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Particle beam eigenemittances comprise the lowest set of rms-emittances that can be imposed to a beam
through symplectic optical elements. For cases of practical relevance this paper introduces an
approximation providing a very simple and powerful relation between transverse eigenemittance variation
and the beam phase integral. This relation enormously facilitates modeling eigenemittance tailoring
scenarios. It reveals that difference of eigenemittances is given by the beam phase integral or vorticity rather
than by angular momentum. Within the approximation any beam is equivalent to two objects rotating at
angular velocities �ω. A description through circular beam modes has been done already in [A. Burov,
S. Nagaitsev, and Y. Derbenev, Circular modes, beam adapters, and their applications in beam optics, Phys.
Rev. E 66, 016503 (2002)]. The new relation presented here is a complementary and vivid approach to
provide a physical picture of the nature of eigenemittances for cases of practical interest.
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I. INTRODUCTION

The terms of eigenemittances have been introduced by
A.J.Dragt in 1992 [1] as the projected rms-emittances a beam
acquires after all correlations between the degrees of freedom
(planes) have been removed. Accordingly, they form the set
of lowest projected beam emittances which can be achieved
by applying symplectic and linear beam line elements. Since
this setmaynot fit requirements of certain beamapplications,
tailoring of eigenemittances became a subject of extensive
theoretical and experimental research. The first proposal of
eigenemittance modification was made in [2] followed by
other fundamental investigations [3–15] and experimental
applications in linear electron [16–19] and ion accelerators
[20–22]. Measurements of eigenemittances and beam cou-
pling have been reported in [23–28] for instance.
Albeit the underlying theory is well understood and

experimental results match analytical calculations and lay-
outs, the physical nature of eigenemittances lacks a picture
being more vivid compared to the common sense definition
of “projected rms-emittances after removal of interplane
correlations”. For some special cases simple relations were
derived as for beams with cylindrical symmetry dominated

by their angular momentum, for which the difference of the
two eigenemittance is equal to the angular momentum and
their mean is the transverse rms-emittance [4].
This general lack of tangible comprehension is partially

due to the fact that already the two transverse eigenemit-
tances are calculated in the four-dimensional (4d) phase
space spanned by two space coordinates and two momen-
tum coordinates, not to mention the three eigenemittances
of a beam including also longitudinal coordinates. This
paper intends to shrink this lack of vivid understanding at
least for the two transverse eigenemittances.
In the next section basic terms are defined and the

derivation of the extended Busch theorem is revised and
adapted for further use. The third section derives the role of
beam vorticity and the phase integral for transverse eige-
nemittances. Section IV introduces an approximation that is
valid for cases of practical interest. It shows that in general it
is vorticity being relevant for the difference of eigenemit-
tances rather than angular momentum. Afterwards several
applications demonstrate the practical power of the beam
phase integral on eigenemittance calculation. Section VI
shows that eigenemittances can be taken practically as
equivalents of two areas rotating with same angular velocity
but with opposite signs. The paper closes with a conclusion
and an outlook.

II. BASIC TERMS AND EXTENDED
BUSCH THEOREM

The two transverse eigenemittances ε1=2 originally intro-
duced in [1] are equal to the two projected transverse beam
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rms-emittances εx=y, if and only if there are no correlations
between the two transverse planes. Eigenemittances can be
obtained by solving the complex equation

detðJC − iε1=2IÞ ¼ 0; ð1Þ

where I is the identity matrix,

C ¼

2
6664
hx2i hxx0i hxyi hxy0i
hxx0i hx02i hyx0i hx0y0i
hxyi hyx0i hy2i hyy0i
hxy0i hx0y0i hyy0i hy02i

3
7775; ð2Þ

and

J ¼

2
6664

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

3
7775; ð3Þ

where ðx; yÞ denote the particle position coordinates and
ðx0; y0Þ their derivatives ðx0; y0Þ with respect to the longi-
tudinal direction s⃗. Second moments huvi are defined
through a normalized distribution function fb as

huvi ¼
Z Z Z Z

fbðx; x0; y; y0Þ · uv · dxdx0dydy0: ð4Þ

The two transverse eigenemittances can be calculated
as [13]

ε1=2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−tr½ðCJÞ2� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2½ðCJÞ2� − 16ε24d

qr
; ð5Þ

being equivalent to [29]

ε1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
tr½ðCJÞ2�

8
þ ε4d

2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
tr½ðCJÞ2�

8
−
ε4d
2

r
ð6Þ

with ε24d ≔ det C. Projected transverse beam rms-emittan-
ces are defined as [30]

