
 

Trapping of neutral molecules by the beam electromagnetic field
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Neutral uncharged molecules are affected by the electromagnetic field of a charged particle beam if they
carry either an electric or a magnetic dipole moment. The residual gas in an accelerator beam pipe consists
of such molecules. In this paper we study their dynamics. Under a few approximations, whose validity we
explore and justify, we derive the equations of motion of neutral molecules and their invariants, determine
the conditions for these neutral molecules to become trapped in the field of the beams as a function of
beam-pipe temperature, and compute the resulting enhancement of molecule density in the vicinity of the
beam. We demonstrate that large agglomerates of molecules, “flakes,” are much more likely to be pulled
into the beam than single molecules, and suggest that this phenomenon might help explain some beam
observations at the Large Hadron Collider.
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I. INTRODUCTION

During the 2017 and 2018 runs of the Large Hadron
Collider (LHC), abnormal beam losses, some leading to
emergency beam aborts, were observed at one particular
location, in half-cell no. 16 left of LHC interaction point 2
(“16L2”) [1,2]. These losses, occasionally accompanied
by a fast beam instability [3], were later attributed to an
accidental in-leak of air into the beam vacuum, which had
occurred while the beam screen was at a temperature of
20 K. This in-leak had resulted in a surface layer of frozen
air molecules, including oxygen, nitrogen, and water [4,5].
Molecules of such a frozen surface layer could have been
detached by beam-induced heating, synchrotron radiation,

or by the beam field. Detached molecules which approach
the beam may interact with the circulating protons.
Molecules of oxygen or nitrogen are either paramagnetic

or diamagnetic, respectively, having either a permanent or
an induced magnetic dipole moment. Water molecules, on
the other hand, carry a permanent electric dipole moment,
which makes them “polar.”
The electromagnetic force exerted on molecules exhib-

iting an induced magnetic or electric dipole moment is
much weaker than the force experienced by paramagnetic
or polar molecules, i.e., molecules with a permanent
dipole moment. For this reason, in the following, we will
not further discuss the motion of molecules with only
induced dipole moments. Instead, our objective is to
simulate and analyze the motion of neutral molecules
carrying a permanent magnetic or electric dipole moment,
in particular of the paramagnetic oxygen and of the
polar water molecules, subjected to the charged-particle
beam field.
If interactions with the residual gas limit the beam

lifetime, the motion of neutral molecules inside the vacuum
chamber becomes important. The motion of paramagnetic
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or polar molecules in an electromagnetic field is governed
by their electric and magnetic dipole moments.
We start this article by surveying the electric and

magnetic dipole moments of a few relevant molecules.
Then we construct the equations of motion for such neutral
molecules subjected to the electromagnetic field of the
beam, at first crudely approximated by a thin-wire model.
We solve these equations numerically, using a Runge-Kutta
method, for different initial conditions, in order to identify
the critical parameters for the molecule motion. Next,
considering a more realistic Gaussian beam distribution,
and recognizing important constants of motion, we estimate
the position-dependent critical temperature for molecules to
be trapped by the electric or magnetic field of the charged-
particle beam. Expanding this analytical treatment, we
derive the general trapping efficiency as a function of
temperature, and the local density enhancement resulting
from the gas molecules’ permanent dipole moments, which
depends on beam current and temperature. Finally, we
consider the special case of “flakes,” i.e., agglomerates or
clusters of many molecules carrying a dipole moment, and
show that such flakes are more easily trapped in the field of
the beam than their individual constituent molecules.
To simplify the equations, we are assuming the electric

or magnetic dipole moments to always be aligned with the
corresponding local field of the beam. In the Appendix we
investigate the validity of this assumption.

II. PERMANENT DIPOLE MOMENTS OF
NEUTRAL MOLECULES

The electric dipole moment (EDM) p⃗ for a pair
of charges of the same magnitude but opposite sign is
defined as

p⃗ ¼ QL⃗; ð1Þ

where Q denotes the magnitude of charges and L⃗ is the
displacement vector pointing from the negative charge
to the positive charge. The SI unit of the EDM is the
Coulomb meter (C m). In atomic physics also the unit
Debye (D) is used (1 D ≈ 0.21 eÅ with e the electron
charge and 1 Å ¼ 0.1 nm).
If a molecule with nonzero EDM is exposed to an

external electric field the molecule experiences a torque τ⃗
given by

τ⃗ ¼ p⃗ × E⃗: ð2Þ

Through the effect of τ, the electric dipole of the molecule,
hence the molecule itself, tends to align its axis with the
direction of the applied electric field. The amount of the
torque is maximum if the dipole moment is oriented at
an angle of 90 degrees with respect to the external
electric field.

Molecules with an asymmetric internal charge
separation like H2O or CO feature a permanent nonzero
EDM. In fact, we can decompose the dipole moment
of H2O, into an effective charge Q and distance L, for
example, as Q ¼ 10e and jL⃗j ¼ 3.9 × 10−12 m, and hence
jp⃗H2Oj ¼ 6.2 × 10−30 Cm, where e ≈ 1.6 × 10−19 C
denotes the elementary electron charge. For the water
molecule, it should be noted that L is a distance chosen
to reproduce the measured dipole moment, for a given
charge Q. However, the actual geometry of the H2O
molecule resembles an isosceles triangle with two equal
sides of about 1 Å each, and one longer side of 1.6 Å. This
circumstance should be carefully considered in future
modeling. Similarly, for CO, we can assign Q ¼ 14e, and
jL⃗j ¼ 1.8 × 10−13 m, to obtain jp⃗COj ¼ 4.06 × 10−31 Cm.
On the other hand, molecules with a mirror-symmetric
charge distribution, like N2, O2, or CO2, exhibit zero
permanent EDM ([6,7] and Chapter 3 of [8]).
Like the electric dipole moment, also the magnetic

dipole moment (MDM) μ⃗ is known as a property of both
fundamental and less fundamental particles. The MDM can
be expressed as a vector μ⃗,

μ⃗ ¼ e
2M

ηv⃗; ð3Þ

where e, M and η are the charge, mass and reduced Planck
constant of a particle, respectively. The unit vector v⃗
represents the direction of the MDM. In the case of the
electron, μ⃗e is known as a Bohr magneton (BM) and its
value is 9.27 × 10−24 J=T.
Molecules can also feature a nonzero MDM. Similar to

the case of the EDM in an electric field, a molecule with a
certain MDM exposed to an external magnetic field is
subject to a torque τ⃗, according to

τ⃗ ¼ μ⃗ × B⃗: ð4Þ

For both EDM and MDM, the torque is zero only if the
dipole moment axis is aligned with the field direction.
The magnitude of the molecular MDM depends on the

electron configuration in the valence shell. The magnetic
dipole moment arising due to unpaired electron spins is [9]

μs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 2Þ

p
μe; ð5Þ

where n denotes the number of unpaired electrons. In the
case of an oxygen molecule, O2, two unpaired electrons are
present, n ¼ 2, so that the μs for oxygen is 2.8 μe. Due
to this nonzero value of its MDM, the oxygen molecule
exhibits paramagnetic properties.
Other molecules, like N2, CO2, CO and H2O, do not

possess any unpaired electron in their respective valence
shell. Therefore, the spin magnetic dipole moment of these
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molecules is zero [6,8,10]. These molecules are called
diamagnetic.
In the case of an air in-leak into the vacuum system of

an accelerator beam pipe, air molecules flowing into the
vacuum pipe consist of nitrogen, oxygen, carbon dioxide,
and water vapors, which carry specific electric and mag-
netic dipole moments. Table I shows relevant dipole
moments for such air molecules, with their respective
magnitude.

III. MOLECULE MOTION ARISING FROM
THE DIPOLE MOMENTS

If a neutral molecule is exposed to an electric field E⃗ and
to a magnetic field B⃗, its center of mass experiences the
force

F⃗t ¼ ðμ⃗ ·∇ÞB⃗þ ðp⃗ ·∇ÞE⃗; ð6Þ

where p⃗ and μ⃗ denote the molecule’s electric and magnetic
dipole moment, respectively. In the following we assume
that the magnetic and electric dipole moments are inde-
pendent of location and, in particular, independent of the
magnitude of the external fields.
As a next step, we now consider the force experienced by

a molecule when subjected to the electric E⃗ and magnetic B⃗
field generated by the beam. As p⃗ and μ⃗ oscillate around the
direction of E⃗, and B⃗, respectively, the motion of molecules
may become quite complex.
The dynamics of the molecules is characterized by

multiple timescales. The shortest timescale corresponds
to the vibrations of the atoms around their equilibrium
position. The next, longer, timescale refers to the frequency
at which the molecule’s electric or magnetic dipole moment
oscillates around the respective field. Lastly, the longest
timescale refers to the periodicity of a molecule’s center-
of-mass motion under the influence of the field gradient.
If the period of oscillation of p⃗ and μ⃗ is shorter than

the characteristic time of change of B⃗ and E⃗—this change
being due either to the molecule dynamics or due the
variation of the beam fields (individual bunch passages,
injection, etc.)—we may assume that p⃗ and μ⃗ are and

remain aligned with their respective beam field. In the
Appendix we present a detailed discussion on the validity
of this approximation.
Our simplifying assumption would also imply a highly

specific relation between p⃗ and μ⃗, if both were simulta-
neously present, which, however, is not the case for any of
the air molecules in question (compare Table I).
We note that in the case of a complete alignment of their

magnetic and electric dipole moment with the correspond-
ing beam field, the force on the molecules will be
maximum, hence leading to the largest possible excursion
of the molecule motion, and therefore, to a conservative
assessment of the potential impact. In the Appendix, we
examine the validity of the alignment assumption.
Without any other external field, or in close proximity to

the beam, the dominant component of the electric or
magnetic field is the one produced by the circulating beam.
In this section, we model the magnetic field by approxi-

mating the beam current as concentrated in a delta-
function-like manner into one transverse point at the center
of the vacuum chamber, corresponding to the magnetic
field of an extremely thin current-carrying wire. In later
sections, we will consider the field of a more realistic beam
distribution.
The thin-wire model properly describes the field at a

radial distance r outside of a round (or approximately
round) beam. This field reads

B⃗ ¼ μ0I
2πr

r⃗
r
× ẑ; ð7Þ

where ẑ is a unit vector in the direction of the beam motion
and I denotes the average beam current. The quantity μ0 ¼
4π × 10−7 H=m is the permeability of free space. The
motion of the neutral molecules typically is extremely slow
compared with the time interval between the passage of
individual bunches of the beam. For this reason, it is
sufficient to consider the average beam current I, without
taking into account any bunch structure. The magnetic field
strength and field pattern are illustrated in Fig. 1.
Also the electric field generated by the round or

approximately round beam, outside the beam core can
approximately be described in a thin-wire approximation,
as the field of a line charge distribution, namely as

E⃗ ¼ λ

2πϵ0

1

r
r⃗
r
; ð8Þ

where λ ¼ Q=C is the line charge density, with Q the total
charge in the accelerator and C the accelerator circum-
ference, ϵ0 ¼ 8.85 × 10−12 F=m the permittivity of free
space, and r the radial distance. For an ultrarelativistic
beam we have I ¼ cλ, and hence

E⃗ ¼ I
2πϵ0c

1

r
r⃗
r
: ð9Þ

TABLE I. Permanent electric (EDM) and magnetic dipole
moments (MDM) of various air molecules in units of Debye
(D) and Bohr magneton (BM), respectively, along with the
molecule mass M in atomic mass units (amu).

