrast with standard algorithms, which rely on
kernel-dependent formulations, including spherical repre-
sentations [20,24,42]. This is achieved through the differ-
ential algebraic implementation, in which truncated Taylor
expansions, function compositions, and derivation are all
elementary operations [33], leading to a general formu-
lation that can easily be applied to general potentials [26].
This algorithm has been shown to exhibit the desiredOðNÞ
scaling and to yield results which converge to the brute
force method of Eq. (15) for high-order expansions [26].

IV. THE POISSON INTEGRAL SOLVER WITH
CURVED SURFACES

A charged particle beam within a bounded structure is
described by the Poisson problem

∇2ψ̃ðxÞ ¼ ρðxÞ
ε0

for x ∈ Ω;

ψ̃ðyÞ ¼ g̃ðyÞ
or

∂ψ̃
∂ny ðyÞ ¼ h̃ðyÞ

9=
; for y ∈ Γ; ð27Þ

where, as before, Ω ⊂ R3 is a bounded domain with a
uniformly continuous boundary Γ and where g or h is
specified at every point on Γ. The source term ρ describes a
beam of N pointlike particles and can, thus, be represented
as a sum:

ρðxÞ ¼
XN
i¼1

qiδðx − xiÞ; ð28Þ

where qi denotes the charge and xi the position of the ith
particle. The linearity of the Laplacian enables the Poisson
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BVP (27) to be deconstructed to an equivalent system
comprising a boundaryless Poisson problem, whose well-
known solution φ is given by Eq. (15), coupled to a Laplace
problem for ψ analogous to Eq. (1) but with modified
boundary conditions. In order for the coupled solution
ψ̃ ≡ φþ ψ to satisfy the boundary conditions of Eq. (27),
the boundary conditions for Eq. (1) must be

gðyÞ ¼ g̃ðyÞ − φðyÞ;

hðyÞ ¼ h̃ðyÞ − ∂φ
∂ny ðyÞ; ð29Þ

modified by the solution to Eq. (15) on Γ.
The efficient computational solution to Eq. (27) with

open boundaries via the FMM has already been discussed
in Sec. III. The approach to solving the Laplace BVP,
with the boundary conditions modified by Eq. (29), was
addressed in Sec. II. The indirect method is chosen, as it
involves one fewer integrations over the boundary. What
remains is to lay out the numerical approach to evaluating
the boundary integral equations (11)–(14). These BIEs are
discretized directly using the Nyström quadrature method,
and the resulting linear system is iteratively solved by the
generalized minimum residual (GMRES) method.

A. Discretization and the Nyström method

Given Dirichlet boundary conditions, there are two
possible approaches to solving the Laplace BVP,
Eqs. (12) and (13), which form Fredholm equations of
the first and second kind, respectively. The Nyström
method [37] was originally developed as a numerical
solution to Fredholm integral equations of the second kind:

yðtÞ ¼ λxðtÞ −
Z
D
Gðt; sÞxðsÞds≡ ðλ − GÞxðtÞ; t ∈ D;

ð30Þ

which have been well studied and exhibit useful properties.
The Nyström method approximates, for example, Eq. (13)
as a discrete weighted sum of the kernel evaluated at m
locations:

−
1

2
ηmðxiÞ þ

Xm
j¼1
i≠j

wjηmðyjÞ
∂G
∂ny ðxi; yjÞ ¼ gðxiÞ: ð31Þ

This forms an m ×m linear system of equations for
i ∈ ½1; m� of the form Amηm ¼ g. Here, the exact solution
to Eq. (31), ηm, is obtained, which is a discrete approxi-
mation of ηðxÞ. The system matrix Am for the BEM is
typically dense and nonsymmetric [15,16]; thus, it is
critical that Am be well conditioned and that the numerical
quadrature scheme demonstrates rapid convergence.

The condition number of a matrix Am is defined as
condðAmÞ≡ kAmkkA−1

m k and gives a relative measure of
the sensitivity of a system to perturbative errors. Any
numerical method invariably introduces errors due to
approximations and numerical noise; thus, it is imperative
to construct a well-conditioned linear system. It can be
shown that the condition number of the system matrix is
bounded by [37]

condðAmÞ ≤ kλ − Gmkkðλ − GmÞ−1k; ð32Þ

where ðλ − GmÞ is the numerical operator of the corre-
sponding linear equation, comparable to Eq. (31). For the
continuous system, Theorem 4.1 [37] describes some of the
advantages of Fredholm equations of the second kind.
Theorem 4.1 (Fredholm alternative).—Let X be a

Banach space, and let G∶X → X be a compact operator.
Then the equation ðλ − GÞx ¼ y; λ ≠ 0 has a unique solution
x ∈ X if and only if the homogeneous equation ðλ−GÞz¼0
has only the trivial solution z ¼ 0. In such a case, the

operator λ − G∶X →
1−1

X has a bounded inverse ðλ − GÞ−1.
Significantly, such a system is guaranteed to have both a

unique solution and a bounded inverse. The Appendix has
shown that ðλ − GÞ is bounded for both Eqs. (13) and (14).
Taken with Theorem 4.1, this implies that condðλ − GÞ
is finite and bounded. Theorem 4.1.2 in Ref. [37] states
that there exist finite numbers N and cs such that
kðλ − GmÞ−1k ≤ cs for m ≥ N. Assuming that the numeri-
cal method is chosen appropriately, the numerical integrals
will converge to the true integrals as m → ∞. Thus, for
type-2 integrals, Eq. (32) will be bounded, leading to a
numerical solution with low error sensitivity. Fredholm
type-1 integrals have a high sensitivity to small errors, as
the condition number for type-1 systems is larger and
grows more quickly than that of type-2 formulation for the
same problem [37]. This property is clearly illustrated in
Table I, which gives the matrix condition numbers for a
sphere as a function of the size of the linear system m.
The linear system corresponding to the first kind of

integral equation with Dirichlet boundary conditions is
seen to rapidly degrade as the size of the system is
increased, while the second kind of integral equation leads
to well-behaved linear systems whose condition number is
of Oð1Þ irrespective of matrix size. Thus, the double-layer

TABLE I. Matrix condition numbers of the linear system from
the first (12) and second (13) kind of equations with Dirichlet
conditions and second kind of equation (14) with Neumann
conditions.

m Dirichlet (1st) Dirichlet (2nd) Neumann (2nd)