ε2x ¼ hx2ihx02i − hxx0i2; ð7Þ

ε2y ¼ hy2ihy02i − hyy0i2: ð8Þ

Busch’s original theorem is from stating preservation of
longitudinal single particle angular momentum in a mag-
netic field region with cylindrical symmetry using con-
jugated momentum [31]. The extended theorem is derived
from restating preservation of many-particle beam eigene-
mittances under symplectic transformations using conju-
gated momenta [32]. It reads

ðε1 − ε2Þ2 þ
�
ABs

ðBρÞ
�
2

þ 2
Bs

ðBρÞ ½hy
2ihxy0i − hx2ihyx0i þ hxyiðhxx0i − hyy0iÞ�

¼ const; ð9Þ

where

A ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihy2i − hxyi2

q
ð10Þ

is the rms-area of the beam (Fig. 1), Bs is the longitudinal
magnetic field along the beam axis, and ðBρÞ is the beam
magnetic rigidity. The first term of Eq. (9) is the squared
difference of eigenemittances and the second term is the
square of the magnetic flux through the beam rms-area A⃗.
Within the subsequent section the meaning of the essential
part of the last term

WA ≔ hy2ihxy0i − hx2ihyx0i þ hxyiðhxx0i − hyy0iÞ ð11Þ

is rederived by adapting the method reported in [32] to
further use.

III. BEAM VORTICITY AND PHASE INTEGRAL

This section starts with proving the relation

W ¼
Z
A
½∇⃗ × ⃗r̄0ðx; y; sÞ� · dA⃗; ð12Þ

FIG. 1. Definition of the beam rms-area for the case of hxyi ¼ 0
and of the four path sections Pi comprising the integral enclosing
this area.
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where ⃗r̄0ðx; y; sÞ ≔ ½x̄0ðx; y; sÞ; ȳ0ðx; y; sÞ; 1�. This relation
states that the third term of Eq. (9) is mainly the mean rms-

vorticity ð∇⃗ × ⃗r̄0Þ integrated over the beam rms-area.
By construction, W from Eq. (12) is invariant under

rotation. Hence, Eq. (12) can be expanded for hxyi ¼ 0
without loss of generality (by assuming that prior to
determination of W the beam is rotated around the beam
axis by an angle that puts hxyi to zero [33]). Figure 1
illustrates this beam rms-area and the phase integral

enclosing it. The transverse components of ⃗r̄0 are expressed
through

x̄0ðx; yÞ ≔ hx0xi
hx2i xþ

hx0yi
hy2i y; ð13Þ

ȳ0ðx; yÞ ≔ hy0xi
hx2i xþ

hy0yi
hy2i y: ð14Þ

Figure 2 illustrates as an example the constant slope ∂x̄0=∂y
of x̄0 in the projection of the four-dimensional rms-ellipsoid
onto the ðy; x0Þ plane. Accordingly,

∇⃗ × ⃗r̄0 ¼ hy0xi
hx2i −

hyx0i
hy2i ð15Þ

not explicitly depending on (x, y) hence turning the integral
into simple multiplication with A (using hxyi ¼ 0) and to

AW ¼ A2ð∇⃗ × ⃗r̄0Þ
¼ hx2ihy2ið∇⃗ × ⃗r̄0Þ ¼ hy2ihy0xi − hx2ihyx0i; ð16Þ

which had to be proven. Using Stokes’ theorem the
quantity W is introduced as

W ¼
Z
A
½∇⃗ × ⃗r̄0� · dA⃗ ¼

I
C

⃗r̄0 · dC⃗ ð17Þ

being the beam phase integral. The r.h.s. of the equation
refers to the integral enclosing the beam rms-area.
Equation (9) is accordingly rephrased as

ðΔεÞ2 þ 2
ABs

ðBρÞW þ
�
ABs

ðBρÞ
�
2

¼ const; ð18Þ

with Δε ≔ ðε1 − ε2Þ, being the extended Busch theorem
reformulated using the beam phase integral. For constant
beam rigidity this expression is equivalent to

δððΔεÞ2Þ þ 2
W
ðBρÞ ðAδBs þ BsδAÞ

þ 2
ABs

ðBρÞ δW þ 2
ABs

ðBρÞ2 ðAδBs þ BsδAÞ ¼ 0: ð19Þ

IV. APPROXIMATIONS IN
REAL APPLICATIONS

The extended Busch theorem as stated above is exact.
This section illustrates that the actual circumstances of
experimental scenarios allow to derive powerful and simple
relations from the theorem.
Experimental applications at beam lines with limited

apertures keep as short as possible the sections along which
eigenemittances shall be modified. This is from the fact that
these modifications require imposed correlations, which
blow up projected emittances and beam sizes. Accordingly,
the beam rms-area along such short sections can be
approximated as constant (δA ¼ 0). Second, the assumption
is made that for the above motivated practicality, behind
such sections the beam is again fully uncorrelated, i.e., W
vanishes according to Eq. (11). Together with the above
prerequisites the assumption ismade that change of vorticity
is strongly dominated and basically given by the change of
the longitudinal magnetic field

