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We propose a novel scheme for the calculation of bunch profiles and synchronous phase shifts for
arbitrary fill patterns in electron storage rings considering both the effects of the passive harmonic cavity
and the short range wakefield. This scheme treats the bunch as a charge distribution rather than a point
charge with a bunch form factor, and divides the voltage induced in the cavity into two groups: that induced
by the previous passages and that by the present passage, where the latter is integrated with the short range
wakefield from all the other vacuum components. An iteration loop for computing the bunch profiles,
including a subloop using Newton iteration for calculating the synchronous phase deviations, is built and
implemented into a MATLAB-based code. Using this code, we study the bunch lengthening and centroid
transient effects for several possible fill patterns in the Hefei Advanced Light Facility storage ring under
design. We find the method is very efficient, and the CPU time for the whole calculation on a regular
personal computer is less than 30 seconds for each case even with more than 700 bunches. Using the case of
a long gap fill as a benchmark example, both the results given by our code and the multiparticle tracking
simulation with ELEGANT are in very good agreement.

DOI: 10.1103/PhysRevAccelBeams.24.044401

I. INTRODUCTION

In the ongoing fourth generation storage rings (also
called diffraction-limited storage rings), the higher har-
monic cavity (HHC) is an essential component to attain the
machine performance, which can, by elongating the bunch,
mitigate the intrabeam scattering, increase the Touschek
lifetime, and reduce the beam-induced vacuum components
heating [1]. In addition, the HHC, by flattening the
potential at the synchronous phase to introduce synchrotron
tune spread, can also provide Landau damping for the
longitudinal coupled bunch instability induced by the
higher order modes of the cavities [2,3]. In comparison
to the active HHC driven by the external rf power,
generally, the passive HHC, excited by the beam, is
preferred by many machines [4–10], and thus focused
on in this paper.
The bunch lengthening is significantly affected by the

HHC settings and the beam-fill patterns. For the case of
uniform fill pattern, the bunch length can be calculated
analytically, as the total voltage including the loading

voltage of the HHC can be given by a simple analytical
formula [11,12]. An optimum lengthening condition [11] is
thus proposed and can be met by zero the first and second
derivatives of the total voltage at the synchronous phase,
where the bunch profile is flattop and the bunch length is
increased to at least a factor of 4. However, in reality, the
nonuniform fill pattern is more common, since a long gap
or some short gaps are usually introduced to suppress the
ion instability and transverse coupled-bunch instabilities
[13], and meet the requirements of the timing users [14] or
the injection [15]. The gaps will generate the transient beam
loading effect so that the stable voltages seen by the
bunches are different from each other, which may cause
much less bunch lengthening and also lead to the variation
of the bunch lengths along the bunch trains. We can adopt a
scheme to reduce the effects of the gaps with higher charges
adjacent to the gaps (called “guard bunches”) compensating
for the charge missing in gaps [16,17].
Two types of approaches can be used to study the bunch

lengthening for the case of nonuniform fill pattern: semi-
analytical calculation and multiparticle tracking simulation.
The former can be traced back to [18], where the bunch was
treated as a point charge, and the induced voltage seen by
every bunch was determined by the single particle tracking,
so the effect of the bunch profile was ignored. It was
followed and later modified with considering the bunch
profile by introducing the bunch form factor which is either
scalar or complex [14,19]. The effects of the scalar and the
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complex bunch form factors were discussed in detail in
[14]. In addition to the single particle tracking, a novel
semianalytical method based on an iterative matrix for-
mulation was also described in [14], to compute the
equilibrium solution numerically. Recently, Warnock and
Venturini [17] presented another novel robust and efficient
semianalytical method which used a Newton iteration for a
solution of a system of coupled Haïssinski equations which
determine the bunch positions and profiles in the equilib-
rium state. Several multiparticle tracking codes, e.g.,
MBTRACK [20], ELEGANT [21], and SPACE [22], can be,
of course, used to study the case of nonuniform fill pattern,
for not only the steady state case but also the unsteady state
case. Compared with the multiparticle-based methods, the
semianalytical methods are much faster, and thus preferred
when studying the steady state case.
In this paper, we propose an alternative novel semi-