80 1.58 × 103 2.891 2.867
320 2.63 × 103 2.912 2.933
1280 2.06 × 104 2.951 2.968
5120 1.60 × 106 2.975 2.985
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potential equation (13) will be used for the Dirichlet
problem, while the single-layer potential equation (14) is
used for the Neumann problem. This selection is equivalent
to performing an analytical preconditioning directly in the
problem formulation, which obviates the need for a numeri-
cal preconditioner in solving the resultant linear systems.
The implementation requires summation of pointlike

evaluations on the boundary, and the accuracy of the
numerical integration is determined by the quadrature rule
[43]. The boundary surface is discretized into a mesh of m
flat triangular surface elements, Γ ↦∪m

j¼1 Γj. The nodes xj

and corresponding normal vectors are chosen to be the
center of the corresponding element Γj. In this regime,
the quadrature weight wj is simply the area of Γj and is
calculated by the magnitude of the cross product
wj ¼ ð1=2Þkðaj − bjÞ × ðaj − cjÞk, where aj, bj, and cj
point to the vertices of Γj.
This discretization of the indirect method is known to

give an unstable evaluation near the boundary due to near-
singular integrals [30,35,44,45]. Because of the formation
of a discrete density ηm, the resultant quadrature Q of
integration I is subject to the error in each term of the sum.
The error in the solution is bounded by an expression of the
form [46]

kI −Qk ≤ C
Xn
i¼1

kηðyiÞ − ηik
���� ∂
∂nGðx; yiÞ

����;
where C is an undetermined finite constant. If a quadrature
term has a large jump, i.e., approaching the singularity, so
does the error bound. In this case, the jump comes from
the second term when x ≈ yi, while the first term remains
finite and nonzero. Beam physics problems are concerned
primarily with sources clustered relatively far from the
surface, as surface interactions immediately lead to beam
loss. Thus, the near-boundary instability of the indirect
numerical method is not a concern for this work.
Additionally, results in Sec. V show that, by increasing
the number of boundary elements, this instability can be
made negligible for the interior domain of interest.

B. GMRES

The linear system Amηm ¼ g resulting from Eq. (31) is
iteratively solved using a matrix-free restarted form of the
GMRES method. GMRES was developed as a Krylov
subspace method for nonsymmetric linear systems [47,48].
GMRES iteratively builds up the Krylov subspace

Kn ¼ spanðr0;Amr0;…;An−1
m r0Þ for n ≤ m; ð33Þ

where r0 ¼ g −Amη0 is the residual of initial guess η0.
It is assumed that the exact solution exists in this space,
ηm ∈ Km, and an approximate solution η̃k is determined
through the solution of the least squares problem [35,48]

min
η̃n∈η0þKn

kg −Amη̃nk: ð34Þ

As a property of the Krylov subspace, GMRES converges
monotonically and is mathematically guaranteed to obtain
the correct solution in at most m iterations (by
Theorem 3.1.2 in Ref. [48]). However, for large m, the
high number of matrix vector products in Eq. (33) becomes
prohibitively expensive to compute. The process can be
accelerated by forming a solution from Kk for k < m and
restarting the iterations taking η̃k as the new initial guess.
Restarted GMRES accelerates the solution process, but at
the expense of losing the guarantee for monotonic con-
vergence. Convergence is generally maintained as long as
Am is well conditioned.
Typically, GMRES is paired with a preconditioner, often

in the form of a matrix M such that condðMAmÞ <
condðAmÞ (left preconditioning) or condðAmMÞ <
condðAmÞ (right preconditioning). The disadvantage to this
approach is that it requires forming and storing the full
matrix Am, which is costly in both memory and evaluation
time [48]. A consequence of the properties of linear systems
formed from Fredholm type-2 equations is that they are and
remain well conditioned even for large m (see Table I).
Therefore, preconditioning ought not be necessary. Indeed,
early tests showed that the use of a preconditioner did not
significantly accelerate the solver [35].
The bulk of the computational expense in GMRES comes

from the iterative matrix-vector products Amr0. However,
the off-diagonal entries of Eq. (31) are proportional to the
derivative of the Green’s function (3), so it is possible to
accelerate the computation via the FMM [49,50]. The
formulation of the multipole expansion for GMRES will
have a slightly different form from that of Eq. (16) owing to
the difference between Eqs. (15) and (31). Explicating the
normal derivative in Eq. (31) yields

φgmresðxiÞ ¼ Amηm

¼ −
1

2
ηm;i þ

Xm
j¼1
i≠j

wjηmðyjÞnðyjÞ · ðxi − yjÞ
4πkxi − yjk3

:

Defining a new DA vector centered at x0 by r2di ≡ xi − x0

and simplifying yields the GMRES multipole expansion in
DA in a similar form to Eq. (16):

φgmresðdiÞ

¼ −
1

2
ηm;i þ

dr
4π

Xm
j¼1
i≠j

wjηm;jnj · ðdi − ðyj − x0Þd2rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ jyj − x0j2d2r − 2ðyj − x0Þ · di�3

q :

ð35Þ

A major advantage of the kernel independence of the
Cartesian FMM being used [26] is that the multipole transfer
maps have the same form as with the Coulomb potential in
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Sec. III. It is not necessary to know the analytic form of the
multipole expansion, as the transformations are automati-
cally performed numerically. This formulation additionally
leads to a significant reduction in memory, as the full
matrix ðAÞm is never stored.
Utilizing the FMM to compute the matrix-vector product

introduces an approximation error that can interfere with the
convergence properties of the algorithm [51–54]. However,
this deviation is bounded by the product of the magnitude of
the error vector and the norm of Kn [51]. Additionally, the
FMM error has been shown to scale with expansion order p
like p ∼ log10ðϵÞ [26]; thus, it is possible to constrain the
system such that GMRES converges with a prescribed
accuracy [54]. This provides an additional benefit, namely,
that the FMM order may be relaxed in subsequent iterations
as the residual shrinks [35]. Letting pmin ¼ 2, the relaxation
process is implemented using the strategy from Ref. [54] to
select the iteration order with ϵ determined by the ratio of
absolute tolerance τres with the estimated residual. The initial
evaluation each time GMRES is restarted remains set at
pmax, the prescribed FMM order.
The definition of τres has a substantial impact on the

rate of convergence in GMRES. If τres is too large, then
GMRES becomes the dominant source of error in the BEM,
and if too small, then the process stagnates, performing
numerically redundant iterations. The final residual, given
by the norm of the residual vector, scales as a function of
the boundary condition value φ, number of boundary
elements m (matrix size), and the FMM polynomial order
p. Optimization tests with a variety of examples has lead to
the following definition:

τres ≡ CτN eðmÞΦbcðφÞfðpÞ; ð36Þ

where

Cτ ¼ 10−3;

N eðmÞ ¼
ffiffiffiffi
m

p
20

;

ΦbcðφÞ ¼
�
max

�
kφk or

���� ∂φ∂n
����
�	

4=5
;

fðpÞ ¼ 10−ðpþ1Þ=5:

This definition leads to consistent convergence in a
moderate number of iterations without significantly
impacting the overall error scaling of the BEM for each
of the structures evaluated. It is possible to improve
performance further for certain problems by trial and error
on a case by case basis.