Molecule EDM [D] MDM [BM] M [amu]

H2O 0.39 0 18
O2 0 2.8 32
CO 0.025 0 28
N2 0 0 28
CO2 0 0 44
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Figure 2 displays the magnitude of the magnetic and
electric fields for a beam with I ¼ 1 A current as a function
of radial position and Fig. 3 illustrates the electric field
pattern around the beam.
The equations of motion for molecules with electric and

magnetic dipole moment are constructed under the approxi-
mation previously discussed. Namely we use our ansatz
that the EDM and MDM are aligned with the electric and
magnetic field generated by the beam, respectively. Namely
we write

p⃗ ¼ p
r⃗
r

and μ⃗ ¼ μ
r⃗
r
× ẑ: ð10Þ

Inserting these equations, together with Eqs. (9) and (7),
into Eq. (6), we obtain

Fx ¼ −
�
μμ0I
2π

þ pI
2πϵ0c

�
x

ðx2 þ y2Þ3=2 ;

Fy ¼ −
�
μμ0I
2π

þ pI
2πϵ0c

�
y

ðx2 þ y2Þ3=2 : ð11Þ

Hence, the equations of motion become

dvx
dt

¼ −
p̃I

2πϵ0Mc
x

ðx2 þ y2Þ3=2 ;
dvy
dt

¼ −
p̃I

2πϵ0Mc
y

ðx2 þ y2Þ3=2 ; ð12Þ

where I is the beam current,M is the molecule mass, and p̃
is an “effective” dipole moment, defined as

p̃ ¼ pþ μ

c
: ð13Þ

In order to integrate the equations of motion, the initial
conditions of a molecule are required, namely its initial
velocity and initial position, r⃗0 and v⃗0.
For our study we consider molecules having an initial

velocity consistent with a certain temperature T, and having
random component in the x, y directions. The rms thermal
transverse velocity of a molecule, in the x-y plane, can be
estimated by the classical formula,

vth ¼
ffiffiffiffiffiffiffiffi
kbT
M

r
; ð14Þ

where kb designates the Boltzmann constant, T is the
temperature and M is the mass of the molecule.
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beam leaving the picture plane towards the reader.
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The top panel of Fig. 4 represents the variation of vth as a
function of temperature. The bottom panel shows the
kinetic energy E in units of meV as a function of vth.

IV. MOTION PHENOMENOLOGY

A numerical solution of the equations of motion has
been implemented using the software package
Mathematica [11]. SI units are used for all physical
quantities. Different initial thermal velocities and positions
are considered for the simulation of molecules motion in
the electromagnetic field of the beam in order to identify
the critical parameters. In the simulation we can vary, for
example, the initial velocity and the initial position of a
molecule.
The beam current is taken to be 1 Ampere. In all cases,

we assume that a molecule’s electric or magnetic dipole
moment is always completely aligned with the electric
or magnetic field of the beam, respectively (see the
Appendix).
We first consider molecules at 1 mm distance from the

beam with zero initial velocity. Such molecules will get
trapped in the electromagnetic field of the beam and
undergo an oscillatory motion. Figure 5 shows the hori-
zontal motion of such H2O, CO, and O2 molecules, initially

at rest, as a function of time. The oscillation period depends
on the dipole moment and on the mass of the molecules.
In particular, the oxygen molecules perform oscillatory
motion, if subjected to the magnetic field of the beam, due
to their magnetic dipole moment, while they are not
affected by the electric beam field, since they possess zero
EDM. By contrast, water and carbon monoxide molecules
undergo an oscillatory motion due to the electric field of the
beam, since they carry a nonzero electric dipole moment.
Figure 6 displays the molecule motion in the x-y plane.
We now add an extremely small random initial velocity

corresponding to a temperature of order 1 mK. Since
particles are launched with different initial velocities in
the x and y direction, the vertical and horizontal motion are
not identical. Figure 7 presents some examples of x and y
motion with respect to time, for this case of a small initial
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FIG. 4. The rms transverse thermal velocity of a molecule, vth,
as a function of temperature (top) and the average kinetic energy
versus the rms thermal velocity vth (bottom).

FIG. 5. Motion of neutral molecules initially 1 mm from the
beam, at rest, and subjected to the electromagnetic field of the
beam, as seen in the horizontal direction. Different colors
correspond to different molecules as indicated.
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monoxide molecules initially at rest, 1 mm from the beam,
and subjected to the electromagnetic field of a beam, in the
transverse plane.With zero initial velocity, all molecules pos-
sessing either a magnetic or electric dipole moment undergo an
oscillatory motion.

TRAPPING OF NEUTRAL MOLECULES BY THE … PHYS. REV. ACCEL. BEAMS 24, 054001 (2021)

054001-5



velocity, and Fig. 8 the corresponding picture of motion in
the transverse plane.
We next increase the temperature to 15 K, a typical

temperature of the LHC beamscreen (which is held
between about 5 and 20 K). Molecules are again launched
at a distance of 1 mm from the beam. Figures 9 and 10
present the molecule motion for this case. Under these
conditions, single molecules of oxygen, water, and carbon
monoxide do not get trapped in the electromagnetic field
of the beam, as their large thermal velocity overcomes the
effective potential created by the beam field. Instead of
getting trapped in the beam field, these molecules hit the
vacuum chamber wall. In our simple model here, we
assume that the molecules then bounce back from the wall
elastically. The wall is set at 6 mm, about 3 times closer
than the actual LHC beam pipe, which has a radius of about
20 mm. Trapping at 15 K would still be possible if the
initial distance of a molecule from the beam were just
1 nm (!).
Another possibility for molecules to be trapped is to

increase their mass M, and, thereby, reduce their initial
thermal velocity, according to Eq. (14). Indeed, it is
extremely likely that molecules with a permanent dipole
moment form flakes or clusters, consisting of 10,000 or
many more oxygen or water molecules; see Sec. X. We
should then explore the motion of such flakes. Again we

may assume that the magnetic or electric dipole moment of
a flake of molecules is completely aligned with the
direction of the beam’s electric or magnetic field. Our
simple simulation shows that, in equilibrium at 15 K, a
flake of 104 molecules will be captured by the beam field,
even when its starting position is at a radial distance of
1 mm. Figures 11 and 12 display the time evolution of
x and y centroid coordinates and the corresponding phase
space for a flake of molecules.

V. TRAPPING BY BEAM POTENTIAL

We observe that the dynamics described by the equations
of motion (12) admit a constant of motion:

FIG. 7. Motion of neutral molecules initially at 1 mm from the
beam with a thermal velocity corresponding to a temperature of
0.9 mK, and subjected to the electromagnetic field of the beam, in
the horizontal (top) and the vertical direction (bottom). Different
colors correspond to different molecules as indicated.
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thermal velocity corresponding to a temperature of order 1 mK,
and subjected to the electromagnetic field of a beam, in the
transverse plane. The initial thermal velocities were for O2 vth ¼
0.2 m=s (0.1 mK), for water vth ¼ 3 m=s (20 mK), and for CO
vth ¼ 0.3 m=s (0.3 mK).
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FIG. 9. Motion of neutral molecules initially at 1 mm from the
beam with a thermal velocity corresponding to a temperature of
15 K, and subjected to the electromagnetic field of the beam, in
the vertical direction, with a hypothetical chamber wall at a radius
of 6 mm. Different colors correspond to different molecules as
indicated.
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C ¼ 1

2
ðv2x þ v2yÞ −

p̃I
2πϵ0Mc

1

r
: ð15Þ

If C is positive the motion is unstable and the trajectory of
the molecule diverges. If instead C < 0 the motion is stable
and a molecule oscillates between a maximum and a
minimum radius. Therefore, for a molecule initially located
at r⃗0 and having a temperature T0 defined by its initial
velocities as T0 ≡Mðv2x;0 þ v2y;0Þ=kb, the invariant C
assumes the value

C ¼ 1

2

kbT0

M
−

p̃I
2πϵ0Mc

1

r0
:

In order for a molecule to exhibit stable motion (trapping),
its invariant C must be negative, and hence the temperature
T0 (in the following just written as T) must be smaller than
a limiting temperature T limðr0Þ, according to

T < T limðr0Þ ¼
p̃I

πϵ0kbc
1

r0
: ð16Þ

Above the limiting temperature the molecule motion
becomes unstable. Evidently, this condition depends on
the initial radial position r0. This formula also suggests that
if r0 → 0 any temperature is admitted, but this is an artifact
of the thin-wire model for the beam, which we employ
here. In fact, at r → 0 the beam field diverges, which is
nonphysical and originates from our adopted model. With
this caveat, we can still roughly estimate a limiting temper-
ature below which a molecule would be trapped. Such a
limiting temperature can be obtained by considering an
initial position at the beam pipe. Denoting by Rp the radius
of the beam pipe, we have
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FIG. 10. The motion of neutral oxygen, water and carbon
monoxide molecules initially at 1 mm from the beam with a
thermal velocity corresponding to a temperature of 15 K, and
subjected to the electromagnetic field of a beam, in the transverse
plane. The initial thermal velocities were vth ¼ 62 m=s for O2,
vth ¼ 82 m=s for water, and vth ¼ 67 m=s for CO. Note the
assumption of perfect elastic collisions with the chamber wall.