analytical scheme to calculate the longitudinal equilibrium
density distribution for arbitrary fill patterns and HHC
settings. This scheme also uses the matrix formulation to
form the induced voltage as done in [14], but treats the
bunch as a charge density distribution rather than a
macroparticle with a bunch form factor. In addition to
the HHC, the bunch lengthening induced by the short range
wakefield from the other vacuum chamber elements can
also be considered. Our scheme is also to solve the
Haïssinski equations numerically as done by Warnock
and Venturini [17], but the algorithm is quite different.
The parameters of the Hefei Advanced Light Facility
(HALF) storage ring [23], which is designed at 2.2 GeV
with natural emittance lower than 100 pm, will be used to
test the method.
The paper is organized as follows. Section II describes

the Haïssinski equation in the presence of the double rf
systems and the short range wakefield, which will be used
for the calculation of the longitudinal density distribution.
Section III introduces the induced voltage formed by a
matrix formulation for arbitrary fill patterns. Section IV
and Appendix B state a Newton iteration method for the
calculation of the synchronous phase deviation. Section V
shows the phasor plot used in this paper for the passive
HHC, and how to obtain the voltage ratio and synchronous
phase from the voltage phasor. Section VI describes the
iteration loop and the detailed procedures. In Sec. VII, the
near optimum lengthening condition is discussed. In
Sec. VIII, the related parameters of HALF are given, the
bunch profiles and centroid positions of several different fill
patterns are discussed, and the comparison to the ELEGANT

tracking results is also shown. Finally, conclusions
and discussions are given in Sec. IX. As an extension,
the phasor plot for the main cavity is presented in
Appendix A, and the corresponding Newton iteration
method for the synchronous phase deviation is described
in Appendix B.

II. POTENTIAL OF DOUBLE RF SYSTEMS
AND THE SHORT RANGE WAKEFIELD

For double rf systems, the total cavity voltage can be
given by [12]

VT ¼ Vrf sinðωrfτ þ φsÞ þ kVrf sinðnωrfτ þ φhÞ; ð1Þ

where Vrf, ωrf and φs are the voltage amplitude, angular
fundamental frequency and synchronous phase of the main
cavity, respectively, k is the voltage ratio of the harmonic
cavity relative to the main cavity, and n and φh are the
harmonic order and synchronous phase of the harmonic
cavity, respectively.
Let ρðτÞ represent the longitudinal normalized density

distribution of a bunch, then the equations of motion of a
single particle in this bunch can be given by

dτ
dt

¼ αcδ; ð2Þ

dδ
dt

¼ eVT − U0

E0T0

þ qe
E0T0

Z
∞

−∞
ρðτ0ÞWLðτ − τ0Þdτ0; ð3Þ

where (τ,δ) are the particle coordinates (respectively
represent the time deviation and relative momentum
deviation with respect to the synchronous particle), αc
the momentum compaction, U0 the radiation loss per turn,
e the electron charge, E0 the nominal energy, T0 the
revolution time, q the total charge of this bunch, and
WL the longitudinal short range wakefield function for all
the vacuum chamber elements, including the rf cavities.
The corresponding Hamiltonian is then

H ¼ −
1

2
δ2 þΦðτÞ; ð4Þ

whereΦðτÞ is the total longitudinal potential contributed by
the double rf systems and the short range wakefield, and is
given by

ΦðτÞ ¼ eVrf

2πhαcE0

�
cosðφsÞ − cosðωrfτ þ φsÞ

þ k
n
½cosðφhÞ − cosðnωrfτ þ φhÞ�

�
−
U0ωrfτ

eVrf

þ q
E0T0αc

Z
τ

0

dτ0
Z

∞

−∞
ρðτ00ÞWLðτ0 − τ00Þdτ00; ð5Þ

where the last term on the right-hand side corresponds to
the short range wakefield. Then the longitudinal equilib-
rium density distribution of this bunch has the form

ρðτÞ ¼ ρ0 exp

�
ΦðτÞ
σ2δ

�
; ð6Þ
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where σδ is the relative energy spread and ρ0 is a
normalization constant which is given by

ρ0 ¼
1R∞

−∞ exp½ΦðτÞ
σ2δ

�dτ
: ð7Þ

Different from the Eq. (11) in [14], here the potential of the
short range wakefield is included in Eq. (5), thus, the
longitudinal density distribution needs to be solved iter-
atively by combining the Eq. (5)–(7), which is equivalent to
solving the Haïssinski equation.
For the passive harmonic cavity and arbitrary fill

patterns, as the equilibrium condition is assumed, every
bunch will see its own steady voltage phasor induced by all
circulating bunches. If the steady voltage phasor of every
bunch can be obtained, then the ratio k, phase φh and φs can
be calculated, as well as the density distribution. In the
following sections, the steady voltage phasor will be
introduced first, then the algorithm for the ratio k, phase
φh and φs.