C. A fast multipole-accelerated solution
to the Poisson problem

The composition of the fast multipole method with
the Nyström boundary element method lead to the

development of the Poisson integral solver with curved
surfaces (PISCS). The approach in this algorithm involves
breaking the Poisson problem (27) into an open boundary
Poisson problem solved via the FMM and a Laplace
problem with modified boundary conditions. The
Laplace boundary integral equations are discretized
through the Nyström quadrature method, leading to the
formation of a linear system which is solved by the
GMRES method incorporating FMM accelerated matrix-
vector products. The final results are obtained through a
final FMM application by casting Eq. (11) in terms of the
multipole expansion given in Eq. (35) with the final
potential density function and no constant term.
PISCS is written in COSYScript for COSY INFINITY v10.0

[55], a Fortran-based scripting language developed at
Michigan State University (MSU) [34]. COSY incorporates
a language-level differential algebra implementation and
includes a robust suite of beam physics routines and
procedures. COSY utilizes the DA to create and compose
high-order transfer maps to generate and analyze particle
accelerator beam lines. A package including the PISCS
code and relevant utilities can be found on the beam physics
code repository [56]; COSY INFINITY must be obtained
through MSU [55]. A user manual and examples for PISCS
included in the package provide more details on running the
algorithm. PISCS uses a Cartesian coordinate system based
on the boundary structure, not the beam. This must be
considered when incorporating the results of PISCS analy-
sis with standard beam physics tracking codes. It is
assumed that the structure longitudinal axis is aligned with
the beam longitudinal axis, which is comparable to the
cylindrically symmetrical beam transport designs [5].
PISCS can generally be broken up into five sections:
reading and initializing the data files, three FMM calls,
and the final summation of the results. Figure 1 outlines the
major procedures and progression in the implementation of
PISCS. PISCS saves interim results throughout in order to
preserve dynamic memory for cases with a high number of
particles and boundary elements.
First, the simulation is initialized by reading the boun-

dary structure and particle beam files and setting algorith-
mic parameters including DA order and boundary
condition type. Point files formatted for the FMM are
written from the input structure and beam files. The first
FMM call assigns the beam particles as sources and both
particles and boundary points as targets. This call is used to
calculate the particle self-fields and the modifications to
the boundary conditions due to the charged particle beam
given by Eq. (15). The second FMM call assigns the
boundary points as both sources and targets. Here, the
FMM algorithm actually runs many times as GMRES
iteratively solves the system matrix for the layer-potential
density (9) and (10), a process involving the computation of
numerous matrix-vector products. The final FMM call
assigns the boundary points as sources and the particles
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as targets. This call evaluates (13) and (14) using the
previously determined density to determine the effect of
the structure on the particle beam. Lastly, PISCS sums up
the contribution of the self- and the boundary components
for each particle and writes the resulting scalar potential
and field at each particle position.
Using the DA framework throughout the calculations

enables PISCS to simultaneously compute both the scalar
potentials and the fields. This eliminates the additional
errors that are incurred when calculating only the potential
and attempting to interpolate the fields or vice versa. It is
worth noting that PISCS can be used to solve a multitude of
problems beyond those applicable to beam physics appli-
cations. Any system that can be cast as a quasistatic
electromagnetic BVP could be solved, with or without
the presence of sources within the boundary region.

COSY INFINITY supports an message passing interface
(MPI) parallelization scheme which utilizes a high-per-
formance vector data type to facilitate the sharing of
information between tasks distributed via a parallel loop
structure. The bulk of the parallelization (and the overall
computation time) in PISCS is accomplished in the FMM,
which has been extensively optimized. The FMM dis-
tributes the tasks using a dynamic load-balancing
approach by first sorting the independent entities (i.e.,

C-forest trees or D-tree nodes) and then distributing them
evenly among the available processes [57].

1. Units and boundary conditions in the beam frame

PISCS assumes that the boundary conditions are speci-
fied in SI units. Thus, the electrostatic boundary conditions
should be specified in units of volts (Dirichlet) or volts per
meter (Neumann). For problems that can be described in
magnetostatic terms, the boundary conditions should be
specified in units of Tesla-meters (Dirichlet) or Tesla
(Neumann). These values are converted to the normalized
working units of the simulation:

φunits ¼
( ε0

e φSI for φe or E;
1
μ0e

φSI for φm or B:

The charge value(s) for sources in the volume Ω must,
therefore, be specified in terms of the unit charge (i.e.,−1 for
electrons). This normalization serves to mitigate the risk of
numerical instabilities arising due to large order of magni-
tude difference in values used in the numerical equations.
Relevant problems in beam dynamics consist of the

beam, a collection of copropagating charged particles,
and the surrounding enclosure, which often consists of

FIG. 1. Flowchart for the implementation of PISCS. Green nodes give the major internal modules, with the double-bounded nodes
representing calls to the external fmmcpp structuring script, while red nodes represent read-write steps.
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electromagnetic elements. The driving electromagnetic
forces in this system are in full generality described by
Maxwell’s equations [14]. The imposing system of equa-
tions can be substantially reduced in complexity by a clever
shift in frame of reference. This is achieved by prescribing a
reference particle following an “ideal” trajectory through
the accelerating structure. The problem can then be trans-
formed to the reference particle frame, which leads to a
quasistatic system.
Taking the normalized reference particle velocity to be

given by cβ, the longitudinal and transverse velocities of
the particles comprising the beam must be transformed
from the lab frame S to the reference particle frame S̃. The
resulting velocity components are given by the Lorentz
transform [from Eq. (11.31) in Ref. [14] ]

ṽk
c
¼ vk=c − β

1 − βvk=c
≈ γ2

�
vk
c
− β

	
;

ṽ⊥
c

¼ v⊥=c
γð1 − βvk=cÞ

≈ γ
v⊥
c
; ð37Þ

where γ is the usual relativistic factor for S̃ and the parallel
component is with respect to the direction of β. Assuming
that deviations from the reference velocity are small (true
by definition for a particle beam [1]), then vk=c ≈ β and
v⊥=c ≪ β hold, yielding the approximation in Eq. (37).
Particle deviations from the reference trajectory are many
orders of magnitude smaller than β; thus, the velocities in S0
will be small, even for highly relativistic (γ > 10) cases.
Taking the reference trajectory to define the ẑ direction,

the external electromagnetic fields in S̃ are given by the
Lorentz transform [simplifying Eq. (11.149) in Ref. [14] ]

Ẽ ¼ γ½ðEx − cβByÞx̂þ ðEy þ cβBxÞŷ� þ Ezẑ;