−δW ≔ A
δBs

ðBρÞ ; ð20Þ

being equivalent to the statement

ABs

ðBρÞ þW ≔ const: ð21Þ

Plugging this statement into above Eq. (19) delivers
δððΔεÞ2Þ ¼ δðW2Þ and accordingly the simple and useful
relation

FIG. 2. Projection of the four-dimensional rms-ellipsoid onto
the ðy; x0Þ plane and the constant slope ∂x̄0=∂y.
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ðΔεÞ2 −W2 ¼ const: ð22Þ

The constant is given by the values being evaluated from
the second beam moments at any location along the beam
line defined as “initial”. For practical reasons this will be
usually at a position where the beam is uncorrelated, i.e.,
ðΔεÞini being equal to the difference of rms-emittances,
W ¼ 0 and hence const ¼ ðΔεÞ2ini. The above relation
states that the change in the difference of eigenemittances
(squared) is equal to the change of integrated beam vorticity
(squared). It is in line with the fact that short tilted
quadrupoles and dipoles, which change the angular
momentum but not the vorticity, do not change the
eigenemittances either. But solenoid fringe fields impose
beam rotation, i.e., vorticity and do change the beam
eigenemittances. The difference between angular momen-
tum and vorticity will be further addressed throughout the
subsequent sections and the Appendix.
Throughout this paper the validity of Eqs. (21) and (22)

is assumed under the prerequisites stated above, i.e.,
constant beam rms-area and complete decoupling shortly
after tailoring of eigenemittances has been accomplished.
The relevance of the latter assumption becomes clear from
the formulation of W as phase integral: if there remains
some coupling and the beam passes a long drift, W might

change since r⃗0 remains constant along the drift but the rms-
area A varies in shape and size. Eigenemittances in turn do
not change along any drift. Accordingly, the assumption of
full decoupling after intended eigenemittance modification
is essential for the application of Eqs. (21) and (22) after the
decoupling. However, the intended tailoring process itself
is described correctly by the relations.
In the following the contents of Eqs. (21) and (22) are

benchmarked by applying them to several scenarios. They
are proofed to full generality for cylindrical symmetric
beams in solenoids dominated by their angular momentum.

V. APPLICATIONS

This section performs applications and hence testing of
the relations stated above. First, the relations’ properties
with respect to symplecticity are investigated followed by
calculation of eigenemittances of simple objects, the exact
description of cylindrical symmetric beams, a simulation of
a nonsymmetric beam scenario, and successful modeling of
experiments on eigenemittance tailoring performed at
FERMILAB and at GSI.

A. Symplecticity

The first check of Eq. (22) is on verification whether
symplectic transformations leave invariant the vorticity as
they leave invariant eigenemittances. Assuming a given
transport matrix M the absolute amount of vorticity will
change through M by

jAδð∇⃗ × r⃗0Þj ¼ A

���� ddx δy0 − d
dy

δx0
���� ¼ Ajm41 −m23j: ð23Þ

The propertym41 −m23 ¼ 0 is fulfilled by commonly used
optical elements being linear and symplectic in the full 4d
transverse phase space, as drifts, dipoles, quadrupoles,
solenoids, rf-gaps, and even by (nonsymplectic) homo-
geneous central field regions inside of a solenoid [34], as
they feature m41 ¼ m23 ¼ 0.
Instead, fringe fields of solenoids are not symplectic, i.e.,

m41 ¼ −m23 ≠ 0. They trigger additional beam vorticity of

jAδð∇⃗ × r⃗0Þj ¼ Ajm41 −m23j ¼ A
jδBsj
ðBρÞ ; ð24Þ

where δBs is the change of field strength along the fringe
region. Accordingly, and again in full agreement to
Eq. (22), solenoid fringe fields change the eigenemittances
as they change the vorticity. They lower one eigenemittance
and increase the other one (see Fig. 2 of [13] for instance).
In fact the change of difference of eigenemittances
δððΔϵÞ2Þ imposed by a solenoid fringe field corresponding
to a longitudinal field variation of δBs is according to
Eqs. (20) and (22)