III. BEAM INDUCED VOLTAGE

A. Single bunch and one passage

Considering a charged particle q passing an rf cavity
with resonant frequency ωr, loaded shunt impedance RL
and loaded quality factor QL, the voltage in the cavity
immediately after the particle has passed is given by
Vq ¼ qωrRL=QL, then Vq will oscillate with the cavity
resonant frequency and decay exponentially with time. If
the complex voltage phasor concept [24] is used here, then
the induced voltage phasor evolved with time t can be
expressed by

ṼqðtÞ ¼
qωrRL

QL
exp

��
j −

1

2QL

�
ωrt

�
; ð8Þ

where the real part of this voltage phasor represents the real
voltage seen by the trailing point charges, and its positive
value means energy loss.
When considering a bunch, with normalized charge

density distribution ρiðτÞ, in the bucket i, the induced
complex voltage seen by the synchronous particle of this
bunch becomes

Ṽi;0 ¼
qiωrRL

QL

Z
∞

−∞
ρiðτÞ exp

��
−jþ 1

2QL

�
ωrτ

�
dτ; ð9Þ

where qi is the bunch charge. The bunch length is usually
much shorter than the wavelength of the cavity and QL is
usually much greater than 1, so ωrτ

2QL
≪ 1, and Eq. (9) can be

approximated as

Ṽi;0 ≈
qiωrRL

QL

Z
∞

−∞
ρiðτÞ expð−jωrτÞdτ; ð10Þ

where
R∞
−∞ ρiðτÞ expð−jωrτÞdτ is defined as the bunch

form factor. Similar to Eq. (8), the bunch voltage phasor
evolved with time is then given by

ṼiðtÞ ¼ Ṽi;0 exp

��
j −

1

2QL

�
ωrt

�
: ð11Þ

B. Stable voltage induced by single bunch

Now let us calculate the stable voltage induced by
multipassages of one bunch through the rf cavity. For
the first passage, the induced voltage phasor is Ṽi;0 as
mentioned above. For the second passage, the total voltage
phasor becomes Ṽi;0 þ Ṽi;0 exp½ðj − 1

2QL
ÞωrT0�, where T0

is the revolution time. After enough passages, the total
voltage phasor becomes convergent and can be given by

Ṽi;∞ ¼ Ṽi;0

1 − exp½ðj − 1
2QL

ÞωrT0Þ�
: ð12Þ

For convenience, we define a same reference phase φs0 of
the main cavity for all the bunches and the synchronous
phase for the bunch located in the bucket i is given by
φi ¼ φs0 þ Δφi, where Δφi is the phase deviation with
respect to the reference phase. Then the voltage phasor
induced by the bunch in the bucket i and seen by the
synchronous particle in the bucket k is

Ṽi→k ¼ Ṽi;∞ exp½Δi;k þ jnðΔφk − ΔφiÞ�; ð13Þ

where Δi;k is given by

Δi;k ¼

8><
>:

�
j − 1

2QL

	
ðk − iÞωrTb for k > i�

j − 1
2QL

	
ðk − iþ hÞωrTb for k ≤ i;

ð14Þ

where Tb is the duration between two adjacent buckets and
equal to T0=h, h is the harmonic number, i and k are
integers in the range of 1 ∼ h. Note that we intend to treat
the influence of the newly induced field during the present
passage of the bunch i through the cavity on itself as a kind
of short range wakefield effect, so the evolution time for
Δi;i is T0 rather than 0.