B̃ ¼ γ

��
Bx þ

β

c
Ey

	
x̂þ

�
By −

β

c
Ex

	
ŷ

�
þ Bzẑ: ð38Þ

For even marginally relativistic beams (β > 0.01), it
follows from Eqs. (38) that Ẽ ≫ B̃ whether the conditions
in S are electrostatic, magnetostatic, or a combination of the
two. It is assumed that the external boundary conditions are
not time dependent or at least are slowly varying. The force
in S̃ on the particle beam in the presence of external fields is
given by F̃ ¼ qðẼþ ṽ × B̃Þ [14]. Since intrabeam motion
(ṽ) is negligible, the beam only “feels” the effects of Ẽ in
Eq. (38). Additionally, the magnetic self-force of the beam
is of second order in ṽ and, thus, can also be neglected.
These simplifying approximations reduce the system

of Maxwell equations to the Poisson problem specified
by Eq. (27) but with all values given for S̃. If Dirichlet
conditions (potentials) are given in S, then the full Lorentz
transformation for the 4-potential should be used instead.
Beginning in the lab frame, the boundary conditions are

transformed according to Eq. (38), and the corresponding
scalar potential can be obtained by the solution of
E ¼ −∇φe. This method is valid only if the electromagnetic
boundary conditions are slowly varying with respect to the
beam velocity. This is not the case for resonant frequency
accelerating structures; however, considering the problem in
Fourier space, the associated Helmholtz equation can be
solved via a modification of this method. Evaluation with
PISCS will yield the electrostatic fields in S̃. In order to
propagate the particles in time, the fields must be trans-
formed back to S using the inverse of Eqs. (38) and supplied
to the numerical integrator of choice. This final step is not an
aspect of the dynamics problem addressed in this work.

V. BENCHMARKING AND ANALYSIS
OF THE ALGORITHM

Inherent in scientific computing is the trade-off between
accuracy and efficiency [58]. This trade-off is especially
pronounced when considering problems whose exact
numerical representation is already untenable. Electrostatic
problems fall into this category when the boundaries cannot
be represented analytically, and the inclusion of particle
beams (a classic n-body problem) only exacerbates the
difficulty. Thus, the two primary thrusts of this section will
be to analyze the run-time characteristics of each system and
the accuracy of the computed potentials and fields.
This performance is evaluated by considering three

different boundary structures: a perfect electrically con-
ducting spherical shell held at a constant potential, an
electric dipole with a constant applied electric field, and a
section of beam pipe whose boundary potential is due to an
external magnetic quadrupole. The first two are electro-
static problems, while the third is magnetic. The first and
third utilize Dirichlet boundary conditions, while the
second is specified by Neumann conditions. The perfor-
mance of the boundaryless Poisson solver has already been
well studied [26], so the following tests will evaluate the
Laplace solver (with no sources) first, before considering
the combined effects of all the components (sources and
boundaries). Understanding the complete system is essen-
tial for many beam dynamics problems.
First, Sec. VA discusses the accuracy of the discretized

boundary representation method used in this work, which
gives an indication of the underlying degree of accuracy
that can be expected. Efficiency and resulting accuracy for
the three structures are presented in Sec. V B. Finally, in
Sec. V C, the same quadrupole system is analyzed in the
presence of a proton beam to illustrate the impact of the
beam-wall interaction for intense beams.

A. Accuracy of the structure representation

The boundary structure is specified to PISCS through a
file containing a list of points and their respective surface
normals which define the triangularization of the boundary
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surface, as described in Sec. IV C. The structure can be
generated using any computer-aided design (CAD) soft-
ware with mesh generation capabilities. All of the models
studied in this work were defined and discretized using
Gmsh, an open source three-dimensional high-order finite
element mesh generator [59]. Gmsh can import standard
CAD files but also includes a built-in CAD engine and
offers a high degree of control over mesh refinement and
adaptivity.
Flat element structures are generated for a sphere, a

cylinder, a rectangular prism, and a prolate ellipsoid, with
the number of triangular boundary elements ranging from
Oð102Þ to Oð105Þ. The sphere has a radius of r ¼ 1 μm
corresponding to a surface area of 12.6 μm2. The cylinder
has a radius of r ¼ 25 mm and length of l ¼ 0.1 m,
corresponding to a surface area of about 196 cm2.
The rectangular prism has an equal length and width of
l ¼ w ¼ 0.9 mm and a height of h ¼ 0.3 mm leading to a
surface area of 2.7 mm2. The prolate ellipsoid is meant to
test the limits of the mesh generation process and, as such,
has a large aspect ratio in dimensions. The major radius is
c ¼ 0.5 μm, and the minor radius is a ¼ 0.05 μm, corre-
sponding to a high eccentricity of 0.99 and a surface area of
approximately 0.243 μm2.
Each boundary element is represented by three quan-

tities: a node at the center of the element (position), the
normal vector at that point, and the element area. Each of
these quantities enter into the numerical solution of the
integral equations as discussed in Sec. IVA.
Figure 2(a) shows the average deviation of the element

centers from the physical surface, normalized to unit
scale. Clearly, flat boundary elements accurately represent
flat surfaces at the order of machine precision, irrespective
of the total number of elements. The representation of the
sphere and the cylinder exhibit nearly identical behavior
in terms of central node accuracy. While the trends for the
ellipse are similar, they are offset by roughly an order of
magnitude.

Noting the linear behavior of the results in the log-log
scale in Fig. 2, a linear fit is performed, and the results are
converted to linear scale and given in Table II. The node
position exhibits excellent scaling with the number of
boundary elements and implies that a normalized error
of ϵc ¼ 1 × 10−6 would be achieved with approximately
6 million boundary elements for the sphere and cylinder
and 41 million elements for the ellipsoid. The flat elements
of the cube map to the physical surface to machine
precision.
Next, the orientation of surface normal vectors is

considered. The correct normal orientation is defined by
the analytical representation for each structure at the
respective center node discussed in the previous section.
Deviations in the angle of computed normals for each
structure are plotted in Fig. 2(b). Here, as with the node
position, the orientation of the normal vectors is accurate to
machine precision for the rectangular prism and scales at
similar rates for the other three structures. In this case, the
sphere and cylinder results are not identical. The general
functional form of the scaling of the difference in angles is
given in Table II.
The error in the normal vector orientation converges

much more slowly than the error in the node position.

FIG. 2. Plotted is the normalized deviation of the surface nodes from the physical surface (a) and the deviation of normal vector angle
(b). Results for the sphere (blue line), cylinder (orange line), rectangular prism (green line), and ellipsoid (purple line).

TABLE II. Error scaling in the model geometries, electric
potentials, and fields. The terms in parentheses correspond to
the results using Neumann boundary conditions.