δ½ðΔϵÞ2� ¼ A2δ

�
Bs

ðBρÞ
�
2

: ð25Þ

The same expression is obtained by doing the lengthy
derivation using Eqs. (2), (3), (5) stated at the beginning of
Sec. II together with the matrix of a solenoid fringe
field [13].
Equation (23) can be very conveniently applied to short

beam line elements along which the beam rms-area A is
approximated as constant. This is the case for solenoid
fringe fields as well as for tapered foils for instance. The
latter were proposed for tailoring eigenemittances by
inducing horizontal to longitudinal coupling [12]. For short
elements the change of difference of eigenemittances
simplifies to

δ½ðΔεÞ2� ¼ A2ðm41 −m23Þ2: ð26Þ

Applied to the tapered foil scenario the equation reads

δ½ðΔεÞ2� ¼ A2
xsðm61 −m25Þ2; ð27Þ

with Axs as the horizontal-longitudinal pendant of A
defined in Eq. (10). The tapered foil causes vorticity in
the (s,x)-plane as a solenoid fringe field does in the
(x,y)-plane.

B. Rigidly rotating object

Equation (22) is used to calculate the eigenemittance of a
rigidly rotating two dimensional object depicted in Fig. 3.
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On this object the particle coordinates are ðx;−ωy; y;ωxÞ,
where the unit of ω is 1=m since s is varied along the beam
line. Prior to rotation the object was at rest and both
eigenemittances as well as its vorticity were equal to zero.
Rotation by ω causes the vorticity 2ω and in order to satisfy
Eq. (22) it causes a difference of eigenemittances of 2jωjA
with A as rms-area [see Eq. (10)]. Applying Eqs. (2), (3), (5)
reveals ε1 ¼ 2jωjA and ε2 ¼ 0 confirming the above result.

C. Shearing object

In an analogue way the eigenemittances of a shearing
object depicted in Fig. 4 are calculated. The coordinates are
ðx; ay; y; 0Þ which by applying Eq. (22) results in the
eigenemittance differenceof jajA. The same result is obtained
by using Eqs. (2), (3), (5), namely ε1 ¼ jajA and ε2 ¼ 0.

D. Beams with cylindrical symmetry

Beams with cylindrical symmetry feature hxyi ¼ 0,
hx2i ¼ hy2i ¼ A, and ϵrms ≔ ϵx ¼ ϵy. Kim [4] has shown
that in this case

ϵ1=2 ¼ ϵrms � L ð28Þ

with 2L ≔ hxy0i − hx0yi and accordingly

ϵ1 − ϵ2 ¼ Δϵ ¼ 2L: ð29Þ

Using Eqs. (11) and (12) delivers

hy2ihxy0i − hx2ihx0yi ¼ A
Z
A
½∇⃗ × ⃗r̄0� · dA⃗; ð30Þ

which by exploiting the cylindrical symmetry properties
stated above together with Eq. (29) gives

Δϵ ¼ 2L ¼ hxy0i − hyx0i ¼
Z
A
½∇⃗ × ⃗r̄0� · dA⃗; ð31Þ

which after taking the square of both sides corresponds to
Eq. (22) with the constant being equal to zero. This had to
be proven for cylindrical symmetric beams.
Equation (28) is a special case of Eq. (22) with const ¼ 0

and W ¼ 2L. In fact, for round objects rotating with
ω ¼ ωðrÞ the relation W ¼ 2L applies, which is not the
case for nonround objects. Accordingly, Eq. (22) is a more
general form of Eq. (28), with the former being valid also
for beams without cylindrical symmetry and the role of
angular momentum 2L is taken over by the beam phase
integral W.

E. Tracking of a nonsymmetric coupled beam

Finally an initially uncoupled beam has been rms-
tracked using linear transport matrices through a beam
line comprising coupling elements such as solenoids and
skewed quadrupoles. Initial beam parameters are listed in
Table I and the beam line elements are listed in Table II.
Figures 5 to 7 depict several beam parameters as

functions of the position along the beam line. Rms-
envelopes are shown in Fig. 5. They are hardly affected
by the solenoids. Figure 6 compares the difference of
eigenemittances and the beam phase integral. Both vary just
along regions with nonvanishing longitudinal magnetic
field. The difference of their squares remains practically
constant along the complete beam line. This behavior is in
agreement with Eq. (22).

FIG. 3. Arbitrary object rotating rigidly with a constant angular
velocity ω around the beam axis.

