
 

Benchmarking of analytical estimates to study systematic errors
for the charged particle electric dipole moment measurements

M. Haj Tahar and C. Carli
CERN, CH 1211 Geneva, Switzerland

(Received 28 August 2020; accepted 1 March 2021; published 24 March 2021)

Proposals aimed at measuring the electric dipole moment (EDM) for charged particles in storage rings
require a good understanding of the systematic errors that can contribute to a vertical spin buildup
mimicking the EDM signal to be detected. In what follows, a method of averaging emanating from the
Bogoliubov-Krylov-Mitropolski method is employed to solve the Thomas-Bargmann-Michel-Telegdi
equation and calculate the Berry phases arising for the storage ring frozen spin concept. The formalism
employed proved to be particularly useful to determine the evolution of the spin at the observation point,
i.e., at the location of the polarimeter. Several selected cases of lattice imperfections were simulated and
benchmarked with the analytical estimates. This allowed the proof of the convergence of the numerical
simulations and helped gain better understanding of the systematic errors.
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I. INTRODUCTION

The quest to challenge the standard model of particle
physics is on-going with a very diverse set of experimental
investigations aimed at finding new physics. The direct
approach relies on particle colliders through possible
production of new particles. Nevertheless, due to the, so
far, negative results of searches for new particles with the
Large Hadron Collider, potential projects not relying on
high energy frontier colliders and, among them charged
particle electric dipole moment (EDM) measurements
studied for a long time by an international community
[1–5], are gaining interest. The recently launched physics
beyond colliders (PBC) study, aimed at identifying future
projects not relying on colliders, considers an EDM
measurement as an interesting option for particle physics
and, thus, contributes to the international effort.
A high precision measurement of the permanent EDM of

fundamental particles or subatomic systems is widely
considered as a sensitive probe for physics beyond the
standard model [6] and among the scientific activities that
was recommended by the 2020 European strategy group for
particle physics [7]. The quest to measure such an asym-
metric charge distribution within the particle volume has
gained attractiveness and enthusiasm over the past few
decades since a non-null EDM would be a sign of CP
(charge parity) violation. The latter is one of the three

conditions that could explain why a universe containing
initially equal amounts of matter and antimatter shall
evolve into a matter-dominated universe, as formulated
by Andrei Sakharov in 1967 [8].
To this end, the search for such a small-scale quantity has

been pursued by several research groups and significant
contributions made over the years [9,10]. In particular,
neutral systems such as neutrons, neutral molecules or
atoms have been privileged in many cases due to the ease of
constructing a trapping system where the electromagnetic
fields have minimum impact on the translational motion
[11–14]. Another approach is indirect measurements with
charged particles exploiting the strong electric fields in
some molecules. For instance, the most sensitive upper
limit to an EDM of any elementary particle or nucleus
comes from indirect measurement relying on a cryogenic
molecular beam of the heavy polar molecule thorium
monoxide (ThO) and yielded an upper limit of the electron
EDM, jdej < 1.1 × 10−29 e cm at 90% confidence level
[15]. However, since a single indirect EDM measurement
cannot decide on the source of CP violation even if
detected, several measurements with a variety of systems
are widely considered necessary in order to elucidate the
nature of the EDM and its underlying mechanisms [4,9]. In
particular, the on-going research of the Julich Electric
Dipole Moment Investigations (JEDI) collaboration at
the cooler synchrotron COSY is aiming for the first direct
deuteron EDMmeasurement in a magnetic ring by employ-
ing the so-called “partially frozen spin” technique [16].
To circumvent such a difficulty of attaining high pre-

cision direct measurements for charged particles, the
method of “magic energy” concept has been successfully
applied to measure the anomalous magnetic dipole moment
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(MDM) of muons [17] and represents an attractive solution
to search and measure the EDM of muons as well as other
charged particles [1,2,4,18]. The concept relies on a storage
ring where polarized particles are injected and recirculated
at their magic momentum [2] so that the orientation of the
particle spin with respect to its momentum direction is
preserved with the well-known MDM torque. Since the
EDM of a particle is aligned with its spin vector, measuring
a spin buildup by coupling with radial electric fields will be
a direct observation of a non-null EDM signal. For protons,
an attractive solution exists to build a low energy all-
electric ring as was already proposed by the storage ring
EDM (srEDM) collaboration in 2011 [3,5] since the magic
kinetic energy to freeze the spin is Ekin ¼ 232.8 MeV,
hence its designation as “frozen spin concept.” To inves-
tigate the feasibility of such a measurement for the proton
EDM, the Charged Particle EDM (CPEDM) collaboration
was formed in 2017 whose aim is to devise an adequate
strategy allowing to reach a sensitivity level of 10−29 e cm
[19,20]. To give a more intuitive perception, this is
equivalent to measuring a separation between the center
of mass of the proton and its center of charge with an
accuracy of 10−29 cm [12].
However, to reach the desired sensitivity level, it is

crucial to understand and mitigate the systematic errors due
to machine imperfections that can yield a fake signal
mimicking the EDM one. Typical machine imperfections
of an all-electric proton EDM ring are residual magnetic
fields penetrating the shield and the limited positioning
accuracy and mechanical tolerances of electric bends and
focusing quadrupoles. The objective of this paper is to
contribute to a better understanding regarding that matter:
starting from the spin precession equation, we will establish
the formalism and all necessary quantities to compute the
spin evolution in a storage ring. Then, using a perturbation
method, an approximate solution to this equation is derived
and benchmarked with BMAD tracking simulations. The
application example is focused on the case of the all-
electric proton EDM ring [21]. However, the formalism
developed applies to any storage ring relying on the frozen
spin technique among which the hybrid ring lattice where
magnetic fields are used for focusing and electric fields for
deflection [22] or other concepts for which the spin is
frozen by means of combined electrostatic and magnetic
deflectors [1,2].
In particular, it will be shown that, even at the magic

energy, machine imperfections lead to various effects
generating a vertical spin component buildup and thus a
fake signal. In particular, the geometric phases, often also
referred to as the Berry phases, constitute one leading
contribution to such an effect. The latter will be calculated
and benchmarked with the tracking simulations.
This paper is divided as follows: first, we start by

recalling the spin precession equation in storage rings
and the choice of convenient coordinate system to simplify

the analysis. Then, a perturbation approach will be invoked
to solve the equation in the vicinity of the magic energy.
This will allow us to establish and distinguish the different
classes of leading systematic errors. Finally, the analytical
expressions will be benchmarked with tracking simulations
of an EDM ring with selected imperfections.