Cube Cylinder Sphere Ellipsoid

Node e−38n0 e−5.3n−1.0 e−5.3n−1.0 e−3.2n−1.0

Normal e−34n0.9 e−3.4n−0.5 e−4.2n−0.5 e−2.3n−0.5

Area e−37n−0.9 e−5.8n−1.3 e−4.7n−1.3 e−4.2n−0.9

φe e−6.0n−1.1 e−6.2n−0.4 e−3.9n−0.5

ðe−10n−0.3Þ
jEj e−6.0n−1.1 e−4.9n−0.4 e−6.3n−0.8

ðe−8.4n−0.4Þ
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This is due, at least in part, to the increased sensitivity of the
cross product (used to calculate the normal orientation) to
small deviations in the ideal node positions. An additional
contributing factor is the fact that the boundary mesh is
generated with spatial constraints based on the CADmodel.
While the normal orientation ought to converge as the
number of elements increases, that will always be a
secondary effect for curved surfaces caused by improving
the resolution with ever-smaller elements.
Interestingly, the error in the normal vector angle increases

for the rectangular prism almost linearly (∼n0.9) with an
increasing number of elements. This can be understood by
recognizing that the errors in triangular element node posi-
tions for the rectangular prism are dominated by numerical
noise. While such errors average out when considering the
central node position via averaging [see Fig. 2(a), inset], the
same is not true of the normal vector angles obtained via
the cross product. Assuming that the difference from true
normal is given by a vector with magnitude η, the corre-
sponding angular difference ϑ will be given by

ϑ ¼ tan−1
�

η

kAk
	
;

where kAk is the area of the triangular element. In this case, η
is on the order of machine precision, while the element areas
(which scale inversely with number of elements) are many
orders of magnitude larger, thus implying a linear scaling ofϑ
with number of elements.
The final metric to be considered is the element area,

which enters the calculation in the form of the weight in the
Nyström method (see Sec. IVA). Average errors in element
area are shown in Fig. 3(a), where each is normalized by the
theoretical area of a single element if all are equal in size.
This error scaling is not as clearly linear as the previous
cases, but the results of the least squares linear fit are shown
in Table II.
It is also worthwhile to consider the manner in which the

total area for each structure deviates from the analytic

value. From Fig. 3(b), it is clear that, as with the node
positions and normals, the total area for the rectangular
prism is correct to within machine precision. While the
sphere and cylinder areas both converge to within 0.25%,
the error in total summed area for the ellipse increases with
an increasing number of elements, converging to around
2.2%. This is indicative of the ultimate limits in represent-
ing a highly curved structure solely using planar elements.
The inflection point in the curve for the total area of the
cylinder is due to the summation overshooting the analytic
value at around n ¼ 3.5 × 103.
Despite the limitations addressed in this section, the

general trends show acceptable scaling in the quantities that
are required for PISCS related to the boundary representa-
tion. Additionally, the power law scaling can be used to
facilitate the interpretation of the accuracy of the results
from the following section.

B. Performance study versus number
of flat panel elements

All of the computations presented in this section are
performed on the Gaea Cluster maintained by the Center
for Research Computing and Data at Northern Illinois
University [60]. Gaea is a hybrid CPU-GPU cluster
running Red Hat Enterprise Linux 7 with 60 nodes
connected via full 1∶1 nonblocking Infiniband and ether-
net switch connectors. Each node has two Intel Xeon
X5650 2.66 GHz 6-core processors with a total of 72 GB
of RAM. Parallel executions are performed using the Intel
MPI library.

1. Perfect electric conductor sphere

The first structure considered is a 1 μm radius perfect
electrically conducting spherical shell [Fig. 4(a)]. Dirichlet
boundary conditions are utilized, with a uniform applied
potential of Φe ¼ 5 kV. The analytic behavior of the
electric potential and fields is given by

FIG. 3. Plots of the mean normalized error per element (a) and percent error in total surface area (b) for the sphere (blue line), cylinder
(orange line), rectangular prism (green line), and ellipsoid (purple line).
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φeðrÞ ¼
�Φe r ≤ R;

ΦeR
r r ≥ R

and

EðrÞ≡ −∇φeðrÞ ¼
�
0 r < R;

− ΦeR
r2 r > R;

ð39Þ

where R is the radius of the spherical shell.
The three final plots in Fig. 4 illustrate two predominant

features of the BEM. First, the near-boundary instabilities
discussed in Sec. IVA are clearly present in the electric
potential (this behavior is analogous in the electric field
results), especially when larger boundary elements are
used. The instability amounts to an exponential deviation
in computed results from the analytic solution when
approaching the boundary due to the singularity in the
kernel [coming from Eq. (3) and its derivative]. As noted by
Ref. [61], the region of instability decreases as a function of
decreasing element size. Second, the accuracy of the
solution is improved markedly by increasing the number
of boundary elements. Methods to address these near-
boundary instabilities are being implemented and will be
addressed in a subsequent publication covering PISCS’
application to a different physical problem (“the study and

design of novel electron sources”) where frequent evalu-
ations arbitrarily close to the boundary are required.
The algorithm is evaluated in terms of both serial

performance and parallelization efficiency for up to 36
processors. The total computation time, as seen in Fig. 5(a),
exhibits fairly consistent behavior for fewer than 1 × 104

boundary elements and then increases rapidly for higher
numbers of elements. Doubling the number of processors
leads to a speedup factor of almost 2, and increasing to six
processors accelerates the evaluation by another factor of 2
for fewer than 1 × 105 boundary elements. The efficiency
gains for further increasing the number of processors are
not significant, with negligible differences between 18 and
36 processors. The exception is the case with 1 × 105

boundary elements, where the 36 processor run exhibited a
tenfold increase decrease in run-time. These results gen-
erally show good strong scaling on a single node (up to six
processors) with more inconsistencies for three (18 pro-
cessors) and six (36 processors) nodes. These inconsisten-
cies are not thought to be fundamental but rather due to
peculiarities of the available hardware. In particular, inter-
node communication seems to be a significant limiting
factor. For very large numbers of elements, the saturation of

FIG. 4. Visualization of the discretized boundary for the sphere (a) with 3 × 103 elements. Density plots of the percent error in the
electric potential in a cross section of the sphere using 1 × 103 (b), 3 × 104 (c), and 6 × 105 (d) boundary elements.
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the speedup factor is likely due to the increase in memory
sharing for the MPI loops. The parallel structure involves
infrequent transfers of large arrays; thus, bandwidth
(rather than latency) is likely the limiting factor. The
shared arrays are minimized to limit the memory scaling
per processor; thus, the results must be collated, adding
an increasingly large serial component as the number of
elements increases. Another fundamental limit to parallel
efficiency is the intrinsically serial nature of the iterations
within GMRES. The remainder of the trials simply
illustrate the serial performance compared to the perfor-
mance with 18 processors.
An analogous accuracy metric is determined and evalu-

ated for each structure, leading to the results in Fig. 5(b).
The error in the computed electric potential and field values
far from the surface (r < 0.6R) are averaged and normal-
ized. The potentials are normalized by Φe ¼ 5 kV, while
the fields are normalized by the magnitude of the electric
field in the limit as the surface is approached from the
exterior, kEðRþÞk ¼ 5 GV=m. The scaling of the potential
and field error are given in Table II. The electric field error
shows linear scaling early but falls off for higher numbers
of elements, possibly because the analytic value is zero,
and, for larger n, small errors per element begin to
dominate, where again n gives the number of boundary
elements in thousands. The scaling for the potentials is
similar to that of the normal vector angles, suggesting
that this factor is likely the dominating source of error for
this geometry. Given Dirichlet boundary conditions, the
normal derivative enters into both the system matrix
calculation (7) and the final evaluation of the potentials
(11), leading to a greater impact on the result due to
deviations in the normal angles.