FIG. 11. Motion of neutral flakes of molecules initially at 1 mm
from the thin-wire beam with a thermal velocity corresponding to
a temperature of about 15 K, and subjected to the electromagnetic
field of the beam, in the horizontal (top) and the vertical direction
(bottom). Different colors correspond to different types of
constituent molecules as indicated.
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FIG. 12. The motion of neutral oxygen, water and carbon
monoxide molecule flakes initially at rest, initially 1 mm from the
thin-wire beam, and subjected to the electromagnetic beam field,
in the transverse plane, for a pipe temperature of about 15 K.
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T lim ¼ p̃I
πϵ0kbc

1

Rp
: ð17Þ

However, even some molecules with T < T lim may still be
lost, and hit the beam pipe, even if they could not escape to
infinity. By requiring that the maximum radius reached by a
molecule be less than the beam pipe Rp, we can further
constrain the set of initial positions of molecules with
temperature T, in order for them to remain trapped by the
beam field. With a little bit of algebra we find that a
molecule with initial position r0 and temperature T is
trapped inside the beam pipe, if

r0
Rp

≤
1

1þ πϵ0kbc
p̃

TRp

I

¼ f: ð18Þ

For an initially uniform distribution of molecules, the
fraction of molecules trapped with respect to all molecules
present in the beam pipe is f2. Therefore, if ñ signifies the
density of the molecules at temperature T, the number of
molecules trapped per unit length, i.e., the line density of
trapped molecules, is

λtrapped ¼ ñf2πR2
p:

Note that πϵ0kbc ¼ 1.1 × 10−25 C2=ðKsÞ.
For example, considering H2O molecules, with p̃≃

6.2 × 10−30 Cm, we find

f ¼ 1

1þ 18.5 × 103
TRp

I

:

Further, with I ¼ 1 A, and Rp ¼ 0.1 m the expression for
f becomes

f ¼ 1

1þ 1.85 × 103 T½K� ;

which implies that only extremely cold molecules can be
trapped by the beam. At T ¼ 54 mK the normalized
trapping radius would be f ¼ 0.5, and, consequently,
25% of the molecules of this temperature present in the
pipe would be trapped. If instead we require that a molecule
trapped remains inside the beam of radius Rb ¼ 3σ (with σ
the true rms beam size), then we need to demand

r0
Rb

≤
1

1þ πϵ0kbc
p̃

TRb
I

:

For σ ¼ 0.333 mm, we find Rb ¼ 1 mm and

r0
3σ

≤
1

1þ 18.5 T½K� :

Therefore, if T ¼ 0.108 K, a molecule initially at r0=σ ≤ 1
will be trapped within the radius Rb ¼ 3σ. Basically, the
hotter molecules have to be closer to the beam center,
where the fields are stronger, in order to be trapped.
Conversely, molecules at a distance r0 ¼ Rb ¼ 3σ would
need to be extremely cold to remain inside the beam. This,
however, is an artifact of the adopted thin-wire model for
the beam field. A more realistic model will be developed in
the next section.

VI. ARBITRARY AXISYMMETRIC BEAM

Next we consider an axisymmetric beam with charge line
distribution,

ρðrÞ ¼ I
πσ2c

n
�
r2

σ2

�
; ð19Þ

defined for an ultrarelativistic beam, with nðuÞ a function of
u satisfying the normalizationZ

∞

0

nðuÞ du ¼ 1: ð20Þ

For a Gaussian distribution, this function assumes the form

nðuÞ ¼ 1

2
e−

u
2: ð21Þ

By applying Gauss’ law, we find the electric field
E⃗ðr⃗Þ ¼ EðrÞr⃗=r, with

EðrÞ ¼ 1

2πϵ0c
I
1

r
N
�
r2

σ2

�
; ð22Þ

where for convenience we define the function

NðuÞ ¼
Z

u

0

nðu0Þdu0: ð23Þ

The magnetic field is computed by applying Ampere’s
law, yielding

B⃗ðr⃗Þ ¼ BðrÞ r⃗
r
× ẑ; ð24Þ

with

BðrÞ ¼ μ0
2π

I
1

r
N
�
r2

σ2

�
: ð25Þ

Next we apply Eq. (6) to the magnetic field case for an
aligned MDM to obtain

ðμ⃗ ·∇ÞB⃗ ¼ μ
X
i

�
r⃗
r
× ẑ

�
i
∂i

�
BðrÞ r⃗

r
× ẑ

�
: ð26Þ
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With some straightforward algebra we obtain

ðμ⃗ · ∇ÞB⃗ ¼ −μ
BðrÞ
r

r⃗
r
: ð27Þ

Instead, for the electric field, and, as before, considering
the EDM to be aligned with the field, the force on the
molecule becomes

ðp⃗ ·∇ÞE⃗ ¼ p
X
i

�
r⃗
r

�
i
∂i

�
EðrÞ r⃗

r

�
; ð28Þ

which, again with straightforward algebra, becomes

ðp⃗ · ∇ÞE⃗ ¼ pE0ðrÞ r⃗
r
: ð29Þ

Therefore, the general force acting on a molecule
exposed to the electric and magnetic field of an axisym-
metric beam is

F⃗t ¼ ðp⃗ ·∇ÞE⃗þ ðμ⃗ ·∇ÞB⃗ ¼
�
pE0ðrÞ − μ

BðrÞ
r

�
r⃗
r
: ð30Þ

Nowwe substitute the expressions for EðrÞ and BðrÞ to find

F⃗t ¼
1

2πϵ0c
I

�
p

�
1

r
N
�
r2

σ2

��0
−
μ

c
1

r2
N
�
r2

σ2

��
r⃗
r
;

that is

F⃗t ¼
1

2πϵ0c
I
σ2

�
2pn

�
r2

σ2

�
− p̃

σ2

r2
N
�
r2

σ2

��
r⃗
r
; ð31Þ

with the previous definition of the effective dipole moment,
p̃ ¼ ðpþ μ=cÞ [see Eq. (13)].
We note that for particles outside a beam of rms size σ,

namely at r ≫ σ, we have nðr2=σ2Þ ≈ 0 and Nðr2=σ2Þ ≈ 1,
so that outside the beam the formula for the force equals the
one of the thin-wire model.
In Eq. (31), the term in square brackets is a geometric

term, specific to the type of beam distribution. If in the core
of the beam the radial charge density is uniform, we expect

nðuÞ ≈ n0 and NðuÞ ≈ n0u; ð32Þ

with n0 ¼ nð0Þ, so that Eq. (31) reads

F⃗t ≈
1

2πϵ0c
I
σ2

n0½2p − p̃� r⃗
r

and the force for the EDM is of opposite sign to the one for
the MDM.

For the EDM, we obtain

F⃗t ≈
1

2πϵ0c
I
σ2

n0p
r⃗
r
;

while, for the MDM, we have

F⃗t ≈ −
1

2πϵ0c
I
σ2

n0
μ

c
r⃗
r
:

So, it seems that molecules with EDM cannot be trapped in
the core of the beam where the beam density is uniform.
This situation is unusual, because, once EDM molecules
leave the beam core, they experience a stabilizing force,
corresponding to the force of the thin-wire model.
Figure 13 illustrates the horizontal forces experienced by

molecules with either an EDM or a MDM, as a function
of the horizontal position x along an axis passing through
the center of the Gaussian beam, located at x ¼ 0. For
convenience, the forces [Eq. (31)] are normalized by
multiplying with ð2σÞ=ðkbT�

pÞ or ð2σÞ=ðkbT�
μÞ, where we

define the reference temperature

T�
p ¼ 1

πϵ0kbc
I
σ
p; ð33Þ

or, respectively,

T�
μ ¼

1

πϵ0kbc
μ

c
I
σ
: ð34Þ

We will refer to T�
p, Eq. (33), and T�

μ, Eq. (34), as the
“trapping temperature.” The shape of the force in Fig. 13
suggests that the EDM molecules may oscillate not around
the beam center, but rather around an equilibrium radius re,
which is of the order of the beam size.
Incidentally, the trapping temperatures T�

p and T�
μ

resemble the limiting temperature T limðr0Þ defined in
Eq. (16) or T lim of Eq. (17). The various characteristic
temperatures simply correspond to different areas of trap-
ping. While T�

p and T�
μ refer to trapping over a radial length

scale equal to the rms beam size, the temperature T lim
indicates trapping within the beam pipe Rp, for the thin-
wire model. A universal trapping temperature could be
introduced as T� ¼ p̃I=ðπϵ0kbcSÞ, with S denoting the
characteristic length scale of trapping.
In general, from (31), the equilibrium radius re for the

EDM is the solution of the equation

2n
�
r2

σ2

�
¼ σ2

r2
N
�
r2

σ2

�
: ð35Þ

For a Gaussian beam
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nðuÞ ¼ 1

2
e−

u
2; NðuÞ ¼

Z
u=2

0

e−wdw ¼ 1 − e−u=2;

so that Eq. (35) becomes

w2e−w
2=2 ¼ 1 − e−w

2=2

with w2 ¼ r2e=σ2. Its solution is re=σ ¼ 1.585201 ≃ π=2.
For a beam with a Kapchinskij-Vladimirskij (K-V)

distribution [12,13], instead, such equilibrium solution
does not exist, and the force acting on an EDM molecule
will be subject to a discontinuity at the beam edge. Namely,
for a K-V beam, at r < Rb the force is constant and
defocusing, whereas at r > Rb it is attractive and non-
linearly decreasing with amplitude.

VII. OSCILLATION FREQUENCY

According to (31), and introducing the radial velocity
v⃗≡ dr⃗=dt, for EDM molecules the equation of motion
reads

dv⃗
dt

¼ 1

2πϵ0Mc
I
σ2

p

�
2n

�
r2

σ2

�
−
σ2

r2
N
�
r2

σ2

��
r⃗
r
: ð36Þ

Expanding around the equilibrium radius re we find

dv⃗
dt

¼ 1

2πϵ0Mc
I
σ2

p

�
4
re
σ
n0
�
r2e
σ2

�
þ 2

σ

re
n
�
r2e
σ2

��
r − re
σ

r⃗
r
:

ð37Þ

Using the equilibrium radius re and nðuÞ for a Gaussian
distribution, to good approximation, the term in the
square bracket is equal to −e=10 (the exact number is
−0.2716776662…). Then Eq. (37) becomes

dv⃗
dt

≈ −
e
10

p
2πϵ0Mc

I
σ2

ðr − reÞ
σ

r⃗
r
: ð38Þ

Therefore, the angular oscillation frequency is

ω ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
10

p
2πϵ0Mcσ3

I
r

: ð39Þ

For a water molecule, H2O, characterized by M ¼
3 × 10−26 kg and p ¼ 6.2 × 10−30 Cm, and a beam with
σ ¼ 3 × 10−4 m and I ¼ 1 A, we find ω ¼ 11189 rad=s.
Hence, in this case, the frequency of oscillation around the
equilibrium radius re is f ¼ ω=ð2πÞ ¼ 1780 Hz, which,
for the LHC, is of the order of the fractional betatron
frequency.
For a molecule featuring an MDM, instead of Eq. (38)

we have

dv⃗
dt

¼ −
1

2πϵ0Mc
I
σ2

μ

c
σ2

r2
N
�
r2

σ2

�
r⃗
r
: ð40Þ

Now the equilibrium radius is the beam center r ¼ 0. Close
to this point, with a central beam density n0, the oscillatory
motion follows the equation

dv⃗
dt

¼ −
1

2πϵ0Mc
I
σ2

μ

c
n0

r⃗
r
; ð41Þ

and so the beam seems to create a constant central force
pointing towards the beam center. Here, an MDMmolecule
oscillates at a frequency which depends on the square root
of the maximum oscillation amplitude.