C. Stable voltage induced by multibunches

For convenience of expression, we treat the empty
bucket as that filled with a zero charge bunch. The voltage
phasors seen by the synchronous particles of all the
bunches can form a matrix:
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; ð15Þ

where the element with row i and column k represents the
voltage phasor induced by the bunch in the bucket i and
seen by the synchronous particle in the bucket k. Then the
total voltage phasor seen by the synchronous particle in the
bucket k can be given by the sum of the elements of column
k,

Ṽk ¼
Xh
i¼1

Ṽi;∞ exp½Δi;k þ jnðΔφk − ΔφiÞ�: ð16Þ

Note that the voltage induced by the present passage is not
included in Eq. (16), which has already been integrated into
the short range wakefield group in Eqs. (3) and (5). The
discussion in this subsection can also be adapted to
consider the beam loading voltage of the main cavity
and one only needs to take n ¼ 1 correspondingly.

IV. SYNCHRONOUS PHASE DEVIATION

The synchronous phase deviation Δφi is required for
computing the voltage phasor in Eq. (16). Based on the fact
that the energy gain of the synchronous particle per turn is
zero, another equation can be given by

Vrf sinðφs0 þ ΔφiÞ

− Re

�Xh
k¼1

Ṽk;∞ exp½Δk;i þ jnðΔφi − ΔφkÞ�
�

þ qi

Z
∞

−∞
ρiðτ0ÞWLð0 − τ0Þdτ0 −U0

e
¼ 0; ð17Þ

where the first term on the left-hand side represents the kick
voltage in the main cavity, the second term represents the
voltage induced by all the previous bunch passages through
the passive harmonic cavity, and the third term represents
the voltage generated by the short range wakefield. Besides,
the present bunch passage though the harmonic cavity will
also contribute to the third term.
To compute the synchronous phase deviation with a set

of guess values ρiðτÞ, the system of the nonlinear Eqs. (17)
for i ¼ 1; 2;…h can be dealt well with by the Newton
iteration method [25]. The details are given in Appendix B.

V. k AND φh OF HARMONIC CAVITY

Under the steady state condition, the stable voltage
phasor Ṽi

hc, as shown in Fig. 1, is determined by
Eq. (16). Then the real voltage seen by the bunch particles
can be given by

jṼi
hcj cosðψh − nφÞ ¼ kVrf sin

�
nφþ π

2
− ψh

�
: ð18Þ

Thus we have

k ¼ jṼi
hcj

Vrf

ψh ¼ arctan

�
Re½Ṽi

hc�
Im½Ṽi

hc�
�
� π

2
; ð19Þ

where þð−Þ is taken when Im½Ṽi
hc� > 0ð< 0Þ, the syn-

chronous phase φh is easily obtained by φh ¼ π
2
− ψh

according to Eqs. (1) and (18).

FIG. 1. Phasor diagram for harmonic cavity. The image current
phasor ĩb is along the positive direction of the real axis, all
phasors run counterclockwise, ψh is the detuning phase of
harmonic cavity, Ṽi

hc is the stable voltage phasor seen by the
synchronous particle, and nφ is the phase deviation of non-
synchronous particle from the synchronous particle, whose
positive (negative) value corresponds to the bunch tail (head).
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VI. ITERATIVE LOOP

An iterative loop can be established to calculate effec-
tively the bunch profiles and synchronous phase deviations
using the related equations in the above sections, as shown
in Fig. 2, where the initial density distribution ρ0i is set to a
Gaussian distribution with the natural bunch length at the
zero current limit, and the deviation of the synchronous
phase Δφ0

i is set to zero. To make an economical calcu-
lation, the reference phase φs0 is chosen by

Vrf sinðφs0Þ − 2FI0RL cosðψhÞ cosðψhÞ ¼
U0

e
; ð20Þ

tanðψhÞ ¼ −2QL
Δωr

nωrf
; ð21Þ

where Δωr ¼ ωr − nωrf is the detuning angular frequency
of harmonic cavity, I0 is the average beam current, and
F ≈ 1 for short bunches. φs0 is also an approximate solution
to the case of uniform fill pattern.
Updated synchronous phase deviation Δφ1

i can be
obtained using the Newton iteration method in Eq. (17),
and the corresponding voltage phasor Ṽi using Eq. (16).
Once Δφ1

i and Ṽi are obtained, Eq. (19) is solved to get ki
and ψh;i, and the synchronous phase φ1

i is equal to
φs0 þ Δφ1

i . Then the current density distribution ρ1i is
updated by Eqs. (5)–(7).
If the maximum relative deviation between the current