2. Electric dipole

An electric dipole is considered next. This is represented
in its simplest case by two parallel rectangular plates of

equal size. The plates are square with side length w ¼
900 μm and separation d ¼ 300 μm, where the plates are
assumed to lie in the horizontal plane. A potential differ-
ence is applied between the two plates, leading to a constant
gradient, whose analytic representations are given by

φeðzÞ ¼ Φc þ
Φa −Φc

d
z and EðzÞ ¼ −

Φa −Φc

d
:

ð40Þ

Here, the electric potential on the cathode and anode are
defined to be Φc ¼ −3 kV and Φa − 1.5 kV, respectively,
leading to a constant field of E ¼ −5 kV=m.
The BEM requires the volume of interest to be fully

bounded, so four pseudoboundary walls are introduced
far from the region of interest to form a rectangular prism.
The boundary conditions on the walls are given by ϕeðzÞ in
Eq. (40) in the Dirichlet case or by

∂φe

∂n ¼ 0 kV=m

in the case of Neumann boundary conditions. The
Neumann conditions on the plates will be

∂φe

∂nc ¼ −5 kV=m and
∂φe

∂na ¼ 5 kV=m

for the cathode and anode, respectively.
The results for a slice through the center of the dipole are

shown in Fig. 6 for the structure comprising 6 × 104

boundary elements. The Neumann case [Fig. 6(a)] contrasts
the Dirichlet case [Fig. 6(b)] in two notable respects. First,
both the electric field components and the potential are far
smoother than the corresponding Dirichlet case. Second,
the magnitude of the error due to the near-boundary
instability is 2–3 orders of magnitude lower. Matching

FIG. 5. The left plot shows the computation time for PISCS in serial (red line) and parallel operation with two (green line), six (cyan
line), 18 (blue line), and 36 (violet line) processors. The inset shows the speedup factor relative to serial performance. The right plot
relates the normalized error in the electric potentials (purple line) and fields (orange line) as a function of the number of boundary
elements for the sphere.
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the derivative at the boundaries is advantageous, as inte-
gration is functionally a smoothing process.
The unusual dip in the error of the electric potential in

Fig. 6(b) is not natural but is rather a result of the matching
process required in this case. Specifying Neumann boundary
conditions will solve for φe only up to an additive constant.
Since the near-boundary instabilities make matching the
potential at the boundary itself problematic, the final result is
instead scaled to fit based on an average from a linear fit in
the central region, z ∈ ½90; 210 μm�. The downward spike in
error marks the point at which the smooth potential function
is matched to the correct scale. The fact that the error
increases (mostly) uniformly moving away from this point
indicates that there is some small error in the slope of φe,
leading to the one unique crossing point. This is indeed
observed when plotting the scaled potential values directly,
in contrast with the Dirichlet example, where the potential
varies randomly around the analytic values.
Much like for the sphere, Fig. 7(a) shows that running

PISCS with 18 processors in parallel leads to a speedup of

roughly an order of magnitude compared to the serial case.
The Neumann problem is consistently slower than the
Dirichlet problem, due to a more complex system matrix
requiring more GMRES iterations. Additionally, a compari-
son to Fig. 5(a) reveals that the run-time for the rectangular
geometry is roughly an order ofmagnitude longer than for the
sphere with a corresponding number of boundary elements.
Considering the accuracy of the electric potentials and

fields, Fig. 7(b) shows the resulting errors normalized by
the analytic values given by Eq. (39). There is a clear
distinction between the two BVP regimes, and the corre-
sponding error scaling is listed in Table II. Notably, the
Neumann results are much more accurate at low element
numbers, while the Dirichlet results overtake and outper-
form when considering greater than 3 × 104 elements.

3. Magnetic quadrupole

Having considered cases with constant and linearly
varying potentials, the final example, a magnetic quadrupole,

FIG. 6. Normalized error in electric potential (purple line) and field components (blue, red, and green line, respectively) for the electric
dipole using 6 × 104 boundary elements with Dirichlet (a) and Neumann (b) conditions. The dashed black line represents an error of
10−4 for comparison.

FIG. 7. The left plot shows the computation time for PISCS in serial (red lines) and parallel (blue lines) operation, and the right plot
relates the normalized error in the electric potentials (purple lines) and fields (orange lines) as a function of the number of boundary
elements for the electric dipole. The solid and dashed lines correspond to the results when Dirichlet and Neumann boundary conditions,
respectively, are specified.
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exhibits a quadratic potential. Since the magnetic fields
within a quadrupole can be described as the negative
gradient of a scalar potential, it can be mathematically
represented as a homogeneous (sourceless) Poisson problem
and solved using the methodology developed in this
work. This problem has the simple analytic representation
given by

φmðx; yÞ ¼ B0xy;

Bðx; yÞ ¼ −B0ðyx̂þ xŷÞ; ð41Þ

where B0 is the magnetic gradient and x and y represent
the horizontal and vertical components, respectively, of the
transverse plane. For this problem, a section of a cylindrical
beam pipe is used for the boundary with a radius of
r ¼ 25 mm and length of l ¼ 0.1 m, and the gradient is
set to B0 ¼ 1T=m. Similar to the previous case, pseudo-
boundary caps are placed on either end of the cylindrical
shell with boundary conditions given by Eq. (41), ensuring
that the region is fully bounded.

Clearly, from Fig. 8(a), higher quadrature errors (corre-
sponding to fewer boundary elements) lead not only to
more significant boundary errors, but also to an interior error
distribution that is spatially dependent, in contrast with the
previous two examples. Structures with 1 × 104 boundary
elements or greater exhibit the correct spatial potential
profile, with deviations from the analytic results simply
scaling as a function of the magnitude of the potential.
The trends in evaluation time for the quadrupole also

differ somewhat from the previous cases, as seen in
Fig. 9(a). Overall, the evaluation time was of the same
magnitude as for the sphere. However, for structures with
fewer than 5 × 103 elements, the increased efficiency from
parallel execution diminishes from an order of magnitude
to less than a factor of 2.
The error in Fig. 9(b) is normalized by the maximum

surface potential maxðφmjΓÞ ¼ 0.44Tmm and surface field
magnitude maxðkBjΓkÞ ¼ 25 mT. The error scaling for
the quadrupole, presented in Table II, resembles that of the
sphere potentials, indicating again that the curved cylin-
drical surface leads to normal angle deviations which

FIG. 8. Log-scale density plots of the absolute value of the difference in the computed electric potential (Tmm) from Eq. (41) in a cross
section at the center of the beam pipe using 1 × 103 (a), 1 × 104 (b), and 1.3 × 105 (c) boundary elements.