VIII. INVARIANTS AND TRAPPING

Starting again from (31) and multiplying with the radial
velocity v⃗≡ vr⃗=r, we can rewrite the equation of motion as

d
dt

1

2
v2

¼ 1

2πϵ0Mc
I
σ

�
p
σ

r
d

dðr=σÞN
�
r2

σ2

�
− p̃

σ2

r2
N
�
r2

σ2

��
d
dt

�
r
σ

�
:

For EDM molecules we have

d
dt

1

2
v2 ¼ 1

2πϵ0Mc
I
σ
p
d
dt

�
σ

r
N
�
r2

σ2

��
; ð42Þ

and the integral of motion becomes

FIG. 13. The horizontal normalized force acting on an EDM
(black) or MDM molecule (red), respectively, as a function of the
transverse ðx; 0Þ coordinate. The equilibrium position for the
EDM case is indicated by the label re. Note that for both types of
dipole moment the force is discontinuous at x ¼ 0.
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1

2
v2 −

kbT�
p

2M
σ

r
N
�
r2

σ2

�
¼ D; ð43Þ

where we have used the reference temperature T�
p, defined

in Eq. (33). The constant D is determined by the initial
conditions, namely

1

2
v20 −

kbT�
p

2M
σ

r0
N
�
r20
σ2

�
¼ D: ð44Þ

Now, the condition for a particle with initial conditions
(r0, v0) to be trapped within the radius Rb is

v20 <
kbT�

p

M

�
σ

r0
N
�
r20
σ2

�
−

σ

Rb
N
�
R2
b

σ2

��
: ð45Þ

Note that not all values of r0 are admitted. In fact, for
r0 → 0 we find

σ

r0
N
�
r20
σ2

�
→ 0:

Therefore, as could be guessed by looking at Fig. 13, there
is a minimum r0;min associated with Rb so that

σ

r0;min
N
�
r20;min

σ2

�
¼ σ

Rb
N
�
R2
b

σ2

�
: ð46Þ

Molecules with a smaller initial value of r0 cannot be
trapped.
Equation (45) sets a constraint on the trapping for a gas

of molecules of temperature T. At a given value of r0, the
fraction f of the particles that can be trapped is obtained by
integrating the Maxwell-Boltzmann distribution:

f ¼
Z
v2xþv2y<v20

1

2π

M
kbT

e−
Mv2
2kbTdvxdvy ¼ 1 − exp

�
−
1

2

Mv20
kbT

�

as

f ¼ 1 − exp

�
−
1

2

T�
p

T

�
σ

r0
N
�
r20
σ2

�
−

σ

Rb
N
�
R2
b

σ2

���
: ð47Þ

The total amount of gas trapped in the beam at Rb ¼ 3σ is
determined by integrating over the initial radii:

Ntrap ¼ ñ
Z

Rb

r0;min
(1 − exp

�
−
1

2

T�
p

T

�
σ

r0
N
�
r20
σ2

�

−
σ

Rb
N
�
R2
b

σ2

���
)2πr0dr0; ð48Þ

where ñ denotes the gas density (molecules per volume).
This can be further transformed to

Ntrap

ñπR2
b

¼ 1 −
�
r0;min

Rb

�
2 − 2

σ2

R2
b

exp

�
1

2

T�
p

T
σ

Rb
N
�
R2
b

σ2

��

×
Z

Rb=σ

r0;min=σ
exp

�
−
1

2

T�
p

T
Nðu2Þ
u

�
u du: ð49Þ

This formula can be integrated numerically with results
shown in Fig. 14, for the case of a Gaussian distribution.
For H2O with a beam of 1 A beam current and

σ ¼ 3 × 10−4 m rms beam size we find T�
p ¼ 0.18 K.

This temperature is of similar magnitude as the trapping
temperature predicted earlier by the thin-wire model, but
the trapping efficiency is much reduced for this more
realistic Gaussian beam distribution. Indeed, the right panel
of Fig. 14 suggests that for a gas of H2O molecules with
temperature T ¼ 2 K, corresponding to T=T�

p ¼ 11.1, the
fractional trapping is ≃0.016, or only about 1.6%. If instead
T ¼ T�

p, Fig. 14 (right) shows that the fraction of trapped
particles would be ≃0.067 or close to 7%.
For MDM molecules, the equation of motion becomes

d
dt

1

2
v2 ¼ −

1

2πϵ0Mc
I
σ

μ

c
d
dt

Z
r=σ

0

1

u2
Nðu2Þdu;

yielding the constant of motion E,

1

2
v2 þ kbT�

μ

2M
N2

�
r
σ

�
¼ E;

where we have used the trapping temperature T�
μ, defined in

Eq. (34), and the new function

N2ðuÞ ¼
Z

u

0

1

v2
Nðv2Þdv: ð50Þ

In this case, the motion may be confined for E > 0. In
particular, for a molecule to be trapped inside the beam
radius Rb, its phase-space coordinates r, v should satisfy

FIG. 14. Fraction of EDM molecules trapped in the beam as a
function of T=T�

p, for T from 0 to 2T�
p (left) and through 20T�

p
(right). For this calculation we considered trapping inside a radius
of Rb ¼ 3σ, with σ the rms beam size.
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v2 þ kbT�
μ

M
N2

�
r
σ

�
≤
kbT�

μ

M
N2

�
Rb

σ

�
;

or

v2 ≤
kbT�

μ

M

�
N2

�
Rb

σ

�
− N2

�
r
σ

��
:

In this case the fraction of trapped particles in a Maxwellian
gas is

f ¼ 1 − exp

�
−
1

2

T�
μ

T

�
N2

�
Rb

σ

�
− N2

�
r
σ

���
: ð51Þ

As before, this result applies to particles located at r=σ.
Again, the total fraction of trapped particles is obtained by
integrating over all locations in the beam pipe, that is

Ntrap

ñπR2
b

¼ 1 − 2
σ2

R2
b

exp

�
−
1

2

T�
μ

T
N2

�
Rb

σ

��

×
Z

Rb=σ

0

exp

�
1

2

T�
μ

T
N2ðuÞ

�
udu:

Figure 15 displays the total fraction of trapped molecules
as a function of T=T�

μ for the case of a beam with an
axisymmetric Gaussian distribution.
As an example, considering oxygen molecules, O2, an

rms beam size σ ¼ 3 × 10−4 m and an average beam
current I ¼ 1 A, we find T�

μ ¼ 2.5 mK. So, for molecules
at a temperature of T ¼ 2 K, we have T=T�

μ ¼ 800 and
the fraction of trapped molecules is only 1.21 × 10−4 or
0.0121%, while for T=T�

μ ¼ 1 the fractional trapping is
≃0.088 or about 8.8%.

IX. PINCH OF NEUTRAL MOLECULES

The fraction of trapped molecules, extracted from the
constant of motion and the temperature, is an important
indicator, but it does not provide any prediction for
the average particle density as a function of radial position.

To obtain such a prediction, we need to integrate the
equation of motion. For molecules equipped with an EDM
we start from Eq. (36). Using the definition of T�

p (33), this
becomes

dv⃗=σ
dt

¼ 1

2

kb
Mσ2

T�
p

�
2n

�
r2

σ2

�
−
σ2

r2
N
�
r2

σ2

��
r⃗=σ
r=σ

: ð52Þ

Defining r̂≡ r⃗=σ, this transforms to

d2r̂
dt2

¼ 1

2

kbT�
p

Mσ2

�
2nðr̂2Þ − 1

r̂2
Nðr̂2Þ

�
r̂
jr̂j : ð53Þ

Employing the rms transverse thermal velocity of the gas
molecules,

vth ¼
ffiffiffiffiffiffiffiffi
kbT
M

r
; ð54Þ

we normalize the time coordinate as

t̂ ¼ tvth=σ; ð55Þ

and find

d2r̂
dt̂2

v2th
σ2

¼ 1

2

kbT�
p

Mσ2

�
2nðr̂2Þ − 1

r̂2
Nðr̂2Þ

�
r̂
jr̂j : ð56Þ

Note that vth=σ is the rms inverse time a molecule would
need to travel across the beam size σ.
Using the definition of the gas temperature, we obtain

d2r̂
dt̂2

¼ 1

2

T�
p

T

�
2nðr̂2Þ − 1

r̂2
Nðr̂2Þ

�
r̂
jr̂j : ð57Þ

We observe that, in these dimensionless scaled coordinates,
the velocity of the molecule is

dr̂
dt̂

¼ dr⃗
dt̂

1

σ
¼ v⃗

dt
dt̂

1

σ
¼ v⃗

vth
; ð58Þ

which means that the initial distribution of the normalized
velocities dr̂=dt̂ has a standard deviation 1.
Recalling (39), the velocity vth and temperature are

related via

�
vth
σ

�
2

¼ kbT
Mσ2

¼ kbT�
p

Mσ2
T
T�
p

¼ p
πϵ0Mc

I
σ3

T
T�
p
¼ 20

e
ω2

T
T�
p
:

Combining this with the definition of vth, Eq. (55),
and integrating the dynamics up to a certain time tmax,
the corresponding t̂max becomes