II. THOMAS-BARGMANN-MICHEL-TELEGDI
EQUATION

The variation with time of the classical spin vector S
(such that jSj ¼ 1) can be described by a vector equation,
the so-called Thomas-Bargmann-Michel-Telegdi (T-BMT)
equation [23–25]:

dS
dt

¼ ðΩMDM þΩEDMÞ × S; ð1Þ

where

ΩMDM ¼ −
q
mc

��
Gþ 1

γ

�
cB −

Gγc
γ þ 1

ðβ:BÞβ

−
�
Gþ 1

γ þ 1

�
β ×E

�
ð2Þ

is the precession vector due to the particle’s magnetic
moment and

ΩEDM ¼ −
q
mc

η

2

�
E −

γ

γ þ 1
ðβ:EÞβþ cβ × B

�
ð3Þ

is the precession vector due the particle’s finite electric
dipole moment. S is defined in the rest frame of the particle
while B, E, t denote the magnetic fields, electric fields and
time defined in the laboratory frame of reference, and G is
the particle’s anomalous gyromagnetic factor often quoted
as G ¼ ðg − 2Þ=2. In addition, q, m, c have their standard
meanings for the charge, mass and speed of light while
γ and β denote the Lorentz factor as well as the velocity of
the particle normalized in units of c. The dimensionless
factor describing the size of the EDM is given by η.

III. CONVENIENT COORDINATE SYSTEM

In accelerator physics, the particle coordinates are
generally expanded around a reference frame sketched in
Fig. 1, following the reference particle orbit. We denote the
three unit vectors attached to such a frame (ux, uy, uz) and s
the curvilinear abscissa along the reference orbit, not
necessarily equal to the distance traversed by the particle.
In a storage ring where the reference orbit is closed,
the coordinate system privileged to describe the spin is
the same, i.e., the one in which the xy plane attached to the
reference particle is rotating at a convenient reference
angular frequency. Such a frame is heavily employed for
magnetic resonance problems as well [26]. The angular
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velocity vector describing the rotation of this coordinate
system (due to the acceleration experienced by the particle
as it moves under the action of electromagnetic forces) is
denoted by ω, sometimes also referred to as the Darboux
vector.
Thus, if ∂=∂t represents the differentiation with respect

to such a rotating coordinate system, then, by a well-known
transformation [26]

∂S
∂t ¼

dS
dt

− ω × S ¼ Ωrot × S; ð4Þ

where

Ωrot ¼ ΩMDM þΩEDM − ω ð5Þ

and

ω ¼ −
ds=dt
ρ

uy ¼ −
βzc
ρþ x

uy ð6Þ

ρ being the bending radius of the reference orbit. Now,
writing the relativistic form of Newton’s second law in a
perfect machine without any imperfections, the bending
radius of the closed orbit can be expressed as a function of
the applied bending fields:

1

ρ
¼ −

q
mγβ2c2

Ex þ
q

mγβc
By: ð7Þ

Note that the subscripts i denote the projected components
of the field, normalized velocity as well as the spin vector in
such a frame.

In order to simplify our analysis of the systematic errors,
a vanishing EDM contribution is assumed, i.e., η ¼ 0.
Expanding the projected components of the spin pre-

cession vector Ωrot ¼ ðΩx;Ωy;ΩzÞ and keeping terms up to
the second order only, yields

Ωx ¼ −
q
mc

�
Gþ 1

γ þ 1

�
βzðEy − y0EzÞ −

q
m

�
Gþ 1

γ

�
Bx

þ q
m
G

�
1 −

1

γ

�
x0Bz

Ωy ¼
q
mc

�
Gþ 1

γ þ 1

�
βzðEx − x0EzÞ −

q
m

�
Gþ 1

γ

�
By

þ q
m
G
�
1 −

1

γ

�
y0Bz þ

βzc
ρþ x

Ωz ¼
q
mc

�
Gþ 1

γ þ 1

�
βzðx0Ey − y0ExÞ −

q
m
1þG

γ
Bz

þ q
m
G

�
1 −

1

γ

�
ðx0Bx þ y0ByÞ: ð8Þ

Finally, by making use of Eq. (7), and assuming a particle
in a perfect machine following the reference orbit
(x ¼ x0 ¼ y ¼ y0 ¼ 0), the expression of the vertical com-
ponent can be further simplified:

Ωy ¼
q
mc

�
G −

1

γ2 − 1

�
βEx −

q
m
GBy ð9Þ

whereas the other two components vanish Ωx ¼ Ωz ¼ 0.
From relation (9), one can see that, for each energy, there

exists ðEx; ByÞ combinations that shall preserve the ori-
entation of the particle spin with respect to its momentum
direction. This is called “frozen spin” condition and is
achieved by setting Ωy to zero [1,2]. In particular, for
particles possessing a positive G-factor, this can be
obtained for an all-electric ring and for one specific
momentum that we generally refer to as the magic
momentum pm:

pm ¼ mcffiffiffiffi
G

p : ð10Þ

For protons, this corresponds to pm ¼ 700.74 MeV=c, i.e.,
to a particle kinetic energy of 232.8 MeV. An all-electric
EDM ring is particularly interesting for the purpose of such
a precision experiment since it allows to circulate two
counterrotating beams, an aspect deemed essential to
circumvent some of the leading sources of systematic
errors that we shall discuss in this paper.
Note that different coordinate systems can be employed

for the analysis of the spin evolution and may simplify the
analysis of some phenomena as discussed in [28–30].

Reference
Orbit

Actual
Orbit

Center of
Curvature

s

s = 0

Particle

Reference
Particle

FIG. 1. The local reference coordinate system used for ana-
lytical derivations and for comparative tracking studies using
BMAD [27]. The reference orbit lies in the (theoretical) median
plane of the accelerator: uz is the unit vector pointing along
the momentum direction of the reference particle, ux points
radially outwards and uy is the vertical unit vector defined
as uy ¼ uz × ux.
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IV. METHOD OF AVERAGES

In our approach, we are interested in determining the
impact of perturbations on the beam polarization evolution:
the proximity to the magic energy leads to the assumption
that the derivative ∂S=∂t is small, an assumption that is
intrinsic to the choice of such an energy for which the spin
precession components shall vanish and that we will refer
to as the nearly frozen spin condition. In matrix notation,
the T-BMT equation writes as follows:

∂S
∂t ¼ ΩðtÞSðtÞ ¼

0B@ 0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0

1CA
0B@Sx

Sy
Sz

1CA: ð11Þ

Thus, when the above condition is fulfilled, the Bogoliubov-
Krylov-Mitropolski (BKM) method of averages can be
invoked whereby the evolution of S is decomposed as the
sum of two terms obeying two timescales: a slowly varying
term ξ, due to the smallness of Ωi, and small rapidly
oscillating terms due to the presence of t in Ωi, i.e.,
describing the spin precession changes within the elements.
The basic idea of this approach was first developed by
Krylov and Bogoliubov (1934) [31]. Later on, in 1958,
Bogoliubov andMitropolski established the general scheme
and a more rigorous treatment for this method [32]. Finally,
in 1969, Perko almost completed the theory with error
estimates for the periodic and quasiperiodic cases [33].
In the formalism that we employ throughout this paper, ξ

accounts for the polarization buildup due to the averages of
the spin precession components while ϕ represents the
oscillatory behavior of the beam polarization. Thus, it is
assumed that the spin angular frequencies possess an
average value (with respect to the explicit variable t) that
is denoted by the angular brackets as follows:

hΩii ¼ lim
T→∞

1

T

Z
T

0

ΩiðtÞdt; i ¼ x; y; z: ð12Þ

In addition, the integrating operators ˜ and ˜̃ are defined as
follows:

Ω̃iðtÞ ¼
Z

½ΩiðtÞ − hΩii�dt

˜̃ΩiðtÞ ¼
Z

½Ω̃iðtÞ − hΩ̃ii�dt:

A. First order approximation

The first order approximate solution of the T-BMT
equation, obtained applying the BKM method [32], is
given by

S1ðtÞ ¼ ½1þ Ω̃ðtÞ�ξ1ðtÞ; ð13Þ

where the integrating operator is acting on all the elements
of the matrix and ξ1ðtÞ is the solution of the averaged
T-BMT equation, i.e.,

∂ξ1
∂t ¼ hΩiξ1ðtÞ

¼

0B@ 0 −hΩzi hΩyi
hΩzi 0 −hΩxi
−hΩyi hΩxi 0

1CA
0B@ ξx;1

ξy;1

ξz;1

1CA; ð14Þ

the subscript ξx;i denoting the ith order of the approximation.
A solution of the above equation is readily obtained

using the Euler-Rodriguez formula:

ξ1ðtÞ ¼ ehΩitξ1ð0Þ

¼
�
1þ hΩi sinðhΩitÞhΩi þ hΩi2 1 − cosðhΩitÞ

hΩi2
�
ξ1ð0Þ

ð15Þ

hΩi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΩxi2 þ hΩyi2 þ hΩzi2

q
; ð16Þ

where one assumes an initial value of the spin vector given
by Sð0Þ ¼ ξ1ð0Þ ¼ ðξx0; ξy0; ξz0Þ.
In the limit where hΩit ≪ 1, consistent with a nearly

frozen spin condition, Eq. (13) rewrites by keeping terms
up to the first order in Ωi:

S1ðtÞ ¼ ξ1ðtÞ þ ϕ1ðtÞ ¼ ½1þ hΩit�Sð0Þ þ Ω̃Sð0Þ; ð17Þ

where ϕ1 represents the first order rapidly oscillating terms
that vanish after each period completion.
Now, expanding the first order linear solution relevant

for a turn-by-turn analysis of the spin buildup yields

ξx;1ðtÞ ¼ ξx0 þ ½hΩyiξz0 − hΩziξy0�t
ξy;1ðtÞ ¼ ξy0 þ ½hΩziξx0 − hΩxiξz0�t
ξz;1ðtÞ ¼ ξz0 þ ½hΩxiξy0 − hΩyiξx0�t: ð18Þ

B. Second order approximation

To obtain the second order approximation, the method of
successive approximations is applied by reinjecting the first
order approximation (17) into the exact T-BMT equation
and reintegrating it again. This writes as follows:

∂S2
∂t ¼ ΩðtÞS1ðtÞ ¼ ½ΩþΩhΩitþΩΩ̃�Sð0Þ: ð19Þ

Following the integration steps in the Appendix A, the
second order approximation is established:

S2ðtÞ ¼ ξ2ðtÞ þ ϕ2ðtÞ; ð20Þ
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where

ξ2ðtÞ ¼
�
1þ fhΩi þ hΩihΩ̃i − hΩ̃ihΩi

þ hðΩ − hΩiÞΩ̃igtþ hΩi2
2

t2
�
Sð0Þ ð21Þ

and

ϕ2ðtÞ ¼ ½Ω̃þ gΩΩ̃þ ðtΩ̃ − ˜̃ΩÞhΩi�Sð0Þ: ð22Þ

In particular, if hΩi ¼ 0, then the only remaining contri-
bution to the vertical (or radial) spin buildup is due to the
geometric (or Berry) phases [34,35] such as

ξ2ðtÞ ¼ ½1þ hΩΩ̃it�Sð0Þ: ð23Þ

To verify the validity of the previous analytical solutions,
several caseswere simulated by solving the T-BMTequation
using explicit RungeKutta tracker inMathematica [36]. The
expanded matrix form is shown in Appendix B.
Finally, it should be noted that the rapidly oscillating

terms ϕi for a specific order have no impact on the
measured polarization if we restrict the approximation to
that order. By construction, these terms vanish after each
turn completion, i.e., at the location of the polarimeter
corresponding to a longitudinal position s ¼ 0. However,
they are crucial to refine the approximation to higher orders
as shown previously. In particular, one can observe that the
second order approximation revealed some additional terms
in comparison with the first order approximation. Those
terms will be discussed in Sec. V that focuses on the case of
an initial longitudinal beam polarization.

C. Case of longitudinally polarized beam

In the frozen spin scenario, the idea is to inject a beam
which is initially polarized longitudinally i.e., Sð0Þ ¼
ð0; 0; 1Þ and observe a possible vertical polarization buildup.
It results from Eq. (21) that the second order approximation
of the latter is given by

ξy;2ðtÞ ¼ −hΩxitþ hΩzihΩ̃yit − hΩyihΩ̃zit

þ hðΩz − hΩziÞΩ̃yitþ
hΩyihΩzi

2
t2: ð24Þ

This will be our main focus for the remaining part of this
paper. In addition, unless otherwise specified, the oscillating
contribution to the spin evolution, i.e.,ϕ2ðtÞ, is disregarded.
At this point, it is worthwhile to specify the level

of accuracy with which the spin evolution shall be
determined in order to reduce the systematic errors to
the level of the desired EDM signal. As mentioned earlier,
for an aimed sensitivity of 10−29 e cm, corresponding to
η ¼ 1.9 × 10−19, the vertical spin buildup will be

∂Sy
∂t ¼ −hΩxi ¼

q
mc

η

2
hExi: ð25Þ

Thus, assuming an average field of hExi ¼ −5.27 MV=m,
corresponding to a C ¼ 500 m circumference ring, this
yields a buildup of 1.6 nrad/s [20].