FIG. 9. The left plot shows the computation time for PISCS in serial (red line) and parallel (blue line) operation, and the right plot
relates the normalized error in the magnetic potentials (purple line) and fields (orange line) as a function of the number of boundary
elements for the magnetic quadrupole.
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introduce errors that dominate the scaling of the overall
algorithm. However, in this case, the exponent of −0.4 is
even lower than −0.5 for the sphere, which implies that the
quadratically varying boundary conditions impose addi-
tional challenges on the method than the simpler constant
boundary condition case.

C. Beam-enclosure interaction

Given the push to higher-intensity beams, it is of interest
to consider a practical example. Planned proton runs at
IOTA are likely to encounter nontrivial manifestations of
collective effects. Proposed beam parameters for proton
beams in IOTA compiled from Refs. [6,62] are presented
in Table III.
The boundary conditions are the same as those in

Sec. V B 3; however, the system must be transformed to
the beam frame as discussed in Sec. IV C 1. Assuming
that the protons are traveling in the ẑ direction, this results
in an electrostatic system with the analytic representation
given by

φeðx; yÞ ¼
1

2
E0ðx2 − y2Þ;

Eðx; yÞ ¼ −E0ðxx̂ − yŷÞ; ð42Þ

with the electric field gradient E0≡cγβB0 ¼22.55MV=m2,
where γ is the usual relativistic factor. Dirichlet boundary
conditions are used for this study.
The beam distribution is assumed to be Gaussian in each

component, with σx;y ¼ 0.3 μm and σz ¼ L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 lnð2Þp ¼

1.53 m. The design bunch length is so much greater than
the magnet length that it is more interesting to consider a
short bunch with a comparable longitudinal charge density.
The peak density of the beam is centered in the quadrupole,
and the longitudinal component of the beam has σz¼1 cm.
This bunch length is short enough to ensure that it remains a
sufficient distance from the pseudoboundary caps.
Assuming a Gaussian distribution, the total number of
protons in this bunch will be 1 × 109. This is represented
for computational efficiency by 1 × 104 macroparticles
each with an effective charge of 1 × 105e.
The structure has been designed to showcase the capacity

of PISCS. It is based around a 2.5 cm radius cylindrical
pipe and includes both a radial discontinuity and a small

opening, as shown in Fig. 10. The structure generated has
2.7 × 104 boundary elements, and the resulting electric
potentials and fields were computed for a cross section of
the beam pipe at its center and longitudinally along the
length of the structure. Figure 11 illustrates both the
transverse and longitudinal potential distribution due to
the presence of the proton beam, with charge scaled by a
factor of 10 to emphasize the modulation. The most
substantial impact, by approximately 10%, occurs in the
center of the region near the beam itself. The presence of
the protons leads to a defocusing effect (Coulomb expan-
sion or heating) which reduces the focusing power of the
quadrupole (in the horizontal plane, while increasing the
defocusing effect in the vertical plane). This becomes
especially clear when considering the distribution of the
electric fields, plotted in Fig. 12. When the high current
beam is present, the overall focusing of the fields is
diminished, with two unstable islands forming in the
horizontal plane, and the defocusing of the fields is
noticeably amplified.
Finally, it is interesting to note the impact of the proton

beam on the boundary conditions themselves. This
modification is calculated in the first pass of the FMM
and written to a temporary file. Figure 13 shows the
difference in boundary conditions due to the presence of
the proton beam (plotted in red) as a function of the length
of the beam pipe. These values are normalized by the
maximum boundary condition value in the absence of a
beam. The effect on the boundary near its center is nearly
1%, with many of the quadrature node values being
altered more substantially. For comparison, it was noted
that increasing the bunch charge by orders of magnitude
(blue and green, respectively) led to a comparable
increase in the magnitude of the boundary modifications.
Figure 13 represents the minimum boundary potential
modification, as an off-axis beam leads to higher devia-
tions and will introduce dipolar and higher-order modes
in the external fields.

FIG. 10. The beam pipe discretized boundary with two seg-
ments of differing radius and a small circular opening. The
boundary mesh scale is adaptively reduced near the geometric
features to improve accuracy.

TABLE III. Proposed IOTA proton beam parameters.

Variable Value

Momentum p 70 MeV=c
Velocity β 0.075
Particles N 9 × 1010

Current I 8 mA
Emittance (equil.) εx;y 0.3 μm
Bunch length (FWHM) L 3.6 m
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VI. CONCLUSION

Driven by continuously increasing intensity needs for
charged particle beams and their applications, the fast multi-
pole-accelerated boundary elementmethod enabled by differ-
ential algebraic methods, PISCS, was developed. PISCS
solves the Poisson equation with boundary conditions in
thepresence ofmillions of chargedparticles. For the first time,
the BEM and FMM are combined in the DA framework.
PISCS has been shown to handle hundreds of thousands of
boundary elements with ease. With a high memory system,
PISCS may handle millions of elements with intense beams.
PISCS is parallelized and has superlinear weak scaling as a
function of the number of boundary elements for at least 36
MPI processes andgood strong scaling on a single node (up to
12processors) using ahigh-performance computing cluster. It
is likely that the strong scaling would extend to more
processors on a high performance computing (HPC) cluster
with optimized internode communication. TheN-bodyFMM

FIG. 12. Vector plots of the transverse electric field (MV/m) in a cross section of the beam pipe without the presence of a beam (a) and
a plot of the percent difference in that potential when the proton beam (again scaled by 10) is present (b).