FIG. 15. Fraction of MDM molecules trapped in the beam as a
function of T=T�

μ, for T from 0 to 2T�
μ (left) and through 1000T�

μ

(right). For this calculation we assumed Rb ¼ 3σ.
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t̂max ¼
ffiffiffiffiffi
20

e

r ffiffiffiffiffiffi
T
T�
p

s
ωtmax: ð59Þ

Note that the product ωtmax=ð2πÞ is the number of
oscillations ne performed by molecules near the equilib-
rium radius re during the time interval tmax. We now
consider time intervals for which the number of oscillations
around re is constant, equal to ne, so that ωtmax ¼ 2πne.
The corresponding t̂max is

t̂max ¼
ffiffiffiffiffiffiffiffiffiffiffi
20

e
T
T�
p

s
2πne: ð60Þ

This formula allows us to set t̂max as a function of T=T�
p,

so as to keep the same number of oscillations around
the equilibrium radius re. In this way we can compare
the molecular gas response to the beam for different
temperatures T.
Figure 16 shows the simulated dynamics of few particles

at zero temperature, T ¼ 0. In the left panel, the particles
are launched only in the x plane. The dynamics of the
molecule pinch resembles the one of the electron-cloud
pinch, e.g., the density evolution of cloud electrons during a
bunch passage [14–16]. However, note that, in this case for
the EDM, the particles oscillate linearly around the equi-
librium radius re ¼ ðπ=2Þσ, and not around r ¼ 0.
The right panel of Fig. 16 shows the same case of a cold

molecule gas, but now distributed in the full circular beam
pipe. The panel reveals a complex pattern, not easily
interpreted.
A better way to visualize the process is to carry out

simulations with many more particles and to compute the
molecule density as a function of the radius. The result of
such a simulation is shown in Fig. 17.
This simulation, along with all those that follow, con-

siders an ensemble of Nmac ¼ 4 × 105 macroparticles.
The dynamics is computed with a leapfrog scheme
applied over 201 steps per oscillation length. At a given

integration step the local density ρðrÞ is obtained as
ρðrÞ ¼ ΔNmac=ð2πrΔrÞ, with ΔNmac denoting the number
of macroparticles found in the radial shell ½r − Δr=2;
rþ Δr=2�. The number of such shells in the interval
½0; rmax� is 400. Initially the molecules are distributed
randomly and uniformly in the (x=σ, y=σ) plane. The
initial normalized velocities are chosen randomly
according to a Gaussian distribution of standard
deviation 1. For convenience, we normalize the particle
density by division with the initial particle density ρ0,
computed as ρ0 ¼ Nmac=ðπr2maxÞ.
In the top panel of Fig. 17, we see the evolution of the

local density normalized to the initial one. We observe a
very pronounced pinch. The bottom panel instead displays

FIG. 16. Simulated pinch of the neutral EDM molecules in a
cold gas, i.e., T=T�

p ¼ 0. The particles are distributed either
uniformly only in the x plane (left) or randomly distributed (right)
in a circular beam pipe of radius Rp ¼ 10σ.

FIG. 17. EDM molecule density as a function of the radius
and “time” (top) and the end time-averaged local molecule
density versus radius (bottom). The molecule density is
normalized with respect to the initial (or space-averaged)
molecule density. The molecules are cold T=T�

p ¼ 10−5. In
this simulation, the particles were distributed throughout the
transverse x-y space. At the bottom, the large peak of density is
∼20 times the initial uniform distribution. Note the smaller
peak of density, which reflects the local oscillations of
molecules around the equilibrium radius r=σ ≃ π=2; this phe-
nomenon is clearly visible in the top panel as well.
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the time-average density, normalized to the initial density
ρ0 (which always is equal to the average density), as a
function of radial position r, revealing a peak average
density close to the beam almost 20 times higher than the
initial one. This simulation was performed at a temperature
such that T=T�

p ¼ 10−5.
The density evolution strongly depends on the temper-

ature, T=T�
p. To illustrate this point, Fig. 18 shows the same

set of pictures for a gas temperature T=T�
p ¼ 0.1. We see

that the nonzero temperature limits the effect of the pinch,
and, in this case, we find a peak of only ≃2.4ρ0, i.e., two
and a half times the initial density.
In view of the strong dependence of pinch density

enhancement on T=T�
p, we summarize the situation in a

global picture presented in Fig. 19, where we have averaged
over a time interval corresponding to ten oscillations near
position re. The black markers indicate the normalized
peak molecule density, with black values on the left vertical
axis. For example, at T=T�

p ¼ 0.1, we have ρmax=ρ0 ≃ 1.9,
while for T=T�

p > 1 this ratio approaches ρmax=ρ0 ≃ 1: To
good approximation, for T=T�

p > 5 we find ρmax=ρ0 ≃ 1.
The blue markers, with values on the right vertical axis,
indicate the radial position at which the molecule density
assumes its maximum value. We see that for T=T�

p > 5 the
maximum molecule density spreads around re ¼ ðπ=2Þσ.
We also analyze the statistical properties of the distribution
by computing the moments hrni ¼ R

rnPðrÞdr using the
probability density function PðrÞ ¼ cnρðrÞ, with cn a
normalization constant ensuring that

R
PðrÞdr ¼ 1. The

dash-dotted blue curve is the corresponding “average
position” hri, computed as hri ¼ R

PðrÞdr with the
integral extending over the radial range from 0 to 10σ.
For T=T�

p > 5 this curve is locked at a value of about 5,

FIG. 18. Molecule density as a function of the radius and time
(top), and the end time-averaged local molecule density versus
radius (bottom). The center panel shows the x-y structure of the
molecule density at the point of maximum density. The molecule
density is normalized with respect to the initial (or space-
averaged) molecule density. In this simulation, the molecules
are at a temperature T=T�

p ¼ 0.1, and the particles initially
distributed throughout the transverse x-y space. According to
the top panel (color scale), the peak density is ∼2.4 times the
initial uniform density.

FIG. 19. Variation of the radial density distribution of EDM
molecules with temperature T=T�

p. Shown are the density
enhancement due to the pinch in the beam field (black markers,
left axis), the radial location of the maximum (blue markers, right
axis), the average radial position of molecules (dash-dotted blue
line), and the rms value of the radial position (dashed blue line).
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due to the fact that in this case the distribution ρðrÞ is
uniform in r. For T=T�

p < 3, this curve tends towards the
value 2.65, reflecting the presence of a peak in the density.

The dashed blue curve shows the standard deviation of r,
i.e., ðhr2i − hri2Þ1=2, which indicates the width of the local
peak. For a uniform distribution this value would be
10=

ffiffiffiffiffi
12

p ¼ 2.88, which indeed is reached at high temper-
atures in Fig. 19. For T=T�

p < 3 the standard deviation
becomes smaller, assuming a value of ∼2.3 for T=T�

p ¼ 0,
again signaling a nonuniformity in the distribution, namely
the presence of a density peak, as is seen in Fig. 17.
Similar analyses can be carried out for molecules

possessing a MDM and results analogous to those for
the EDM are shown in Figs. 20–23. In Fig. 23 we observe
that the cold gas limit for the MDM is an order of
magnitude higher than for the EDM.

X. DYNAMICS AND FORMATION OF FLAKES

Inspired by our phenomenological discussion in Sec. IV,
we now consider the possible presence of neutral flakes in
the accelerator beam vacuum system.
The physical interactions between molecules which give

rise to the formation of large and complex structures have
long been the subject of extensive studies in the research
field of “aggregation phenomena” [17,18]. Aggregation
mechanisms are being investigated through particle-cluster
and cluster-cluster models [19]. In particular, the dynamics
of agglomeration for the case of particle-cluster models
with dipolar interactions was studied in Refs. [20,21],
which predicted the size and fractal dimension of the
resulting clusters. Experiments and simulation models
indicate that polar particles experience aggregations in
which the original dipole moments are assembled into a
cluster, whose specifics depend on the physical nature of
the particles’ dipole field. Studies of dust coagulation for

FIG. 20. Simulated pinch of the neutral MDM molecules in a
cold gas, i.e., T=T�

μ ¼ 0. The particles are distributed either
uniformly only in the x plane (left) or randomly distributed (right)
in a circular beam pipe of radius Rp ¼ 10σ.

FIG. 22. MDMmolecule density as a function of the radius and
time (left) and the end time-averaged local molecule density
versus radius (right). The molecule density is normalized with
respect to the initial (or space-averaged) molecule density. In this
simulation, the molecules are at a low temperature of
T=T�

μ ¼ 10−5, and the particles initially distributed throughout
the transverse x-y space.

FIG. 23. Variation of the radial density distribution of MDM
molecules with temperature T=T�

μ. Shown are the density
enhancement due to the pinch in the beam field (black markers,
left axis), the radial location of the maximum (blue markers, right
axis), the average radial position of molecules (dash-dotted blue
line), and the rms value of the radial position (dashed blue line).

FIG. 21. MDM molecule density as a function of the radius
and time (left) and the end time-averaged local molecule
density versus radius (right). The molecule density is normal-
ized with respect to the initial (or space-averaged) molecule
density. In this simulation, the molecules are at a temperature
T=T�

μ ¼ 0.1, and the particles initially distributed throughout
the transverse x-y space.

TRAPPING OF NEUTRAL MOLECULES BY THE … PHYS. REV. ACCEL. BEAMS 24, 054001 (2021)

054001-15



particles carrying a MDM [22] revealed that the emerging
cluster exhibits a total magnetic dipole moment which
scales as μ ∝ μ0N0.53, while for coagulating particles with
an EDM the total dipole moment is only weakly dependent
on N, in either case considering a plasma environment, not
an accelerator-type vacuum. These studies also demon-
strated that clustering starts when the velocity of the
particles is sufficiently slow to permit “dipole-dipole
trapping” [22].
We here suggest the possibility of agglomerate formation

in particle accelerators, which would be driven by the
history of an accelerator’s beam vacuum system: sequences
of events such as air leakage followed by cooling to
ultralow temperature and subsequent intermediate warm-
up periods may foster the formation of aggregates, or
flakes, in an ultrahigh vacuum at low temperature.
In the context of our discussion, we consider flakes of

molecules as agglomerates composed of a large number N
of single molecules, each having a mass M and EDM p or
MDM μ. A flake may be held together by the forces
between the (aligned) molecular dipole moments. A gen-
eral flake thus has a mass Mf ¼ NM, and a maximum
electric dipole moment pf ¼ Np or magnetic dipole
moment μf ¼ Nμ. In either case, the initial condition is
again determined by the thermal equilibrium temperature
T, which remains the same as for the single molecules.
The characteristic temperatures T�

p, T�
μ defined in Eqs. (33)

and (34), respectively, are related to the corresponding
trapping temperature of the flakes (suffix “f”) via

T�
p;f ¼ NT�

p; T�
μ;f ¼ NT�

μ: ð61Þ

This reflects the fact that, at the same temperature, the flake
has a much lower thermal velocity than a single molecule,
and that it can more easily be trapped in the beam potential.
Namely, if in Figs. 14 and 15 a single particle has a certain
temperature T=T�

p, the corresponding flake would have
an N times higher trapping temperature T�

p;f ¼ NT�
p, or

T=T�
p;f ¼ ðT=T�

pÞ=N. Hence, the point describing the flake
lies much closer towards zero, on the left side of the
diagrams, and, therefore, a significantly larger fraction of
the flakes will be trapped, as indicated in the aforemen-
tioned panels.
As a concrete example, in the previously discussed case

with molecules of H2O, we found that T�
p ¼ 0.18 K and for

this gas at T ¼ 2 K we had T=T�
p ¼ 11.1; in the case these

molecules cluster to form a flake, for instance each
containing N¼10;000 molecules, we have T�

p;f¼180K,
so that at T ¼ 2 K we find T=T�

p;f ¼ 0.0011, and the
majority of the flakes will be trapped.
More generally, in Figs. 19 and 23 it is quite evident that

for T=T�
p;f → 0 or T=T�

μ;f → 0, respectively, the maximum
density of the pinched flakes becomes large, with potential
consequences for the effective vacuum pressure and

interaction with the beam. For the case of polar H2O
flakes, the peak density in the pinch reaches about 20 times
the initial value, whereas for paramagnetic O2 flakes the
peak density even increases by a factor of 250. These
estimates suggest that large polar flakes, clusters or dust
particles in an accelerator along with the mechanisms of
their formation deserve a more thorough investigation, as
the process of dipolar assembly will lead to clusters subject
to the flake dynamics presented, with a consequent risk of
pinch and trapping in the beam field.