FIG. 4. Arbitrary area at a constant horizontal shear with
strength a.
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Figure 7 plots the eigenemittances, negative phase
integral -W, ðABsÞ=ðBρÞ, and angular momentum L ¼
hxy0i − hyx0i ¼ 2L along the beam line. Up to the exit of
the first solenoid -W and ðABsÞ=ðBρÞ are equal to each
other as stated by Eq. (21). Afterwards there is slight
augmentation of -W starting behind the first solenoid. This
augmentation is from the finite length of the solenoid for
which its exit fringe field does not completely remove
vorticity and coupling imposed by the entrance fringe field
and thus the beam is coupled behind the solenoid. Along
the subsequent beam line this coupling in turn varies the
phase integralW as described in Sec. IV. It must be stressed
that this increase of vorticity occurs after the eigenemit-
tance tailoring itself has been accomplished inside the
solenoid. Real scenarios sufficiently remove coupling and
hence vorticity immediately after having tailored the
eigenemittances. For these reasons the mentioned increase
shown in Fig. 7 has no impact on quantitative modeling of

the tailoring, which therefore is done correctly. The tailor-
ing is made through the fringe regions and not through the
main field region. Accordingly, real scenarios keep the
solenoid main region as short as possible.
Figure 7 also emphasizes the difference between beam

path integral W and angular momentum L. Both are equal
to each other up to the first quadrupole. Afterwards these
two quantities differ significantly and the absolute value of
angular momentum exceeds the one of the beam phase
integral. The difference of eigenemittances is given by the
beam path integral rather than by the angular momentum.
This is an important statement of Eq. (22) and an essential
difference to Eq. (28). The latter assigns this role to angular
momentum and applies just to beams with cylindrical

TABLE II. Beam line of the tracking calculations: element type,
length, longitudinal magnetic field, magnet field gradient, and
rotation angle around the positive beam axis.

Element L [m] B[T] B’[T/m]
Rotation

angle [deg]

Drift 0.3 0 0 0
Solenoid 0.2 1.0 0 0
Drift 0.3 0 0 0
Horizontally focusing
quadrupole

0.1 0 25.0 90

Drift 0.05 0 0 0
Horizontally focusing
quadrupole

0.1 0 20.0 0

Drift 0.05 0 0 0
Horizontally focusing
quadrupole

0.1 0 20.0 45

Drift 0.05 0 0 0
Horizontally focusing
quadrupole

0.1 0 20.0 −45

Drift 0.3 0 0 0
Solenoid 0.55 0.5 0 0
Drift 0.3 0 0 0

TABLE I. Initial beam parameters of the tracking calculations.

Parameter Value

Kinetic energy 11.45 MeV=u
Mass number 14
Charge number 4
εx 4.0 mmmrad
εy 2.0 mmmrad
βx 3.0 m
αx 1.5
βy 1.0 m
αy −2.0

FIG. 5. Horizontal (red) and vertical (blue) rms-envelope along
the beam line as obtained from tracking calculations.

FIG. 6. Squared difference of eigenemittances (violet) and
squared beam phase integral (black) as obtained from tracking
calculations.

L. GROENING, C. XIAO, and M. CHUNG PHYS. REV. ACCEL. BEAMS 24, 054201 (2021)

054201-6



symmetry. The Appendix gives two illustrative examples
on the difference of angular momentum and beam phase
integral and their role on eigenemittances.
Finally, it is noted that albeit δA ≈ 0 is not fulfilled along

the complete line, Fig. 6 demonstrates that Eq. (22) holds
very well. The next two subsections are on modeling of
eigenemittance variation performed in experiments.

F. Flat beam experiment at FERMILAB

At FERMILAB’s NICCAD photoinjector an electron
beam has been created on a cathode surface of area A0 being
immersed into a longitudinal magnetic field B0 [18].
The beam has been extracted into a region without magnetic
field, accelerated, and transversely decoupled. Applying
Eqs. (21) and (22), the final difference of normalized
eigenemittances can be calculated very quickly.
Since the beam was born with Δεi ¼ 0 and Wi ¼ 0, the

constant of Eq. (22) is equal to zero. Hence applying this
equation to the beam before and after extraction from the
cathode magnetic field region gives

0 − 0 ¼ ðΔεfÞ2 −W2
f; ð32Þ

i.e., Δεf ¼ Wf. This is used in Eq. (21) being also applied
to the beam before and after extraction delivering

A0B0

ðBρÞ þ 0 ¼ 0þWf ¼ 0þ Δεf: ð33Þ

To the very left and very right sides of this equation
normalization of the emittances is applied and results into

Δεnf ¼
A0B0

ðBρÞ βγ ¼
eA0B0

m0c
; ð34Þ

where m0 is the electron rest mass and e is its charge. The
authors of [18] used the definition L ≔ ðeB0A0Þ=ð2m0βγcÞ
and hence one obtains for the final difference of eigene-
mittances

Δεnf ¼ 2βγL ð35Þ

being exactly the result stated in [18] and fully equivalent
to Eq. (29). It is stressed that Eq. (35) has been obtained
from Eqs. (21) and (22) without requiring a round beam,
while Eq. (29) has been derived by explicitly requiring a
round beam [4].