and the previous distributions is less than the allowable set
error (10−5 for our cases), the loop will be terminated and
the results will be outputted, otherwise, the loop will
continue. In order to speed up the convergence and avoid

the occurrence of cyclic solutions, before starting the next
round of calculation, the current density distributions are
updated and weighted by a random coefficient with the
previous and the current distributions.
The iteration loop has been implemented into a MATLAB-

based code, which was found to be very efficient for
hundreds of arbitrary filled bunches, e.g., for HALF cases
with a maximum bunch number of 800, the elapsed time is
within 30 seconds. In Sec. VIII, the cases of HALF storage
ring with several possible fill patterns will be shown to
demonstrate the capability of this code.

VII. NEAR OPTIMUM CONDITION

For the case of uniform fill, the induced voltage ratio in
the harmonic cavity is given by [12]

k ¼ −2FI0RL cosðψhÞ
Vrf

: ð22Þ

The optimum lengthening condition is proposed by making
both the first and second order derivatives of the total
voltage be zero, which is also called flat potential con-
ditions. This is achieved when the harmonic cavity voltage
ratio and phase are [11]

kfp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n2
−

1

n2 − 1

�
U0

eVrf

�
2

s
; ð23Þ

tanφh;fp ¼ −
nU0

eVrf

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 − 1Þ2 − ðn2U0

eVrf
Þ2

q : ð24Þ

FIG. 2. The iterative loop diagram, including a big loop for computing the longitudinal density distribution and a subloop of Newton
iteration for calculating the synchronous phase deviation.
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However, for the target current and the determined shunt
impedance, the flat potential conditions cannot always be
met due to the mismatch of the shunt impedance, especially
for the superconducting HHC [26]. That is to say, either the
voltage or the phase condition can be reached by adjust the
detuning frequency of the passive harmonic cavity. So we
will use Eqs. (21)–(23) to determine the detuning frequency
(which we call the near optimum lengthening condition).
This condition may lead to a significant deformation of the
bunch shape which is far away from the flattop profile.
Nevertheless, we can still use it to choose the detuning
frequency since it can still reach relative fine results of
bunch lengthening. The detuning frequency will be also
used in the below sections for the case of nonuniform fill.

VIII. NUMERICAL RESULTS FOR THE
PARAMETERS OF HALF

A tentative set of parameters of HALF storage ring
without insertion devices is summarized in Table I, where
the harmonic cavity is assumed to have the same quality
factor Q as that of ALS [18], but has a lower R=Q of 60 Ω
(in circuit definition). Using these parameters, several fill
patterns, including uniform, a long gap and uniformly
distributed gaps, will be calculated and discussed. The
continuous density distribution of each bunch is calculated
at discrete sampling points uniformly distributed in the
range of τ ∈ ½−150; 150� ps. We take 300 points here and
even if we increase the number of the points further the
changes of calculation results are very slight by graphical
comparisons.
The main cavity is assumed to be ideal, as others did

[14,17], since we only focus on the beam loading effect of
harmonic cavity in this paper. In reality, the beam loading
and the generator voltages of the main cavity will affect
each other through a complex rf feedback. Assuming a
given generator voltage, our method can be extended to
include the beam loading effect of the main cavity, and the

details of the algorithm can be found in Appendixes A
and B.
In subsections below, only the wakefield from the HHC

is considered except for Secs. VIII E and VIII F, where the
short range wakefield from all other vacuum components is
represented by a broadband resonator model.

A. Uniform fill with 800 bunches

We first study the case of uniform and complete fill
pattern at the nominal current of 350 mA. Figure 3 shows
the resulting charge density profiles of 800 identical
bunches. The detuning frequency determined by the near
optimum condition is 128.3 kHz. By decreasing the
detuning frequency, it is expected that the bunch can be
lengthened to more than a factor of 5. As seen in Fig. 3,
with decreasing the detuning frequency from 133.3 to
120.3 kHz, the rms bunch length is increased from 22.8 to
34.6 ps, but the charge density distribution becomes more
and more asymmetric. The flattop potential conditions
require the shunt impedance be 2.93 MΩ, while the shunt
impedance of 1.26 MΩ which we used is far away from
this value. So we achieve neither a flattop nor two maxima
in the density like that in [17].