D. Error analysis

The above second order approximation to the T-BMT
equation is based on the assumption that the average spin
precession component is small on the timescales of the
EDM experiment. If the spin coherence time is Tcoh ¼
1000 s as is generally assumed to reach the aimed statistical
sensitivity (of 10−29 e cm) to measure the EDM within four
years of operation time [37], then a necessary but non-
sufficient condition can be formulated as follows:

hΩiTcoh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΩxi2 þ hΩyi2 þ hΩzi2

q
Tcoh

≪ 1 ⇒ hΩxi; hΩyi; hΩzi

≪
1

Tcoh
≈ 10−3 s−1: ð26Þ

This signifies that, the larger the EDM buildup time, the
smaller are the required averages of the spin precession
components to guarantee a linear regime of the polarization
signal. In particular, the condition (26) justifies the need for
the second order approximation in order to account for the
systematic errors that can yield a signal at the levels of the
EDM one.
From the above scheme we can infer that the general

frozen solution to the T-BMT equation in the interval
½0; Tcoh� can be classified into three main regimes depend-
ing on the value of the average spin precession:
(i) If < Ωi >≳ 1=Tcoh for all i, then the spin evolution
is governed by the averages of its precession components.
Therefore, in many cases Eq. (15) gives sufficiently
accurate results. (ii) If 0 < hΩi ≪ 1=Tcoh then the non-
linear increase with time can be neglected on the timescales
of the EDM experiment. Using the second order approxi-
mation based on the BKM method of averages, i.e.,
Eq. (21), it can be seen that

ξyðtÞ ¼ ξy;2ðtÞ þOðϵÞt; ð27Þ

where ϵ can be established by pushing the approximation to
the third order. The latter is invoked in some peculiar cases
such as the one hereafter. (iii) In the limit where hΩi ¼ 0,
i.e., hΩii ¼ 0 for all i, the geometric phases are the only
contribution to the spin buildup. The latter is governed by
the noncommutativity of the rotation around different axes.
Using the method of successive approximations to establish
the third order approximation, it can be easily shown that
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ξyðtÞ ¼ ξy;2ðtÞ þOðhΩz
gΩzΩ̃xit − hΩzΩ̃xihΩ̃zit

þ hΩxðΩ̃yÞ2itÞ: ð28Þ

Such a result is particularly instructive to illustrate how the
higher order terms of the Berry phases can arise in a lattice
even when the particle is continuously at the magic energy,
i.e., ΩyðtÞ ¼ 0 and its average spin precession components
are all vanishing i.e., hΩi ¼ 0. The following diagram
shows how a vertical spin buildup can be generated in such
a case:

Sz ¼ 1!−ΩxSy ¼ ϕy;1 ¼ −Ω̃x!
−ΩzSx ¼ ξx;2 þ ϕx;2

¼ hΩzΩ̃xitþ gΩzΩ̃x !
Ωz Sy ¼ ξy;3 þ ϕy;3:

The longitudinal spin is thus rotated consecutively into the
vertical, horizontal and vertical plane.
In general, when realistic misalignment errors are taken

into account, the above condition (26) is not satisfied
as is discussed in Sec. VI. Nevertheless, the second order
approximation can serve as an important benchmarking test
of the tracking simulations on short timescales t such that
hΩi ≪ 1=t holds and is crucial to understand the different
sources of imperfections to mitigate.
It follows from the T-BMT equation that the magnitude

of the spin shall be constant. Nevertheless, it is important to
note that the Hermiticity of the approximate frozen solution
is not conserved for the second order approximation. For
instance, if one computes the Euclidean norm of the frozen
solution at times t ¼ kT, i.e., after each turn completion,
one obtains the following for the special case where
hΩi ¼ 0:

kξ2ðt ¼ kTÞk ¼ ðξx;22 þ ξy;2
2 þ ξz;2

2Þ1=2
¼ ð1þ ½hΩzΩ̃xi2 þ hΩzΩ̃yi2�t2Þ1=2

≈ 1þ hΩzΩ̃xi2 þ hΩzΩ̃yi2
2

t2: ð29Þ

Such an effect is negligible for the timescales of the EDM
experiment. However, the Hermiticity can be improved by
keeping the higher order terms in the expansion of the
sinusoidal functions of the first order solution. This will not
be pursued here.

V. ON THE DIFFERENT CLASSES
OF SYSTEMATIC ERRORS

From the second order approximation given by Eq. (24),
and under the assumption that the condition (26) holds, one
can infer five different classes of leading systematic errors:
(i) The first term, −hΩxit, is due to a nonvanishing average
radial spin precession that rotates the initial longitudinal
polarization into the vertical plane. This accounts for the
EDM effect to be measured due to the average radial

electric field in the ring. Another contribution is an average
radial magnetic field, which is probably the most severe
systematic effect limiting the smallest EDM to be identi-
fied. (ii) The second term, hΩzihΩ̃yit, is due to a non-
vanishing average longitudinal spin precession that rotates
the oscillating horizontal polarization into the vertical
plane.. (iii) The third contribution, −hΩyihΩ̃zit, is due to
the slowly linearly varying term of the radial polarization
component which leads to “periodic” vertical spin oscil-
lations with increasing amplitude described by Ω̃z. The
latter is sensitive to the location of the perturbations in the
ring. (iv) The fourth contribution, hðΩz − hΩziÞΩ̃yit,
accounts for the geometric phases whereby an oscillating
horizontal polarization is transferred into the vertical plane
by means of another oscillating longitudinal spin preces-
sion. This is due to the noncommutativity of spin rotations

around different axes. (v) The last term, hΩyihΩzi
2

t2, accounts
for the rotations around the average of the angular
frequency with longitudinal and vertical components:
hΩyi generates radial spin which is rotated into the vertical
by means of hΩzi. In the presence of field imperfections
and misalignment errors, and in the absence of any feed-
back system, the direction of the spin starts to depart from
the horizontal plane. The resulting polarization signal is
thus a mixture of all the above. Probably the most
challenging contribution to cure is the static radial magnetic
field since the latter mimics the EDM signal even combin-
ing measurements for both clockwise (CW) and counter-
clockwise (CCW) beams.
Although the leading terms of the geometric phases are

derived, the procedure established above can be reiterated
to determine the higher order terms.
In the next section, several cases of field imperfections

and misalignment errors are discussed. Our focus is on the
all-electric proton EDM ring.