G. Emittance transfer experiment at GSI

At GSI transverse eigenemittances have been tailored by
passing a nitrogen beam through a short solenoid [20]. A
stripping foil has been placed at the solenoid center. Doing
so, the ions passed the entrance and exit fringe region with
different charge state and the imposed vorticities did not
compensate each other to zero. Since the exit charge state
(7þ) has been larger than the entrance charge state (3þ),
the beam vorticity was effectively changed as through a
stand-alone exit fringe field passed with the charge state of
4þ. Accordingly, the two eigenemittances have been
changed as well. Decoupling of the planes has been
performed shortly behind the solenoid by a skewed quadru-
pole triplet. The parameters of the experiment are listed in
Table III.
Calculation of the final difference of eigenemittances

compares the parameters in front of the effective stand-
alone exit fringe field, i.e., at the stripping foil right after
stripping (Bs ¼ Bf ¼ 0.9 T) to those after the solenoid
(Bs ¼ 0). Beginning with Eq. (21) gives

AfBf

ðBρÞeff
þ 0 ¼ 0þW7þ; ð36Þ

i.e.,W7þ ¼ ðAfBfÞ=ðBρÞeff . Using this result and applying
Eq. (22) leads to

FIG. 7. Eigenemittances (red and blue lines), negative beam
phase integral (gray line), ABs=ðBρÞ (gray circles) and angular
momentum (green boxes) as obtained from tracking calculations.

TABLE III. Beam parameters of the emittance transfer experi-
ment EMTEX [20] in front of and behind the solenoid.

Parameter Value

Kinetic energy 11.45 MeV=u
Mass number 14
εx;3þ 1.040 mmmrad
εy;3þ 0.825 mmmrad
Af 4.166 mm2

qin=out 3þ =7þ
qeff 4þ
ðBρÞ3þ=7þ=4þ 2.278=0.976=1.710 Tm
Bf 0.9 T
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ðΔε3þÞ2 − 0 ¼ ðΔε7þÞ2 −W2
7þ

¼ ðΔε7þÞ2 −
�
AfBf

ðBρÞeff

�
2

ð37Þ

and to the final difference of eigenemittances

Δε7þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔε3þÞ2 þ

�
AfBf

ðBρÞeff

�
2

s
: ð38Þ

The same result is obtained by applying Eq. (26).
Plugging in the values of Table III together with Δε3þ ¼
ð1.04 − 0.825Þ mmmrad delivers

jΔε7þj ¼ 2.203 mmmrad; ð39Þ

being in very good agreement with the measured value of
2.0(4) mmmrad.

VI. EIGENEMITTANCES AND ROTATIONS

This section shows that any beam can be regarded as
being equivalent to two objects with different areas
performing rigid rotations with angular velocities �ω
around the beam axis (under the assumptions stated in
Sec. IV). To this end we initially refer to the original work
of R. Brinkmann [2]. Therein a beam extracted from a
cathode being immersed into a solenoidal field is consid-
ered. Its phase space coordinates are those of an object
rotating with ω, i.e.,

2
6664
x0
x00
y0
y00

3
7775 ¼

2
6664

x0
−ωy0
y0
ωx0

3
7775: ð40Þ

This beam can be transformed into a flat beam inhabiting
just horizontal phase space coordinates differing from zero.
The according transformation PxðωÞ is from a beam line
segment MðI; π=2Þ, being an identity in the horizontal
phase space and providing π=2 of phase advance in the
vertical space. The segment MðI; π=2Þ is rotated by π=4
around the positive beam axis delivering [2]

PxðωÞ ≔ R

�
π

4

�26664
1 0 0 0

0 1 0 0

0 0 0 1=ω

0 0 −ω 0

3
7775R

�
−
π

4

�
ð41Þ

or

PxðωÞ ¼
1

2

2
6664

1 −1=ω 1 1=ω

ω 1 −ω 1

1 1=ω 1 −1=ω
−ω 1 ω 1

3
7775: ð42Þ

Accordingly,

PxðωÞ

2
6664

x

−ωy
y

ωx

3
7775 ¼ 1

2

2
6664

2xþ 2y

2ωx − 2ωy

0

0

3
7775 ≔

2
6664
u

u0

0

0

3
7775; ð43Þ

being a flat beam with just horizontal dimensions. These
projectors were the base for the round-to-flat transforma-
tion suggested and demonstrated by [2] and [16]. They
have the properties