XI. CONCLUSIONS AND OUTLOOK

Many neutral molecules possess a permanent electric or
magnetic dipole moment. Their motion in an accelerator
vacuum system will be perturbed by the electromagnetic
field of the beam, leading to a possible trapping and density
enhancement of such particles in the vicinity of the beam,
especially in cold environments.
In this paper, we have analyzed the equations of motion of

electrically or magnetically polar molecules, and identified
the respective constants of motion.We derived the fraction of
molecules, with either electric or magnetic dipole moment,
trapped by the beam field, as a function of temperature,
expressed in terms of a characteristic trapping temperature.
The resulting local density enhancement was calculated as a
function of radial position and time.
In particular, we have shown that molecules with a

magnetic dipole moment oscillate around the transverse
center of the particle beam, whereas molecules with an
electric dipole moment oscillate around a radial equilibrium
position located at the edge of the beam.
Observations of beam loss and beam instabilities in the

2017 and 2018 LHC runs cannot be explained by the
motion of single neutral molecules, which, at a temper-
ature of 5 K, would mostly not be trapped by the field
of the beam. However, the trapping of larger neutral
flakes, or agglomerates of a large number of polar
water or paramagnetic oxygen molecules, is indeed
possible, and, if such flakes had been formed in the
LHC, this could well have contributed to the magnitude
of the observed phenomena. Such an explanation
might also be consistent with the degraded situation
encountered after a beam screen warm-up from about
5 to 80–90 K (“regeneration”) around the LHC location
16L2 executed in August 2017 [5], since the higher
temperature during the warm-up could have facilitated
the formation of flakes.
Regarding the possible presence of flakes, the tools and

methodologies developed for modeling aggregation phe-
nomena [17–22] may serve as a starting point for future
studies of cluster formation and flake characteristics in
accelerator beam vacuum systems.
Throughout this article, we have analyzed the motion of

uncharged objects carrying a dipole moment. Evidently,
once a molecule or a flake comes close to the beam it may

FRANCHETTI, ZIMMERMANN, and REHMAN PHYS. REV. ACCEL. BEAMS 24, 054001 (2021)

054001-16



be ionized [23], from which point onward its dynamics is
radically altered. For ionized molecules or ionized single
atoms interacting with a charged particle beam the equa-
tions of motion are well known [24]. On the other hand, a
larger flake staying near the core of the beam would heat
up, be charged, and then either evaporate or melt and
explode [25], leaving behind a localized high-density
mixture of ions, electrons, and molecules or atoms. A
software package is under development at CERN, to study
the interaction of such a complex mixture of species with
the LHC proton beam [26].
In general, the trapping and accumulation of individual

neutral molecules or flakes of molecules in the vicinity
of the beam enhances the effective gas density and can
aggravate ion-induced beam instabilities, such as those
discussed in Refs. [27–30]. The effect considered is
particularly important in cryogenic vacuum systems, for
high beam currents or for small beam sizes. Consequently,
it will become more important for future generations of
accelerators.
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APPENDIX: ON THE ALIGNMENT CONDITION

In this Appendix, we discuss the simplifying ansatz
made throughout the main text regarding the alignment of
the EDM p⃗ with E⃗, or of the MDM μ⃗ with B⃗.
We consider a simple model of a molecule composed of

two atoms: atom 1 with charge þQ located at r⃗1, and atom
2 with charge −Q located at r⃗2, each of the same mass m
(hence M ¼ 2m), and kept apart at an equilibrium distance
of L meters, by a linear force. The distance L is typically a
small number. The center of mass of the molecule is
r⃗cm ¼ ðr⃗1 þ r⃗2Þ=2, and the location of atom 1 with respect
the center of mass is ⃗l1 ¼ r⃗1 − r⃗cm, while for atom 2 the
equivalent distance vector from the center is ⃗l2 ¼ −⃗l1. Each
atom is subject to a binding force that disappears when the
atoms are separated by the equilibrium distance L. For
atom 1 the binding force is

N⃗1 ¼ −k
�
1

L
−

1

jr⃗1 − r⃗2j
�
ðr⃗1 − r⃗2Þ; ðA1Þ

and for atom 2 it is N⃗2 ¼ −N⃗1. The constant k characterizes
the strength of the binding force keeping the two atoms
together.
In addition, for each atom we also apply the external

force F⃗1 ¼ F⃗2 ¼ 1=2F⃗cm, with F⃗cm the force acting on the
center of mass.
Finally, forces related to a torque τ⃗ are assigned to the

two atoms as

F⃗1;τ ¼
1

2ðl1Þ2
τ⃗ × ⃗l1 ¼

1

l2
τ⃗ × ⃗l; ðA2Þ

and F⃗2;τ ¼ −F⃗1;τ, with ⃗l ¼ ðr⃗1 − r⃗2Þ ¼ 2⃗l1 and l≡ j⃗lj.
The EDM is defined as p⃗ ¼ Q⃗l. The full set of equations

necessary to characterize the motion of the molecule is

d2 r⃗cm
dt2 ¼ 1

2m F⃗cm

d2p⃗
dt2 ¼ 2 1

m
Q2

p2 τ⃗ × p⃗ − Q
m 2k

�
1
QL −

1
jp⃗j

�
p⃗

F⃗cm ¼ ðp⃗ ·∇ÞE⃗
τ⃗ ¼ p⃗ × E⃗:

Next, we define p0 ¼ QL, p⃗n ¼ p⃗=p0, pn ¼ jp⃗nj, and
consider the electric field generated by a round beam as

E⃗ðrÞ ¼ E0A

�
r
σ

�
r⃗
r
¼ E0A

�
r
σ

�
r⃗=σ
r=σ

¼ E0E⃗n

�
r⃗
σ

�

with E0 the maximum electric field. For convenience we
have defined E⃗n ¼ E⃗=E0, which reads

E⃗nðv⃗Þ ¼ AðvÞ v⃗
v
;

with, for a Gaussian beam,

AðvÞ ¼ 1

lnðπ=2Þ
1

v
ð1 − e−

1
2
v2Þ:

The coefficient lnðπ=2Þ is a good approximation to the
real normalization coefficient (Amax ¼ 0.99927 instead of
Amax ¼ 1 and is reached at v ¼ 1.585201… approximately
at v ¼ π=2). We also define

ω2
E ¼ p0E0

Ii
ðA3Þ

with Ii ¼ mL2=2 the nominal momentum of inertia of
the molecule. For a coasting beam the maximum electric
field is

TRAPPING OF NEUTRAL MOLECULES BY THE … PHYS. REV. ACCEL. BEAMS 24, 054001 (2021)

054001-17



E0 ¼ ln

�
π

2

�
I

2πϵ0cσ
; ðA4Þ

with I the beam current and σ the transverse rms beam size.
By transforming the time t to τ ¼ tωE=ð2πÞ and normal-

izing the position with the rms beam size σ, i.e.,
r⃗n ¼ r⃗cm=σ, the equations of motion become

d2 r⃗n
dτ2 ¼ π2 L2

σ2
ðp⃗n ·∇rnÞE⃗nðr⃗nÞ

d2p⃗n
dτ2 ¼ ð2πÞ2½p̂n × E⃗nðr⃗nÞ� × p̂n

− ð2πÞ2 k
QE0

	
1 − 1

pn



p⃗n:

ðA5Þ

A similar approach can be adopted for the equations of
motion of binary molecules with a MDM. However, in this
case we choose the molecule with ⃗l orthogonal to ẑ, and
also μ⃗ orthogonal to ẑ. We further define ⃗ln ¼ ⃗l=L. We can
decompose μ⃗ as μ⃗ ¼ jμjðμpl̂þ μol̂ × ẑÞ with μ2p þ μ2o ¼ 1.
In analogy to the EDM case, we introduce a normalized

magnetic field,

B⃗n ¼ AðvÞr̂n × ẑ; ðA6Þ

so that B⃗ ¼ B0B⃗n, with B0 designating the maximum
magnetic field generated by the beam. Note that in this
appendix the symbol ν̂ means ν̂ ¼ ν⃗=jν⃗j. Setting

ω2
B ¼ jμjB0

Ii
; ðA7Þ

we can write the equations of motion of the molecule as

d2 r⃗n
dτ2 ¼ π2 L2

σ2
½μ̂ ·∇n�B⃗n

d2 ⃗ln
dτ2 ¼ ð2πÞ2 1

l2n
½μ̂ × B⃗n� × ⃗ln

− ð2πÞ2 kL
jμjB0

	
1 − 1

j⃗lnj


⃗
ln

μ̂ ¼ μpl̂n þ μol̂n × ẑ;

ðA8Þ

where now τ ¼ tωB=ð2πÞ. We note that τ is a dimensionless
variable, which counts the phase advance in units of 2π.
Following the same argumentation, as for the electric

field, we estimate the maximum magnetic field for a
coasting beam to be

B0 ¼ ln

�
π

2

�
Iμ0
2πσ

: ðA9Þ

From the above systems of equations, it is straightfor-
ward to show that if p⃗n is slightly tilted with respect to E⃗n,
it oscillates around E⃗n at a frequency ωE. The identical

behavior occurs for μ⃗, which oscillates at a frequency ωB
around B⃗n.
The two equations, (A5) and (A8), also reveal that the

acceleration of the center of mass r⃗n is proportional to
π2L2=σ2. This means that the motion of the center of mass
is slow. During one oscillation period of the EDM or
MDM, the center of mass practically does not move. We
also see that the binding force enters into the dynamics.
However, we assume that this internal restoring force is
much bigger than the additional forces exerted by the
external beam magnetic or electric fields. This assumption
implies that, to good approximation, j⃗lnj is constant, equal
to 1. Expanding the force on the center of mass acting on a
molecule with MDM we find

F⃗ ¼ ðμ⃗ ·∇ÞB⃗ ¼ ½μ⃗ · r̂�B0ðrÞB̂ − ½μ⃗ · B̂�BðrÞ
r

r̂:

If instead the molecule has an EDM we find the analogous
equation

F⃗ ¼ ðp⃗ ·∇ÞE⃗ ¼ ½p⃗ · r̂�E0ðrÞr̂þ ½p⃗ · B̂�EðrÞ
r

B̂;

where r̂ ¼ r⃗=r; B̂ ¼ r⃗=r × ẑ and p⃗ ¼ pxx̂þ pyŷ and
μ⃗ ¼ μxx̂þ μyŷ and the electric and magnetic fields