VI. BENCHMARKING WITH
NUMERICAL SIMULATIONS

In order to establish the validity of the analytical solution
and how effective it can be in explaining the leading
sources of systematic errors, we apply it to a model
accelerator which is based on the all-electric proton ring
lattice proposed by Valery Lebedev [21] and underlying
several recent publications [20]. The proposed ring consists
of four superperiods, each including five FODO cells with
three cylindrical deflectors per half cell. The ring has a
circumference of C ¼ 500 m chosen to obtain reasonable
maximum electric fields of 8 MV=m for operation at the
proton “magic energy.” The main ring parameters are
summarized in Table I and the lattice functions determined
with the tracking code BMAD [27] are plotted in Fig. 2. The
chosen optics are characterized by a weak vertical focusing,
resulting in large vertical betatron oscillations with a
maximum of βy

max ¼ 216 m. The underlying reason is
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to enhance the vertical separation due to average radial
magnetic fields of CW and CCW circulating beams. The
measurement of this orbit difference with special high
sensitivity pickups to estimate and correct the average
radial magnetic field is an important ingredient for the
concept. In addition, as pointed out in [21], operation below
transition helps reduce the intrabeam scattering growth
rates which is crucial in order to allow for a large spin
coherence time of the order of 1000 s.
The aim of this section is to benchmark the BMAD spin

tracking simulations against the previously established
analytical formula. The analysis is restricted to a particle
whose motion is following the closed orbit, i.e., not
executing any betatron or synchrotron oscillations. This
is a simpler case than particles executing both oscillations.
Yet, it comprises most phenomena generating systematic
effects that can limit the possible sensitivity of the experi-
ment. Thus, for each simulated case, the analysis departs by
searching for the closed orbit in order to determine the
fields experienced by the particle on such a trajectory. From

this, the spin precession components as well as their
averages are calculated in an independent Python routine
to obtain the nearly frozen spin solution given by Eq. (21)
and probe the leading classes of systematic errors. Finally,
the BMAD spin tracking simulations based on the built-in
fourth order Runge Kutta integration algorithm are com-
pared with the analytical estimates based on the one turn
computation of the averages. The comparison is focused on
the turn-by-turn data since this is the signal to be detected
by the polarimeter. For all cases considered, the initial beam
polarization is longitudinal.

A. Selected cases of lattice imperfections

1. Average radial magnetic field

The particle equation of motion allows to establish the
relationship between the electromagnetic fields and the
phase space momenta. For the vertical plane, this writes as
follows:

1

q
½pyðtÞ−pyð0Þ� ¼

1

q

Z
t

0

dpy

dt
¼
Z

t

0

ðEyþβzcBxÞdt: ð30Þ

The latter is set to zero on the closed orbit so that the
effective average fields acting on the spin of the particle are
further constrained.
As a first benchmarking test, one considers the impact of

residual radial magnetic field imperfections on the vertical
spin. Making use of the relation between the applied fields
on the closed orbit established herein, hEyi ¼ −βzchBxi,
the rate of the vertical spin buildup is derived using Eq. (8):

∂Sy
∂t ≈−hΩxi ¼

q
m

��
Gþ 1

γ

�
hBxi þ

�
Gþ 1

γ þ 1

�
βzhEyi

c

�
¼ q

m

��
Gþ 1

γ

�
−
�
Gþ 1

γþ 1

�
βz

2

�
hBxi

¼ q
m
GhBxi ¼ ð1.72× 108 Hz=TÞhBxi; ð31Þ

where, for the last transformation, the relation G ¼
1=ðγ2 − 1Þ, valid for a ring operating at the magic energy,
is used.
Next, Eq. (31) derived above can be tested against

tracking simulations as shown in Fig. 3 where good
agreement is obtained. In particular, the above analysis
reveals that in order to fulfill condition (26), the residual
radial magnetic fields shall satisfy the following condition:
hBxi ≪ 10 pT. To further achieve the aimed sensitivity
level (equivalent to 1.6 nrad/s vertical spin buildup as
discussed in Sec. IV C), the radial magnetic fields shall be
controlled down to the aT level. This is probably the most
serious systematic imperfection of the EDM ring. The first
line of defense against such imperfection is magnetic
shielding. Nevertheless, even with state-of-the-art shield-
ing, it is challenging to reduce the residual fields to levels
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FIG. 2. Twiss parameters and dispersion for the entire circum-
ference of the all-electric proton EDM ring.

TABLE I. Table of the ring parameters of the proton EDM
experiment. Note that, for protons, G ¼ 1.7928474.

Total beam energy 1.171 GeV
Ring circumference C 500 m
Focusing structure FODO
Ncells, number of cells 20
Deflector shape Cylindrical
Number of deflectors per cell 6
Bending radius ρ 52.3089 m
Radial E field 8.016 MV/m
Gap 3 cm
Bending voltage �120 kV
Horizontal tune Qx 2.42
Vertical tune Qy 0.44
Phase slip factor η ¼ Δf=f

Δp=p
−0.192
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below 1 nT [38]. Hence the need for an additional control
mechanism based on operating the ring with two counter-
rotating beams and low vertical tune as discussed earlier
[3,5]: by measuring the vertical separation of the two beams
with ultrasensitive pickups, the residual radial magnetic
fields can be inferred. Yet, the demonstration of this scheme
is one of the reasons for the proposal to construct a
prototype ring [20]. Another recent proposal, aimed at
mitigating systematic effects due to a uniform radial
magnetic field, is the “hybrid ring concept” [22].

2. Quadrupole misalignments

If the particle is injected with a momentum offset δ, then,
in presence of vertical motion, vertical spin precession will
occur. For instance, assuming a net vertical misalignment of
one quadrupole and no contribution due to magnetic field
imperfections, one shall calculate the vertical spin buildup.
For this, the total energy conservation is a crucial aspect of
the simulation [39,40] since it leads to strong variation of
the momentum offset Δp=pm within the electrostatic
elements (see Appendix C). As illustrated in Fig. 4, where
an initial momentum offset δ ¼ 10−5 is assumed, the
leading term of the vertical spin buildup is the quadratic
increase term. Such a quadratic increase in the vertical plane
is due to a linear radial spin buildup which in itself is due to
the deviation from the magic energy as is established in
Appendix C: recalling Eqs. (C10) and (C11) and noting that
the horizontal closed orbit xco is, to the first order, propor-
tional to the amplitude of the horizontal misalignment error,
the radial spin buildup can be evaluated:

∂Sx
∂t ≈hΩy;dispiþhΩy;misi

≈ð−2.11×106HzÞδþð−5.09×103Hz=mÞΔxmis ð32Þ

such as, in this example, SxðtÞ ≈ −21.10 Hz t.