P−1
x ðωÞ ¼ Pxð−ωÞ ð44Þ

P2
xðωÞ ¼

2
6664

0 0 −1 0

0 0 0 −1
−1 0 0 0

0 −1 0 0

3
7775; ð45Þ

i.e., reflection at xþ y ¼ 0 and x0 þ y0 ¼ 0 and hence

P4
xðωÞ ¼ I: ð46Þ

In the following we use the consideration that if PxðωÞ
projects a rotating object into an oscillation in one single
transverse plane, application of P−1

x ðωÞ ¼ Pxð−ωÞ should
be the inverted process, that means projection of two
transverse oscillations onto two rotating objects.
Any arbitrary distribution may be regarded as a combi-

nation of oscillations in the two transverse planes.
Application of P−1

x ðωÞ to arbitrary particle coordinates
gives

Pxð−ωÞ

2
6664
x

x0

y

y0

3
7775¼ 1

2

2
6664
2
6664
xþ x0=ω

−ωxþ x0

x− x0=ω

ωxþ x0

3
7775þ

2
6664
y− y0=ω

ωyþ y0

yþ y0=ω

−ωyþ y0

3
7775
3
7775: ð47Þ

By defining

a ≔ xþ x0

ω
; b ≔ x −

x0

ω
;

c ≔ y −
y0

ω
; d ≔ yþ y0

ω
;

the previous expression can be restated as
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Pxð−ωÞ

2
6664
x

x0

y

y0

3
7775 ¼ 1

2

2
6664

a

−ωb
b

ωa

3
7775þ 1

2

2
6664

c

ωd

d

−ωc

3
7775; ð48Þ

describing a superposition of an object ðabÞ rotating with ω
and an object ðcdÞ rotating with −ω.
Calculation of the eigenemittances corresponding to

these two objects is straightforward. As these rotating
objects have ϵ4d ≔ ϵ1ϵ2 ¼ 0 one eigenemittance is equal
to zero and the positive difference of eigenemittances is
equal to the other eigenemittance. Applying the findings
from Sec. V B, the nonzero eigenemittances of the two
objects are

ϵab ¼ 2jωjAab and ϵcd ¼ 2jωjAcd; ð49Þ

with Aab and Acd being the rms-areas of these objects. It is
left to determine Aab and Acd using the definitions of a, b,
c, d and Eq. (10). Doing so for Aab one obtains

16A2
ab ¼ ha2ihb2i − habi2

¼ 4

ω2
hx2ihx02i − 4

ω2
hxx0i

¼ 4

ω2
ϵ2x: ð50Þ

Accordingly, the areas of the objects are simply linked to
the beam rms-areas through

Aab ¼
ϵx
2jωj and Acd ¼

ϵy
2jωj : ð51Þ

Comparison of Eqs. (49) and (51) reveals that the eigene-
mittances of the two objects are equal to the transverse
beam rms-emittances

ϵab ¼ ϵx; and ϵcd ¼ ϵy: ð52Þ

This result has been obtained very rapidly by assuming
validity of Eq. (22). It can be confirmed by going through
the arduous deviation of plugging the definitions of a, b, c,
d into Eqs. (2), (3), (5).

VII. CONCLUSIONS AND OUTLOOK

The quantity W has been introduced as the beam phase
integral or the integrated beam vorticity. For cases of
practical interest it was shown that change of difference
in transverse eigenemittances is given by the change of the
beam phase integral. This is a generalization of previous
findings that assigned this difference to angular momentum
for the special case of cylindrical symmetric beams, for
which the beam phase integral and angular momentum
merge. However, for nonsymmetric beams the two

quantities are different and the eigenemittance difference
is given by the beam phase integral instead.
The new relation drastically simplifies calculations of

eigenemittances as well as quantitative modeling of experi-
ments that tailor beam eigenemittances. Additionally, it
allows for gaining an improved physical picture of the
nature of eigenemittances. Beams are equivalent to super-
position of two rotating objects rotating with�ω inhabiting
rms-areas being equal to the beam transverse rms-emittan-
ces divided by 2jωj.
As final remark we notice the occurrence and relevance

of phase integrals in the frame of beam emittance variation
through longitudinal magnetic fields. Recently the variation
of single particle angular momentum in such environments
has been revisited with the perspective of quantization
of this angular momentum [35,36]. Future works may
address whether this concept could be extended to beam
emittances.