FIG. 13. Modifications in the boundary conditions (scaled by
the maximum boundary potential) due to the presence of the
proton beam (red line). Additional results shown for 10 (blue line)
and 100 (green line) times the number of particles.
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FIG. 11. Plots of the electrostatic potential (kV) in a cross section of the narrow beam pipe (a) and along the longitudinal shot of the
beam pipe (b) with the Gaussian beam for 10 times the number of particles.
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has already been shown to exhibit good scaling as a function
of the number of particles.
The accuracy of PISCS has been verified using various

geometries, and the resulting error scales acceptably with
an increasing number of elements. This errors scales
roughly as m−0.5 for the curved enclosures. Based on
structure tests, this scaling appears to be dominated by
errors in the normal vector angle for curved geometries.
When these errors are limited (electric dipole test), the error
in the Nyström BEM is seen to scale as m−1. Many
advancements have been implemented and optimized to
ensure that PISCS is not only accurate but also efficient in
terms of run-time. Using the GMRES optimized parame-
ters, the run-time is relatively consistent for few elements,
with overall scaling as m logm or better up to Oð105Þ
elements for each of the examples shown in Sec. V B. Since
PISCS is dominated by GMRES, which is well known to
have m logm scaling, this behavior is expected. PISCS
scales with OðNÞ for number of sources, as there is very
little overhead beyond the base FMM algorithm (in contrast
to the number of elements). There is a consistent speedup of
roughly an order of magnitude when running PISCS in
parallel with 18 processors.
This method is the first of its kind in beam physics which

enables the accurate and efficient treatment of large-scale
intense beam dynamics with pairwise forces in realistic
bounded environments. The only limitation on the bounded
environment is that the electromagnetic boundary condi-
tions are slowly varying. This method cannot directly
incorporate electrodynamic effects that fail to satisfy the
quasistatic assumption in the beam frame, which includes
the mechanisms of certain known collective instabilities.
The precision demanded by the next generation of high-
energy physics experiments necessitates the inclusion of
particle-to-particle effects in the presence of realistic
enclosures, including edges and corners.
Further advancements are in progress and will be the

subject of a future work. These include the implementation
of a high-order interpolation and quadrature scheme for
surface integrals over curved elements, to further improve
the convergence rate of the results, and an advanced
numerical method to mitigate and even eliminate the effects
of near-boundary instabilities. The first enables substan-
tially more accurate representations of curved surfaces
while utilizing fewer surface elements in the numerical
discretization. This decreases the computation time by
reducing the iterations and matrix vector product evalua-
tions, since the size of the linear system is proportional to
the square of the number of boundary nodes. The second
becomes relevant when considering electron sources where
the precise potential distribution at the cathode boundary
contributes to the barrier potential. The study and design of
novel electron sources is a burgeoning field which promises
many potential applications once the boundary instabilities
are resolved.
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APPENDIX: REGULARIZATION OF THE
BOUNDARY INTEGRAL EQUATION

The boundary integral equation (5) is, in fact, valid only
for the interior region x ∈ ΩnΓ. Considering the functional
form of G (3), the integral in Eq. (5) contains both strongly
and weakly singular terms, respectively, for x ∈ Γ. In both
cases, the approach will be to extend a small region of the
boundary about the singular point and consider the limits as
that region is contracted. For simplicity of integration,
let Bξ be a ball centered at x with radius ξ, and define ΓB as
the subset of the surface of Bξ that is exterior to the
boundary Γ. Define Γξ ⊂ Γ to be the surface including all
points z ∈ Γ ∩ Bξ.
Thus, x is in the interior of the extended volume Ω ∪ Bξ,

and the kernels of Eq. (5) are finite everywhere. The form
of Eq. (5) for x ∈ Γ is then given by evaluating the integrals
over the surface of the extended region Ω ∪ Bξ and taking
the limit ξ → 0. The weakly singular kernel is therefore
expressed as the limit

Z
Γ
Gðx; yÞhðyÞdΓðyÞ ¼ lim

ξ→0

�Z
ΓnΓξ

Gðx; yÞhðyÞdΓðyÞ

þ
Z
ΓB

Gðx; yÞhðyÞdΓðyÞ
�
; ðA1Þ

where neither integrand is explicitly singular. The Green’s
function is constant over Bξ by construction, so the only
challenge is the behavior of the boundary condition
function h. For a smooth surface, the gradient over the
boundary ∇Γh will both exist and be bounded, so that h
satisfies the Hölder condition

jjhðxÞ − hðyÞjj < Chjjx − yjjλh ; ðA2Þ

with constants Ch > 0 and 0 < λh ≤ 1. Given Eq. (A2), the
magnitude of the second integral of Eq. (A1) is bounded by����
Z
ΓB

Gðx;yÞhðyÞdΓðyÞ
����<

�
1−

ΛiðxÞ
4π

	
ðChξλhþ1þhðxÞξÞ;

where ΛiðxÞ gives the interior solid angle subtended by the
surface at x. Thus, the weak singularity is removable and
Eq. (A1) converges to
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Z
Γ
Gðx;yÞhðyÞdΓðyÞ¼ lim

ξ→0

Z
ΓnΓξ

Gðx;yÞhðyÞdΓðyÞ: ðA3Þ

A similar approach can be taken for the strongly singular
integral; however, that singularity is not removable and
must instead be evaluated via its Cauchy principle value.
Considering again the extended spherical surface about the
singularity yields the limit

Z
Γ
gðyÞ ∂G∂ny dΓðyÞ ¼ lim

ξ→0

�Z
ΓnΓξ

gðyÞ ∂G∂ny dΓðyÞ

þ
Z
ΓB

gðyÞ ∂G∂ny dΓðyÞ
�
; ðA4Þ

where the precise form of the kernel is not as trivial as
the previous example. The normal derivative of G can
alternatively be written using r≡ ðy − xÞ, r≡ jy − xj, and
r̂≡ r=r as

∂G
∂ny ðx; yÞ≡ nðyÞ ·∇Gðx; yÞ ¼ nðyÞ · ðx − yÞ

4πkx − yk3 :

The integral over the spherical surface ΓB is evaluated,
noting that nðyÞ ¼ r̂ and r ¼ ξ for all y ∈ Bξ. Assuming
that g satisfies the Hölder condition analogous to Eq. (A2),
this integral is bounded by����

Z
Bξ

gðyÞ ∂G∂ny dΓðyÞ
���� <

�
1 −

ΛiðxÞ
4π

	
ðξλgCg þ gðxÞÞ:

The inequality is, in fact, solely due to the first term, which
is vanishing. The principle value itself will be negative,
since nðyÞ · ðx − yÞ is negative over Bξ. Evaluating the
limit from Eq. (A4) results in the relation

Z
Γ
gðyÞ ∂G∂ny dΓðyÞ ¼ lim

ξ→0

�Z
ΓnΓξ

gðyÞ ∂G∂ny dΓðyÞ
�

−
�
1 −

ΛiðxÞ
4π

	
gðxÞ: ðA5Þ

Taking both singularity limits into account, the fully
generalized representation formula becomes

Z
Γ

�
Gðx; yÞhðyÞ − gðyÞ ∂G∂ny ðx; yÞ

�
dΓðyÞ

¼
(
ψðxÞ; x ∈ ΩnΓ;
ΛiðxÞ
4π gðxÞ; x ∈ Γ;

ðA6Þ

where the integrals are taken in the limiting values
excluding the singularity for the second case (x ∈ Γ).
For this work, it is assumed that Γ is smooth (or at least
piecewise smooth), and, thus, the interior solid angle is

ΛiðxÞ ¼ 2π for x ∈ Γ. This assumption does not represent
a fundamental limitation in this derivation but is made for
simplicity. The boundary discretization method utilized in
PISCS ensures that Γ is piecewise smooth.
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