By making use of Eq. (8) where the vertical slope y0 is
obtained by means of a standard closed orbit search, one
also evaluates hΩzi ¼ −0.18 Hz which is due to the
vertically misaligned quadrupole, Δy ¼ 100 μm, generat-
ing a vertical slope inside the electrostatic deflectors as
shown in Ref. [41]. Thus, the condition (26) is not fulfilled
and the vertical spin buildup is

SyðtÞ ≈
hΩyihΩzi

2
t2 ∝ hExΔp=pihy0Exi ∝ δ · Δy ð33Þ

which is confirmed through tracking simulation results
shown in Fig. 4. Nevertheless, the above behavior changes
at the proximity to the magic energy, i.e., when δ → 0, and
gives rise to a linear buildup instead. To show this, let us
consider the same lattice where the beam is injected at the
magic energy and where two quadrupoles are misaligned as
follows: in the first quarter of the ring, a defocusing
quadrupole is misaligned vertically and horizontally by
ðþΔx;þΔyÞ. In the third quarter, i.e., 180 degrees out of
phase, a second defocusing quadrupole is misaligned by
ð−Δx;−ΔyÞ. Thus, the average misalignment vanishes in
this configuration. Such misalignments generate closed
orbit perturbations in both the horizontal and vertical
direction: The horizontal orbit perturbations produce a
change of the kinetic energy which is dominant within
the electrostatic bends [39]. Consequently radial spin
oscillations arise such as Sx ≈ Ω̃y. The latter is transferred
into the vertical plane by means of a longitudinal spin
precession. For instance, assuming Δx ¼ Δy ¼ 10 μm,
one obtains the following by making use of Eq. (8):

SyðtÞ ≈ −hΩxitþ hΩzΩ̃yit − hΩyihΩ̃zitþ
hΩyihΩzi

2
t2

≈ 0 � t − 8.68 � 10−8tþ 2.60 � 10−10t
þ 1.67 � 10−12t2: ð34Þ
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FIG. 3. Vertical spin buildup as a function of the average
residual radial magnetic field on the closed orbit and comparison
with the analytical estimate given by Eq. (31).
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FIG. 4. Comparison of the tracking simulations with the
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misaligned vertically by Δy (Δp=p ¼ 10−5).
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Thus, the vertical spin buildup is mainly due to the
geometric phases that can be approximated by

∂Sy
∂t ≈ hΩzΩ̃yi ∝ Ex

2
Δp
p

y0 ∝ Δx � Δy: ð35Þ

Such an effect is proportional to the product of the
displacements of both quadrupoles: the horizontal displace-
ment of the quadrupoles yields larger radial spin oscilla-
tions due to the variation of the kinetic energy in the
electrostatic bends while the vertical displacement of the
quadrupoles yields a vertical slope inside the electrostatic

bends, therefore a longitudinal spin precession which
rotates the radial spin into the vertical plane. Such an
effect yields a nonvanishing average value, therefore the
frozen spin is proportional to both displacements as verified
by tracking simulations in Fig. 5 (and similarly if one
replaces Δx by Δy).

3. Geometric phases due to magnetic
field perturbations

In this case, one assumes alternating longitudinal and
vertical magnetic field imperfections which are 90 degrees
out of phase as illustrated in Fig. 6 and such that the
integrated localized field imperfections are �1 nTm. In
addition, one assumes that the beam is injected at the magic
energy at point A. First, the closed orbit is determined as
depicted in blue in Fig. 6 along with the projected radial
and vertical spin components. To facilitate the conception
of the errors, a simplified model is employed where only
localized field imperfections based on the Hard edge model
are assumed as shown in Fig. 7. The contributions from
orbit perturbations are particularly small to play an impor-
tant role in this case. Ω̃y represents the integral of Ωy −
hΩyi and therefore accounts for the presence of vertical
magnetic fields yielding oscillating radial spin components.
The latter are rotated into the vertical plane by means of
longitudinal magnetic fields therefore a non-null Ωz. The
product of these two components yields the linear vertical
spin buildup due to the geometric phases. By making use of
Eq. (8), one obtains
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FIG. 5. Vertical spin buildup due to a special case of quadrupole
misalignment in both planes causing geometric phase effects and
comparison with the analytical estimate.
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∂Sy
∂t ≈ hΩzΩ̃yi ≈

1

cβzC

�
q
m

�
2
�
Gþ 1

γ

�
1þ G
γ

ðByLÞðBzLÞ

¼ ½5.94 × 105 Hz=ðTmÞ2�ðByLÞðBzLÞ ð36Þ

which is proportional to the amplitude of the field
perturbations. Comparison with the tracking simulation
results is finally shown in Fig. 8 where one obtained good
agreement.

4. Parametric scan of energy and
misalignment errors

One objective of the above developed formalism is to
allow fast and reliable parametric studies of the impact of
the field imperfections on the systematic errors for the
EDM measurement. As shown earlier, the approach which,
for the moment relies on computation of the averages on the

closed orbit, yielded results in good agreement with the
BMAD Runge Kutta tracking simulations. As an instructive
exercise, we vary simultaneously the beam energy in the
vicinity of the magic one as well as the vertical misalign-
ment of one quadrupole and compute the radial and vertical
linear spin buildup simultaneously. The radial spin buildup
is particularly useful as a tool to probe the deviation of the
particle from the magic energy and can help the feedback
system to find the optimum condition to freeze the spin
[42,43]: Such a feedback system will measure the radial
polarization with a polarimeter and rotate the spin vector
back to the longitudinal direction by acting for example on
the rf frequency and/or adding a small vertical magnetic
field (or both to adjust the radial spin of both the CW and
the CCW rotating beams).
From what preceded, the linear buildup rates of the spin

with respect to the momentum vector at the location of the
polarimeter are given by Eq. (21):

∂Sy
∂t ¼ −hΩxi þ hΩzihΩ̃yi − hΩyihΩ̃zi þ hðΩz − hΩziÞΩ̃yi
∂Sx
∂t ¼ hΩyi þ hΩzihΩ̃xi − hΩxihΩ̃zi þ hðΩz − hΩziÞΩ̃xi:

The latter are computed by making use of Eq. (8) and the
contour lines for both quantities are simultaneously dis-
played in Fig. 9. As expected, the radial spin buildup is
more important than the vertical one and is mainly

Path length

y,z

y

z

y

FIG. 7. Illustrations of the longitudinal and vertical components
of the spin precession vector due to alternating longitudinal and
vertical magnetic field imperfections. The vertical tilde compo-
nent Ω̃y represents the integral of the vertical component and
accounts for the rapidly oscillating terms of the radial spin
component. The average of the product of Ω̃y and Ωz yields a
nonvanishing vertical spin component.
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FIG. 8. Vertical spin buildup from tracking simulations and
comparison with the analytical estimate based on Eq. (36).