APPENDIX: ILLUSTRATION OF DIFFERENCE
BETWEEN BEAM ANGULAR MOMENTUM

AND PHASE INTEGRAL

This paragraph shall illustrate the difference between
angular momentum

L ¼ hxy0i − hyx0i

and beam phase integral

W ¼ 1

A
½hy2ihxy0i − hx2ihyx0i þ hxyiðhxx0i − hyy0iÞ�;

with A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihy2i − hxyi2

p
together with their role in the

context of eigenemittances. The first example treats an
ellipse performing two different types of rotation and the
second is on a thin wire moving along a rectangular orbit.

1. Rotating ellipse

The ellipse depicted in Fig. 8 starts a rigid rotation
around its center and accordingly its second moments hx2i,
hy2i, and hxyi vary during rotation. Lrig,Wrig, and the two

FIG. 8. Ellipse performing rigid and concentric rotation.
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eigenemittances ϵ1=2;rig remain constant. Calculation of
these four quantities from the second moments delivers

Lrig ¼
ω

4
a2ð1þ r2Þ; Wrig ¼

ω

2
a2r;

ϵ1;rig ¼ Δϵ ¼ Wrig ≤ Lrig; ϵ2;rig ¼ 0:

Here the eigenemittances were calculated by applying
Eqs. (2), (3), (5).
Instead in the case depicted in Fig. 9 the ellipse

performs an intrinsic rotation preserving its second
moments hx2i, hy2i, and hxyi. Recalculation of L, W,
and ϵ1=2 results into

Lint ¼
ω

2
a2r; W int ¼

ω

4
a2ð1þ r2Þ;

ϵ1;int ¼ Δϵ ¼ W int ≥ Lint; ϵ2;int ¼ 0:

Comparison of rigid and intrinsic rotation reveals that
swapping the type of rotation swaps the expressions for
L and W. Nonetheless, for both types the difference
of eigenemittances Δε is given by the beam path
integral W and not by the angular momentum L. Just
for the special case of cylindrical symmetry r ¼ 1 the
two types of rotation merge as do the two quantities,
i.e., L ¼ W ¼ ωa2=2.

2. Moving wire

The second example considers a thin wire starting to
move with constant velocity u0 around a rectangular area as
depicted in Fig. 10. Calculation of its acquired angular
momentum, beam phase integral or vorticity, and

eigenemittances is straight forward. It is lengthy for the
eigenemittances using Eqs. (2), (3), (5) and it delivers

L ¼ au0 · lðrÞ
W ¼ au0 · wðrÞ
ε1=2 ¼ au0 · e1=2ðrÞ;

with

lðrÞ ¼ 2r
1þ r

wðrÞ ¼ ð1þ rÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2 þ 10rþ 3

p

and

e1ðrÞ − e2ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ rþ 1

3

r

from Eq. (6).
As for the ellipse these quantities depend on the geo-

metric aspect ratio r and the r-dependence of the angular
momentum lðrÞ is different with respect to the one of the
beam phase integral and the difference of eigenemittances.
While the two latter scale proportional to r for large r, the
angular momentum converges to lðrÞ ¼ 2. At first glance
the expressions of wðrÞ and of the difference of eigene-
mittances seem different, but they are actually almost
identical. Figure 11 plots the angular momentum, the phase
integral, and the eigenemittances as functions of the aspect
ratio r. It reveals that the difference of eigenemittances is
very well approximated by the phase integral (the relative
difference is less than 1%). Comparing wðrÞ to e1=2ðrÞ, the
derivation of wðrÞ is significantly simpler and faster.
The angular momentum instead is obviously systemati-

cally off from the difference of eigenemittances. Just

FIG. 9. Ellipse performing intrinsic and concentric rotation.

FIG. 10. Thin wire moving around a rectangular area.

FIG. 11. Angular momentum (green), beam phase integral or
vorticity (black), difference of eigenemittances (violet), and the
two eigenemittances (red and blue) as functions of the geometric
aspect ratio r.
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for the special case of symmetry r ¼ 1, the phase integral
or vorticity is equal to the angular momentum, i.e.,
lð1Þ ¼ wð1Þ ¼ e1ð1Þ − e2ð1Þ ¼ 1. Hence, another evi-
dence has been provided that change of difference of
eigenemittances is generally given by change of vorticity
and not by change of angular momentum.
It is also illustrative to pick the opposite case of r → 0.

The rigidly rotating ellipse inhabits angular momentum but
no vorticity, while the intrinsically rotating ellipse has
vorticity but no angular momentum.
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