B. Train with a single long gap

Next, we consider a train with a single long gap (a
number of successive empty buckets), which can be used
for mitigating the ion instability or meeting the require-
ments of some synchrotron light users. An example of a
bunch train with 80 empty buckets is studied using the
parameters listed in Table I. Several representative bunch
forms near the front, middle, and end of the train are shown
in Fig. 4.
We also consider the impact of R=Q on the bunch

lengthening since the transient effect scales as its value
[18]. Figure 5 shows the centroid positions and rms lengths
for R=Q of 60, 100 and 140 Ω, respectively, where the Q

TABLE I. Main parameters of HALF.

Parameter Symbol Value

Ring circumference C 480 m
Beam energy E0 2.2 GeV
Nominal beam current I0 350 mA
Longitudinal damping time τz 20 ms
Momentum compaction αc 6.3 × 10−5

Natural energy spread σδ 6.6 × 10−4

Harmonic number h 800
Energy loss per turn U0 218 keV
Voltage of MC Vrf 0.746 MV
Natural rms bunch length σt0 6.67 ps
Harmonic number of HHC n 3
Detuning frequency of HHC Δf 128.3 kHz
Shunt impedance of HHC Rs 1.26 MΩ
Quality factor of HHC Q 21 000
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FIG. 3. Charge density profile for uniform fill with 800
identical bunches at 350 mA.
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values are all 2.1 × 104 and the detuning frequencies are
determined by the near optimum lengthening condition.
Comparing with the uniform fill pattern, there is much less
bunch lengthening and a larger centroid shift varying

linearly along the train for each case. But it also indicates
that a small R=Q would be helpful for mitigating the
transient effect. As can be seen in Fig. 5, the bunches can
still be lengthened to a factor of about 2 with R=Q ¼ 60 Ω,
while the bunches are even slightly shortened with
R=Q ¼ 140 Ω.

C. Compensation for the long gap

For improving the bunch lengthening performance, the
scheme based on the guard bunches can be used to
compensate for the long gap in the fill pattern [14,17].
We consider the case of 25 bunches on both sides of the gap
with 3 times nominal charge while maintaining the average
current of 350 mA. Figure 6 shows the results for several
representative bunch profiles. Figure 7 shows the centroid
position and the rms length vs bunch number.
We can see that the transient effect is reduced obviously

and the overall bunch lengthening performance is effec-
tively improved. The middle three bunches are near flattop
and lengthened to a factor of about 5. The head and tail
bunches are near Gaussian and lengthened to a factor of
about 2. However, the highly intense guard bunches could
suffer from the microwave instability, or a reduced lifetime,
or some other undesirable collective effects.

D. Uniformly distributed gaps

The fill pattern with a single long gap could suffer from
heavy transient beam loading effect and lead to an
undesirable bunch lengthening performance, even if the
guard bunches are used to compensate the gap. Thus we
consider the fill pattern with uniformly distributed gaps for
HALF. This has a chance of resembling more closely the
complete fill. Keeping the average current of 350 mA, the
800 buckets are divided into 20 periods, each with 36
successive filled bunches and four empty buckets.
The resulting bunch parameters also turn out to be

periodic in bucket number, as shown in Fig. 8. Figure 9
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FIG. 4. Results for the long gap fill with 720 identical bunches.
The right three curves correspond to bunch 1, 11 and 21; the
middle three to 350, 360 and 370; the left three to 700, 710 and 720.
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FIG. 5. Centroid position (a) and rms bunch length (b) vs bunch
number.
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FIG. 6. Charge density profile. Nine bunches are chosen to be
shown from the head, middle and tail parts of the bunch train.
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displays the normalized density profiles of several repre-
sentative bunches in the first bunch train. The centroid
displacement is much smaller in comparison to that of the
long gap case, and its magnitude is similar to that of the
complete fill. The ratio of the average rms length over all
the bunches to the natural bunch length is about 4, which is
near the case of uniform fill.

E. Uniformly distributed gaps with a broadband
resonator impedance

As is known, besides the harmonic cavity, the short range
wakefield from other vacuum components can also con-
tribute to bunch lengthening, which was neglected in the
above discussions but can be naturally included in our
semianalytical scheme. To illustrate such capability of the
proposed approach, we study the case presented in
Sec. VIII D again but with the short range wakefield
considered. For simplicity, the short range wakefield is
represented by a single broadband resonator (BBR) model
with resonant frequency of 30 GHz, quality factor of 1 and
shunt impedance of 3 kΩ. The results are shown in Figs. 10
and 11.