FIG. 9. Contour plot of the radial and vertical linear spin
buildup (in units of [rad/s]) as a function of the initial momentum
offset δ and the vertical misalignment of one quadrupole in the
ring. The numbers along with the red and blue lines are the radial
and vertical spin buildup, respectively. The gray area defines the
boundary of the aimed EDM sensitivity of �1.6 nrad/s.
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dependent on the deviation from the magic energy as given
by hΩy;dispi ≈ ð−2.11 × 106 HzÞδ [see Eq. (C11)]. In addi-
tion, the effect of the quadrupole misalignment on the radial
spin starts to play a role for larger misalignment errors
and is due to a mixing between the first order and the
second order effects. In particular, even for a beam initially
injected at the magic energy, i.e., δ ¼ 0, a radial spin
component will be generated if misalignment is present
since the latter alters the magic energy within the electro-
static elements.
For the vertical spin, the linear buildup is mainly due to

the second order effects: the variation of the kinetic energy
yields an oscillating horizontal polarization. The latter is
transferred into the vertical plane by means of another
oscillating longitudinal spin precession which is due to the
vertical beam trajectory. As discussed earlier, these phases
arise even when the beam is initially injected at the magic
energy. In conclusion, achieving the frozen spin condition
for all its components is possible only for the perfect
machine.
However, since the aim is to reduce the errors

below a certain threshold in order to determine the EDM
value, the boundary of the aimed EDM sensitivity is of
particular interest. The latter provides an estimate
of the level of control required for the beam energy as
well as the misalignment error (the counterrotating
beams approach is omitted in this discussion): for instance,
for a given vertical misalignment error of Δy ¼ 100 μm or
less, a control of the linear radial spin buildup to the
level below 8 × 10−4 rad=s shall guarantee that the vertical
linear buildup falls below 1.6 nrad/s. However, an addi-
tional constraint consists in verifying that the nonlinear
terms are negligible on the timescales of the EDM
experiment.
Furthermore, note the asymmetric shape of the gray area

which summarizes the fact that the magic energy is not a
sufficient condition to maintain the spin components in the
horizontal plane only.
Finally, an extensive study with random errors based on

the framework established in this paper is on-going in order
to assess the level of control of the field errors as well as the
element positioning accuracy needed to reach the desired
sensitivity level of 10−29 e cm.

VII. CONCLUSION AND COMMENT ON THE
NECESSITY OF A FEEDBACK SYSTEM

In this paper, general expressions were derived to
evaluate the systematic effects on “magic energy” EDM
rings, i.e., the phenomena other than EDM but caused by
machine imperfections leading to a vertical spin buildup.
This allows to better understand mechanisms limiting the
achievable sensitivity and, hopefully, to define mitigation
measures.

Several formulas were established and benchmarked
with selected cases of lattice imperfections. In particular,
it appears that the second order approximation based on
successive approximations starting from the first order
BKM method of averages, is very useful to calculate
and probe the sources of vertical spin buildup for a nearly
frozen spin lattice. Nevertheless, it is clear that under
realistic errors, a feedback system is necessary in order to
achieve the linear regime where the averages of the spin
precession components are small such as condition
(26) holds.
The latter is not sufficient as was established later on

through tracking simulations. In particular, residual radial
magnetic fields shall be controlled down to 10 aT level to
achieve the desired sensitivity of 10−29 e cm. In addition,
eliminating the radial spin buildup by means of a feedback
system is not a sufficient condition in order to achieve the
frozen spin lattice for its vertical component. The reason
lies in the fact that a frozen radial spin, when achieved in an
imperfect machine, does not guarantee that the beam is
at the magic energy. Hence, strict control of machine
imperfections which might require a beam-based alignment
approach intending to make the beam orbit as planar
as possible [44], and, in addition, the control of the
residual magnetic fields, is mandatory to improve the
sensitivity.
Finally, the analytical estimates presented here with

simple test cases are a good starting point for further
intensive numerical studies under more realistic conditions.
The next step is to apply the formulas derived to more
realistic EDM rings with random imperfections and taking
into account correction schemes.
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APPENDIX A: IDENTITIES

Let us assume that ΩiðtÞ is a well defined function that
possesses an average value. ΩiðtÞ can be expressed in the
following way:

ΩiðtÞ ¼ ½ΩiðtÞ − hΩii� þ hΩii ¼
d
dt

Ω̃i þ hΩii ðA1Þ

and
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Z
t

0

dτΩiðτÞ ¼ hΩiitþ Ω̃iðtÞ: ðA2Þ

Thus, by means of an integration per parts, the following
expressions can be simplified:

Z
t

0

dτΩiðτÞτ ¼
Z

t

0

dτhΩiiτ þ
Z

t

0

dτ
d
dτ

Ω̃iðτÞτ

¼ hΩii
2

t2 þ ½τΩ̃i�t0 −
Z

t

0

dτΩ̃i

¼ hΩii
2

t2 þ tΩ̃iðtÞ − hΩ̃iit − ˜̃ΩiðtÞ: ðA3Þ

Similarly, one can establish the following identity:

Z
t

0

dτΩiðτÞΩ̃iðτÞ

¼ ½Ω̃iðtÞ�2
2

þ hΩiihΩ̃iitþ hΩii ˜̃ΩiðtÞ: ðA4Þ

Finally, the same operations acting on all the elements of
the matrix Ω yield

Ω ¼ hΩi þ d
dt

Ω̃Z
t

0

dτΩ ¼ hΩitþ Ω̃Z
t

0

dτΩΩ̃ ¼ hΩΩ̃itþ gΩΩ̃Z
t

0

dτΩτ ¼ hΩi
2

t2 þ tΩ̃ − hΩ̃it − ˜̃Ω: ðA5Þ

APPENDIX B: SECOND ORDER APPROXIMATION

Based on Eq. (21), the second order polarization can be written in the matrix form as follows:

ξ2ðtÞ ¼ ½1þM1tþM2t2�ξð0Þ; ðB1Þ
where M1 and M2 are the transport matrices for the linear and quadratic polarization buildup respectively,

M1 ¼ hΩi þ hΩΩ̃i − hΩ̃ihΩi

¼

0B@ 0 −hΩzi þ hΩyΩ̃xi − hΩxihΩ̃yi hΩyi þ hΩzΩ̃xi − hΩxihΩ̃zi
hΩzi þ hΩxΩ̃yi − hΩyihΩ̃xi 0 −hΩxi þ hΩzΩ̃yi − hΩyihΩ̃zi
−hΩyi þ hΩxΩ̃zi − hΩzihΩ̃xi hΩxi þ hΩyΩ̃zi − hΩzihΩ̃yi 0

1CA ðB2Þ

and

M2 ¼
hΩi2
2

¼

0BB@
− hΩyi2þhΩzi2

2

hΩxihΩyi
2

hΩxihΩzi
2

hΩyihΩxi
2

− hΩzi2þhΩxi2
2

hΩyihΩzi
2

hΩzihΩxi
2

hΩzihΩyi
2

− hΩxi2þhΩyi2
2

1CCA: ðB3Þ

APPENDIX C: SPIN PRECESSION
COMPONENT SIMPLIFICATION

In what follows, we express the vertical spin precession
component as a function of the horizontal misalignment
errors as well as the momentum offset at injection.
To begin with, let us write Ex ≈ Eb

x þ ð∂Ex=∂xÞx, where
Eb
x represents the radial electric field of the ideal lattice, i.e.,

constant within the electrostatic deflectors and vanishing
everywhere else. In addition, making use of the following
relation between the radial electric field of the ideal lattice

and the radius of curvature of the corresponding ideal
trajectory,

qEb
x ¼ −

γmβm
2

ρ
mc2; ðC1Þ

the expression of Ωy simplifies to

Ωy ¼
q
mc

�
Gþ 1

γ þ 1

�
βzðEx − x0EzÞ −

q
m

�
Gþ 1

γ

�
By

þ q
m
G

�
1 −

1

γ

�
y0Bz þ

βzc
ρþ x

¼ q
mc

�
Gþ 1

γ þ 1
−

1

γmβ
2
m

�
βzEb

x þ βzc

�
1

ρþ x
−
1

ρ

�
þ q
mc

�
Gþ 1

γ þ 1

�
βz

�∂Ex

∂x x − x0Ez

�
−

q
m

�
Gþ 1

γ

�
By þ

q
m
G

�
1 −

1

γ

�
y0Bz: ðC2Þ
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Furthermore, it can be shown that

K ¼Gþ 1

γþ 1
−

1

γmβ
2
m
¼ −

1

γm þ 1
þ 1

γþ 1
; G¼ 1

β2mγ
2
m

¼ −
1

γm þ 1
þ 1

ðγm þ 1Þ
1

½1þ ðγ − γmÞ=ðγm þ 1Þ�

¼ −
γ − γm

ðγm þ 1Þ2 þ
ðγ − γmÞ2
ðγm þ 1Þ3 −

ðγ − γmÞ3
ðγm þ 1Þ4 þ � � � : ðC3Þ

Now, recalling that β¼pc=E and E2 ¼ p2c2 þm2c4 where
E is the total energy of the particle, the expression of the
Lorentz factors as a function of the particle momentum
offset from the magic one can be established [27]:

β ¼ 1þ Δp=pm

½ð1þ Δp=pmÞ2 þ G�1=2 ;

γ ¼
�
1þ 1

G
ð1þ Δp=pmÞ2

�
1=2

ðC4Þ

so that in the paraxial approximation,

βz ¼ β
1þ x=ρ

½ð1þ x=ρÞ2 þ x02 þ y02�1=2 ≈ β: ðC5Þ

Injecting Eq. (C4) into the expression of K and keeping
terms up to the second order in Δp=pm finally yields

γm − γ ≈ −
1

½GðGþ 1Þ�1=2
�
Δp
pm

þ 1

2

�
Δp
pm

�
2
�

K ≈ −
1

Gγmðγm þ 1Þ2
�
Δp
pm

�
þ γm − 1 −Gðγm þ 1Þ
2γmðγm þ 1Þ3GðGþ 1Þ

�
Δp
pm

�
2

: ðC6Þ

Recalling that

x ¼ xco − Δxmis þ xβ þ xD; ðC7Þ

where the reference trajectory (in the absence of any
misalignment errors) corresponds to xco ¼ 0, Δxmis repre-
sents the horizontal misalignment errors in the ring, xβ the
horizontal displacement due to the betatron oscillations
(which we neglect for the present study since the spin
buildup is limited to the closed orbit) and xD is the
horizontal displacement due to the dispersive effects which
is given by xD ¼ Dδ, D being the periodic dispersion
function and δ the momentum offset at injection. This is
generally referred to as the “nonlocal dispersion” [27] since
it is defined with respect to the changes in energy at the
beginning of the machine. The last step in our analysis is
thus to express the variation of the momentum offset inside

the ring as a function of the momentum offset at injection.
Recalling the conservation of the total energy [39],

Δp
pm

¼ δþ qEb
x

βmcpm
x −

qEb
x=ð2ρÞ þ qG=2

βmcpm
x2 þ qG=2

βmcpm
y2

≈
�
1 −

D
ρ

�
δ −

1

ρ
ðxco − ΔxmisÞ: ðC8Þ

Finally, retaining the relevant terms (and omitting some of
the algebra), it can be shown that in the absence of vertical
magnetic fields or longitudinal fields,

Ωy ¼ Ωy;disp þ Ωy;mis; ðC9Þ

where

Ωy;mis≈
�

−βc
Gð1þGÞðγmþ1Þ2

1

ρ2
−
βc
ρ2

þ q
mc

�
Gþ 1

γmþ1

�
β
∂Ex

∂x
�
ðxco−ΔxmisÞ ðC10Þ

Ωy;disp ≈
�

βc
Gð1þ GÞðγm þ 1Þ2

1

ρ

�
1 −

D
ρ

�
−
βc
ρ2

D

þ q
mc

�
Gþ 1

γm þ 1

�
β
∂Ex

∂x D

�
δ ðC11Þ

and

∂Ex

∂x ¼
(
− Eb

x
ρ ¼ γmβ

2
mmc2

q
1
ρ2

if bend

gq if quadrupole:
ðC12Þ
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