E⃗ðr⃗Þ ¼ EðrÞr̂; B⃗ðr⃗Þ ¼ BðrÞB̂. During the time of one
oscillation of μ⃗ or p⃗ around their equilibrium position,
the maximum displacement of the center of mass is
proportional to the ratio π2L2=σ2 which is immensely
small, typically L ¼ 10−10 m, and σ ¼ 10−3 m, hence
π2L2=σ2 ∼ 10−13.
Therefore, we can look at the system on a timescale T

during which many oscillations of μ⃗n or p⃗n around their
equilibrium position occur, while the center of mass still
moves little. This, in turn, implies that the quantities BðrÞ,
EðrÞ, and r are practically constant over the interval of
time T. Hence, defining h·i as an average over the time
interval T, we find

hF⃗i ¼ hμ⃗ · r̂iB0ðrÞB̂ − hμ⃗ · B̂iBðrÞ
r

r̂

for the MDM and

hF⃗i ¼ hp⃗ · r̂iE0ðrÞr̂þ hp⃗ · B̂iEðrÞ
r

B̂

for the EDM. However, because the number of oscillations
of μ⃗, p⃗ is huge on the timescale T, we can simplify some
terms as hμ⃗ · r̂i ¼ 0, hμ⃗ · B̂i ¼ μeff and hp⃗ · r̂i ¼ peff ,
hp⃗ · B̂i ¼ 0, and we only remain with

hF⃗i ¼ −μeff
BðrÞ
r

r̂
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and

hF⃗i ¼ peffE0ðrÞr̂:

In other words, we can replace the force acting on the center
of mass by an effective force resulting from an effective
EDM, and an effective MDM aligned with the respective
fields. By making this approximation we give up any
attempt at resolving the tiny fluctuations of the center of
mass deriving from the coupling with the fast oscillations
of the MDM, or EDM, in the plane orthogonal to the
field lines.
In addition, we note that the electric or magnetic field

generated by the stored particle beam never appears
suddenly, but rather is turned on slowly as the beam
particles are injected or accumulated. This means that
the fields E⃗ and B⃗ appear mostly adiabatically. This
additional effect further fosters the alignment of the
EDM and MDM to their respective field. We show this
by a simulation, which illustrates that μ⃗, and p⃗ sponta-
neously align with the local magnetic or electric field,
respectively. Unfortunately, simulations for the real param-
eters are beyond computational reach, as they would
require resolving the vibrational motion and the center
of mass dynamics for π2L2=σ2 ∼ 10−13. Instead, we test the
model dynamics for the previously described bi-atomic
model with the “relaxed simulation parameters” of
L2=σ2 ¼ 10−4 and k=ðQE0Þ ¼ 103.
The two top panels in Fig. 24 compare the angle of the

electric field at the location of the molecule (red) and the
angle of the electric dipole moment p⃗ (blue), both with
respect to the horizontal direction, on two different time-
scales. Figure 24 top left shows, in blue color, the angle of
the electric dipole moment. For this simulation, the initial
angle of p⃗ was chosen at 180° with respect to E⃗n, and the
molecule was launched with zero rotational energy. This is
the worst possible scenario. The picture reveals an oscil-
lation of p⃗, whose angle more and more closely approaches
the angle of the electric field. The center-left panel presents
the situation at the end of the adiabatic turn-on, clearly
demonstrating an alignment of p⃗ with E⃗n. Note that,
although the length of the time interval is the same as
for the top panel, the red curve (the electrical field at the
location of the molecule) now exhibits a larger change of
angle. This feature stems from the dynamics experienced
by the molecule’s center of mass. At the end of the adiabatic
ramping, the gradient of EðrÞ is much larger than at the start
of the field ramp, leading to a faster motion of the molecule
around and across the beam. Consequently the red curve
appears with a more pronounced slope, and the thickness of
the blue curve reflects an extremely rapid oscillation of the
residual orthogonal component of the dipole moment
around the electric field line. Exactly the same reasoning
applies to the example of a molecule equipped with a
magnetic dipole moment and the simulation results for such

a case are quite similar, as is shown in the three pictures on
the right-hand side of Fig. 24. Also here a nearly perfect
alignment is reached at the end of the adiabatic ramp-up of
the magnetic field.
The simulations of Fig. 24 consider a slow turn-on of the

electric field over a time interval T corresponding to
τmax ¼ 105, or to the equivalent of 105 oscillation periods
for the maximum field at the end of the adiabatic ramp,
where jE⃗nj ¼ 1. Note that although this number of oscil-
lations seems large, it does correspond to a rather short
actual time interval, typically below a microsecond.

FIG. 24. Simulated angles of a molecule’s p⃗ (blue) and local
electric field E⃗ (red), with respect to the horizontal direction, at
the start (top left) and end (center left) of an adiabatic increase of
the electric field of the beam, over a total time T that would
correspond to τ ¼ 105 periods of phase advance ωET. The panels
on the right present the simulated angular direction of a
molecule’s magnetic dipole moment μ⃗ (blue) and of the local
magnetic field B⃗ (red) during an analogous ramp-up of the beam’s
magnetic field, over the same number of periods of phase advance
ωBT. The top and center panels each present the behavior over a
time interval Δτ ¼ 200. The bottom panels show the molecules’
trajectories over the full simulation. The red circle in the bottom
left panel indicates the equilibrium position re—compare Fig. 13
and Eq. (35).
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Using Eq. (A4), which yields the maximum field for a
Gaussian beam, and the definition of T�

p we find for a
coasting beam

ω2
E ≃ ln

�
π

2

�
kb
mL2

T�
p: ðA10Þ

Then, as an example, considering H2O and T�
p ¼ 0.18 K,

and by choosing the L so as to obtain the correct moment
of inertia for the equivalent bi-atomic model, namely L ¼
0.65 Å we find ωE ¼ 1.33 × 1011 rad=s; one oscillation
period is δt ¼ 4.7 × 10−11 s. Therefore, in this example 105

oscillations correspond to Δt ¼ 4.7 × 10−6 s, and we have
shown this to be sufficiently adiabatic for ensuring the
alignment of EDM with E⃗, in the case of the relaxed
simulation parameters. Note that even with a 10 times faster
ramp as in Δt ¼ 4.7 × 10−7 s, the alignment would still be
reached to a good approximation. This timescale is com-
parable to the bunch spacing in the LHC.
The analysis for the MDM molecules can follow the

same line of thought. Considering the maximum B field
given by Eq. (A9), and using the definition of T�

μ, we find

ω2
B ≃ ln

�
π

2

�
kb
mL2

T�
μ:

As an example, for O2 we had T�
μ ¼ 2.5 mK; hence ωB ¼

6.34 × 109 rad=sec and one oscillation period at the peak
field is δt ¼ 9.91 × 10−10 s. The duration of an adiabatic
ramp over 105 such oscillation periods corresponds to
Δt ¼ 9.91 × 10−5 s. This suggests a stiffer behavior of the
MDM, compared with the EDM. In consequence, the EDM
motion may not resolve individual bunch passages, but will
align to a mean B field.
We can analyze the process of alignment by using the

concept of adiabatic invariants. In fact, the MDM and EDM
oscillate around their respective equilibrium direction
with angular frequencies ωE or ωB, defined in Eqs. (A3)
and (A7). For the orthogonal components of the dipole
moments, the corresponding equations of motion are

d2p⊥
dt2

þ ω2
Ep⊥ ¼ 0;

d2μ⊥
dt2

þ ω2
Bμ⊥ ¼ 0: ðA11Þ

After transforming (A11) to the scaled time coordinate τ,
and, for convenience using the normalized variables
p⃗n ¼ p⃗=jp⃗j, μ⃗n ¼ μ⃗=jμ⃗j, the equivalent set of equations
reads

d2pn;⊥
dτ2

þΩ2
Epn;⊥ ¼ 0;

d2μn;⊥
dτ2

þ Ω2
Bμn;⊥ ¼ 0; ðA12Þ

where ΩE and ΩB vary with the normalized time τ and at
maximum field (in our examples typically reached at
τ ¼ τmax) assume the value 2π.

Therefore, for small oscillation amplitudes, the dimen-
sionless scaled time τ indicates how many oscillations the
EDM, or MDM, would perform around the equilibrium
direction if the field were maximum, i.e., for E ¼ E0

or B ¼ B0.
For example, taking the example of the electric field E,

the adiabatic condition is

jE⃗j
j _E⃗j

≫
2π

ωE
; ðA13Þ

where _E is the time derivative. Considering an electric
field that linearly rises from 0 to a value E0 during the
time interval tmax, the adiabatic condition is fulfilled if
t3=2ωE0

=ð2πÞ ≫ t1=2max. This inequality constrains the time t
at which the field change becomes adiabatic.
An adiabatically rising E⃗n or B⃗n slowly changes the

angular frequencies ωE and ωB until they approach their
final values. In the new coordinate frame, the slowly
varying ΩE or ΩB will grow from an initial value of zero
to adiabatically reach the final value ΩB ¼ 2π or ΩE ¼ 2π
at τ ¼ τmax.
We have introduced the symbols pn;⊥ and μn;⊥, which

denote the projections of p⃗n, μ⃗n onto the transverse axis
perpendicular to E⃗ or B⃗, respectively. In the orthogonal
dipole moment “phase space” ðpn;⊥; dpn;⊥=dtÞ or
ðμn;⊥; dμn;⊥=dtÞ, we can recognize the key features of
adiabatic invariance. For the case of an EDM molecule,
the top-left panel of Fig. 25 presents the dipole-moment
evolution in the perpendicular “normalized” phase space
obtained by using the time coordinate τ. The model
parameters for this simulation are the same as those for
Fig. 24. The picture clearly reveals that the trace of the
phase-space coordinate ðpn;⊥; dpn;⊥=dτÞ converges
towards an ellipse. Based on the same set of simulation
data, the top-right panel of Fig. 25 illustrates the evolution
of the normalized dipole-moment total energy

E⊥
ΩE

¼ 1

ΩE

�
1

2

�
dpn;⊥
dτ

�
2

þ 1

2
Ω2

Ep
2
n;⊥

�
: ðA14Þ

This picture confirms that, to good approximation,
Ainv ≡ E⊥=ΩE ≃ constant, once the field change has
become adiabatic.
The actual value of Ainv is determined by the initial

conditions of the particle’s dipole moment considered, i.e.,
by the initial value of r⃗n; dr⃗n=dτ; p⃗n; dp⃗n=dτ, and by the
initial speed of turning on the electric or magnetic field,
proportional to 1=τmax. The field turn-on corresponds to a
physical ramp time of