Comparing to those in Figs. 8 and 9, there is a smaller
centroid displacement and variation of bunch length along
each subtrain, and the average rms length over all the
bunches reaches 30.4 ps.
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FIG. 7. Centroid position (a) and rms bunch length (b) vs bunch
number, with guard bunches.
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FIG. 8. Centroid position (a) and rms bunch length (b) vs bunch
number, with uniform distributed gaps.
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FIG. 9. Charge density profile of several bunches in the first
bunch train, with uniform distributed gaps.
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F. Comparison with ELEGANT tracking

To benchmark our MATLAB-based code, we study the
case of a long gap fill pattern with 720 identical bunches by
parallel ELEGANT tracking [27], with and without a BBR

impedance which has resonant frequency of 30 GHz,
quality factor of 1 and shunt impedance of 1.5 kΩ.
In the simulation, the longitudinal damping time is

reduced from 20 to 10 ms for avoiding possible
Robinson instability, and each bunch is modeled as an
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FIG. 10. Centroid position (a) and rms bunch length (b) vs
bunch number, with uniform distributed gaps and a broadband
resonator impedance.
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FIG. 11. Charge density profile of several bunches in the first
bunch train.
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FIG. 12. Centroid position (a) and rms length (b) vs bunch
number, by ELEGANT tracking without BBR (blue dots) and with
BBR (red dots), and by semianalytical solution of MATLAB-based
code without BBR (yellow dots) and with BBR (green dots).
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FIG. 13. Charge density profile, by ELEGANT tracking for the
case of “w/o BBR” (blue asterisks) and “with BBR” (red square),
and by semianalytical solution for the case of “w/o BBR” (blue
curve) and “with BBR” (red curve), the left, middle and right
curves (dots) correspond to bunch 720, 360 and 1, respectively.
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ensemble of 10000 macroparticles. It takes about
40 minutes using 80 CPU cores for each case to reach
the convergence to below the percent level, while less than
30 seconds using the MATLAB-based code.
The results of centroid and rms length are shown in

Fig. 12, and several representative density profiles are
shown in Fig. 13. It is clear that the results given by both
codes are in very good agreement.

IX. CONCLUSION AND DISCUSSION

We have presented a semianalytical self-consistent
scheme for quickly computing the centroid shifts and
bunch profiles of arbitrary filled bunches in the presence
of a passive harmonic cavity and the short range wakefield.
This scheme has been implemented into a MATLAB-based
code, and applied to study the bunch lengthening effect for
the HALF storage ring. In addition, we have also used the
code to study the presented examples for other storage
rings, such as MAX IV [14] and ALS-U [17]. It showed
good convergence and high efficiency, taking less than
30 seconds for each case. The proposed method also has the
potential to be extended to include the beam loading effect
of the main cavity.
Our semianalytical scheme was similar to the “matrix

formulation” proposed in [14]. However, we had different
ideas to deal with the interaction between the beam and the
harmonic cavity. First, the bunch was treated as “a charge
distribution” rather than “a point charge with a bunch form
factor.” With only the long-range wakefield from HHC
taken into consideration, both treatments are equivalent.
However, when dealing with the short range wakefield, the
former is more convenient since the voltage generated by
the short range wakefield is obtained by a convolution of
the wake function and the charge distribution. Second, the
interaction was divided into two components according to
the voltage induced by the previous passages and the
present passage through the HHC, where the latter con-
tributes to the short range wakefield term. Although only
the case of a BBR impedance was shown in this paper, it is
worth noting that arbitrary short range wakefields can also
be dealt with in our scheme.
The proposed method only provides the solution of the

Haïssinski equation for arbitrary filled bunches, and to
study the stability of the equilibrium is beyond its scope.
This can, of course, be done by macroparticle tracking
codes. However, the semianalytical methods including the
proposed one in this paper can still provide a useful first
step to choose HHC design parameters and fill patterns,
since they are much faster than macroparticle-based
methods.

ACKNOWLEDGMENTS

This work was supported by the Fundamental Research
Funds for the Central Universities (No. WK2310000090
and No. WK2310000082) and National Natural Science
Foundation of China (No. 11705198).