Tramp ¼
2π

ωE
τmax; ðA15Þ
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which unveils the equivalence of the dynamics for corre-
sponding pairs of ðTramp; E0Þ. The dependence of Ainv on
τmax is examined in Fig. 25 (bottom left) for a linear ramp
considering a particle with the same initial condition (in the
τ frame). The bottom-right panel of Fig. 25 illustrates the
dependence of Ainv on τmax for a Gaussian ramp starting at a
time of 5σz=c before the arrival of the bunch center, where
σz denotes the rms bunch length. Comparing the evolution

for several different τmax, the top-right panel of Fig. 25
shows that the value of Ainv decreases as τmax increases.
These findings reveal that τmax directly relates to the degree
of alignment with respect to the field. In fact, the maximum
excursion of pn;⊥ at the end of the ramp, which we
designate as pn;⊥;max, is given by

pn;⊥;max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AinvðτmaxÞ

π

r
: ðA16Þ

Therefore, if Ainv shrinks with increasing τmax, so does
pn;⊥;max.
To shed some light on the dependence of Ainv on τmax, we

again consider the case of a linear ramp, where the electric
field increases linearly in time, and the frequency ΩE
evolves as

ΩðτÞ ¼ 2π

ffiffiffiffiffiffiffiffiffi
τ

τmax

r
: ðA17Þ

At the beginning of the ramp, the fields are too weak to
meet the adiabatic condition, (A13), which in these
coordinates assumes the particularly simple form

τ ≫ τ1=3max: ðA18Þ

This condition will start to hold true after a time τ̄ large
enough to allow for a significant phase advance of the
oscillation of the perpendicular dipole-moment component
around the electric or magnetic field. The phase advance of
this oscillation is estimated as

ΦðτÞ ¼
Z

τ

0

ΩEðxÞdx ¼ 2π
2

3

τ3=2ffiffiffiffiffiffiffiffiffi
τmax

p : ðA19Þ

We denote by f the phase advance in unit of 2π required
to enter into the adiabatic domain, so that the adiabatic
process will start when

Φðτ̄Þ ¼ 2πf;

that is, by the time

τ̄ ¼ f2=3
�
3

2

�
2=3

τ1=3max:

At this moment the corresponding ΩE is

ΩEðτ̄Þ ¼ 2π

ffiffiffiffiffiffiffiffiffi
τ̄

τmax

r
¼ 2πf1=3

�
3

2

�
1=3

τ−1=3max :

This corresponds to the value of Ω which sets the value of
Ainv. In fact, from

FIG. 25. Electric dipole moment phase space orthogonal to
the local field direction, ðp⊥, dp⊥=dτÞ (top left), and the
adiabatic invariant Ainv as a function of the number of oscillations
(top right). The right panel presents data for three different values
of τmax. The middle two panels present analogous simulation
results for the case of the magnetic dipole moment. At the
beginning of each simulation, large oscillations of p⊥ or μ⊥ are
seen, which later on converge onto an ellipse. The width of
this ellipse in the direction of p⊥, or μ⊥, becomes smaller the
larger τmax is. Recalling Eq. (A15), τmax can be expressed as
τmax ¼ Tramp=ð2πÞðjpjE0=IiÞ1=2, and, therefore, the width of the
ellipse in the direction of p⊥ becomes smaller the more
adiabatically the field changes (larger Tramp) and the higher
the final field is (higher E0). This is demonstrated in the bottom
panel by the dependence of Ainv on τmax, both for a linear (left)
and for a Gaussian ramp (right).
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Ainv ¼
1

ΩE

�
1

2

�
dpn;⊥
dτ

�
2

þ 1

2
Ω2

Ep
2⊥
�
; ðA20Þ

and neglecting the kinetic term, which is small for our test
particle (defined below), we find

Ainv ¼
1

2
ΩEðτ̄Þp2⊥: ðA21Þ

We note that our test particle is launched at a distance far
from the beam center and with a velocity sufficiently low
such that at the time by which the phase advance becomes
2πf, i.e., by when the adiabatic condition is met, the
particle still remains far away, with p⊥ unchanged.
Substituting for ΩE the value at which the adiabatic

process starts, we obtain

Ainv ¼ πf1=3p2⊥
�
3

2

�
1=3

τ−1=3max : ðA22Þ

Our simulation results are shown by the markers in Fig. 25
(bottom left). Although the previous model is valid only
for small oscillations around the equilibrium angle of the
dipole moment, we find that choosing the values f ¼ 20
and p⊥ ¼ 1, Eq. (A22) fits these simulation results
extremely well.
Note that this discussion, including the results shown

in Fig. 25, is carried out in the reference system with
normalized time τ. This implies that the initial condition in
physical coordinates, dr⃗n=dt, is related to the initial
condition in normalized space, dr⃗n=dτ, according to

dr⃗n
dt

¼ dr⃗n
dτ

dτ
dt

¼ dr⃗n
dτ

ωE

2π
: ðA23Þ

The initial rms velocity of a molecule follows from
the thermal equilibrium with the environment as vth ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kbT=M

p
, and ωE is given by Eq. (A10). Therefore,

Eq. (A23) becomes

�
drn
dτ

�
rms

¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðπ=2Þp L

σ

ffiffiffiffiffiffiffiffiffiffiffi
m
M

T
T�
p

s
: ðA24Þ

As L is of the order of magnitude ∼10−10 m and
σ ∼ 10−3 m, and as m=M ≤ 1 is always fulfilled, even
for T=T�

p ¼ 106 we would find ðdrn=dτÞrms ∼ 6 × 10−4.
Hence, we may consider the initial condition of molecules
in the system of coordinates τ as effectively frozen. The
same argument applies to theMDM case, after replacing T�

p

with T�
μ.

It follows that when the electric field rises adiabatically,
the oscillation amplitude of p⊥ slowly decreases, so that p⃗
more and more aligns with E⃗, independently of the motion
of the center of mass. The same argument applies to the

MDM case as is illustrated in the center panels and by the
green markers in the bottom panels of Fig. 25.
The previous analysis is now discussed for bunched

beams. Considering the passage of a single round bunch,
the maximum electric field is obtained from Eq. (A4) with I
now the maximum current at the bunch center and σ the
transverse rms beam size. For a Gaussian bunch profile, the
longitudinal charge distribution is

ρzðzÞ ¼
qNbffiffiffiffiffiffi
2π

p
σz

e
−1
2
z2

σ2z ; ðA25Þ

with Nb the number of particles in the bunch, q the charge
per beam particle, and σz the rms bunch length. Hence, for
this case the peak current reads I ¼ cqNb=ð

ffiffiffiffiffiffi
2π

p
σzÞ, and,

finally, we can express the maximum electric field as

E0 ¼
lnðπ=2Þ
ð2πÞ3=2

qNb

ϵ0σσz
: ðA26Þ

For LHC bunches at top energy with σ ¼ 2 × 10−4 m,
σz ¼ 0.076 m, Nb ¼ 1.2 × 1011 protons, we obtain a
maximum electric field of E0 ≈ 4 × 106 V=m.
Following the same argumentation, as for the electric

field, we estimate the maximum magnetic field during a
bunch passage from Eq. (A9), and using the maximum
beam current, we now find

B0 ¼
lnðπ=2Þ
ð2πÞ3=2

μ0cqNb

σσz
: ðA27Þ

Inserting the same reference LHC beam parameters as
before yields the estimate B0¼137×10−4 T¼137 Gauss.
Considering the LHC bunches, for H2O molecules

Eq. (A3) yields a maximum angular oscillation frequency
ωE ≈ 9.0 × 1011 rad=s, corresponding to T�

p ≈ 8.1 K,
and, with a ramp time Tramp ¼ 5σz=c, Eq. (A15) yields
τmax ≈ 181. On the other hand, for an O2 molecule, the peak
angular oscillation frequency is ωB ¼ 4.27 × 1010 rad=s,
corresponding to T�

μ ¼ 0.11 K and τmax ≃ 8.6. Inspecting
Fig. 25, for example, at τmax ≃ 181 we find Ainv ≃ 0.5, and,
for the perpendicular dipole moment at the end of the field
ramp, i.e., at the passage of the bunch center, this implies
pn;⊥;max ≃ 0.4, which corresponds to a residual misalign-
ment of Δθ ≃ 23.5 degree.
These numbers suggest that for the short bunches of

the LHC the alignment condition is not strictly fulfilled
and that, therefore, a residual oscillation of the dipole
moments may affect the dynamics. However, the simula-
tions presented in this Appendix were performed primarily
in order to confirm that a process of alignment takes place
at all, and these numerical studies were carried out for
unrealistically “relaxed” model parameters, which allowed
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a full exploration of the complex dynamics, but did not
correspond to the actual parameter regime.
Against this background, as a next step to further examine

our alignment ansatz,we now take into account that the force
responsible for the molecular vibrations is much larger than
all the other forces, and, consequently, the timescale of these
vibrations far shorter than all other timescales. Hence, we
may take the distance between a molecule’s atoms to be
frozen and consider a rigid model of the molecule.
Simulation using a rigid model are numerically much easier
to carry out. For the situation in question, where the electric
and magnetic fields are all transverse, the motion of one
molecule is described by three dynamical variables, namely
the normalized transverse center-of-mass coordinates xn and
yn, and the angle of the dipole moment with respect to the
relevant field θ, and their conjugated momenta.
In simulations using the rigid molecule model, the initial

centroid velocity spread of the molecules is chosen in
accordance with the thermal equilibrium temperature, and
so is the initial rotational velocity spread of the dipole-
moment angle, dθ=dτ, while the starting angle θ itself is
taken to be initially aligned with θE (for the case of an
electric dipole moment). Simulations result for the rigid-
molecule model with the parameters of Fig. 18 (center) are
shown in Fig. 26, at a time corresponding to nosc: ¼ 1. Both
figures, obtained with the aligned dipole-moment model
and with the rigid-molecule model, respectively, exhibit a
similar annular structure in phase space, with a density
maximum located at the same radial position. This

similarity of results lends further support to our simplifying
alignment ansatz.
In this Appendix, we have shown that the molecular

electric or magnetic dipole moments p⃗ or μ⃗ tend to align
with the corresponding external field, as the external field is
increased. In particular, we have demonstrated the validity
of the alignment assumption in various simulations per-
formed under different assumptions (e.g., with and without
internal molecule vibrations) and timescales (mean field
approximation or resolving individual bunch passages).
However, an exact simulation of repeated passages of

short bunches through a region populated by EDM or
MDMmolecules with internal vibration modes requires the
development of additional methods and tools to investigate
the complete nonlinear dynamics of this complicated
multiscale system.
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