APPENDIX A: VOLTAGE AMPLITUDE AND
PHASE OF THE MAIN CAVITY

In order to damp the Robinson instability, the detuning
frequency of the main cavity should be set to be negative.
Thus in the phasor diagram, the loading voltage phasor lags
behind the image current phasor, as shown in Fig. 14. It is
known that the rf voltage phasor is the sum of the beam-
loading voltage phasor and the generator voltage phasor
[28]: Ṽrf ¼ Ṽg þ Ṽmc

i . Once Ṽrf is obtained, ψ s can be
determined by

ψ s ¼ arctan

�
Re½Ṽrf�
Im½Ṽrf�

�
� π

2
; ðA1Þ

where ψ s is defined to be negative in our phasor diagram,
and þð−Þ is taken when Im½Ṽi

hc� > 0ð< 0Þ. The real
voltage seen by the nonsynchronous particles is then
given by

jṼrfj cosðψh − φÞ ¼ Vrf sin

�
φþ π

2
− ψ s

�
: ðA2Þ

Then we have the voltage amplitude of Vrf ¼ jṼrfj and
synchronous phase of φs ¼ π

2
− ψ s.

APPENDIX B: NEWTON ITERATIVE METHOD
FOR SYNCHROTRON PHASE DEVIATION

Without considering the beam loading of the main
cavity, the deviation of the synchronous phase can be
obtained by the Newton iteration method, and the corre-
sponding Newton iteration form is given by

Fi þ
∂Fi

∂Δφk
ðΔφpþ1

k − Δφp
k Þ ¼ 0; ðB1Þ

FIG. 14. Phasor diagram for the main cavity. The image current
phasor ĩb is along the positive direction of the real axis, all
phasors run counterclockwise, Ṽrf is the rf voltage phasor, Ṽg is
the generator voltage phasor and Ṽmc

i is the beam-loading voltage
phasor, ψ is the detuning angle of main cavity, and ψs is the phase
of Ṽrf with respect to the beam phasor Ĩb along the negative
direction of the real axis.
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where i ¼ 1; 2…h, and Fi is determined by

Fi ¼ Vrf sinðφs0 þ ΔφiÞ

− Re

�Xh
k¼1

Ṽi;∞ exp½Δk;i þ jnðΔφi − ΔφkÞ�
�

þ qi

Z
∞

−∞
ρiðτ0ÞWLð0 − τ0Þdτ0 −U0

e
: ðB2Þ

As the short range wakefield term is not a function of Δφi,
the Jacobian ∂Fi∂Δφk

of Eq. (B2) can be written as

∂Fi

∂Δφk
¼ Vrf cosðφs0 þ ΔφiÞδi;k
þ RefjnṼhc

i;∞ exp½Δk;i þ jnðΔφi − ΔφkÞ�g

− Re

�Xh
k¼1

jnṼhc
i;∞ expðΔk;iÞ

�
δi;k; ðB3Þ

where δi;k is the Kronecker delta.
With the beam loading of the main cavity taken into

account, the corresponding Fi and ∂Fi∂Δφk
are respectively

given by

Fi ¼ −Re½Ṽg expðjΔφiÞ�

− Re
�Xh
k¼1

Ṽmc
i;∞ exp½Δmc

k;i þ jðΔφi − ΔφkÞ�
�

− Re

�Xh
k¼1

Ṽhc
i;∞ exp½Δhc

k;i þ jnðΔφi − ΔφkÞ�
�

þ qi

Z
∞

−∞
ρiðτ0ÞWLð0 − τ0Þdτ0 −U0

e
ðB4Þ

and

∂Fi

∂Δφk
¼ −Re½jṼg expðjΔφiÞ�δi;k
þ RefjṼmc

i;∞ exp½Δmc
k;i þ jðΔφi − ΔφkÞ�g

− Re

�Xh
k¼1

jṼmc
i;∞ expðΔmc

k;i Þ
�
δi;k

þ Re½jnṼhc
i;∞ exp½Δhc

k;i þ jnðΔφi − ΔφkÞ��

− Re

�Xh
k¼1

jnṼhc
i;∞ expðΔhc

k;iÞ
�
δi;k: ðB5Þ
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