
 

Stabilizing effects of chromaticity and synchrotron emission
on coupled-bunch transverse dynamics in storage rings
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We present a theory that can compute the transverse coupled-bunch instability growth rates at any
chromaticity and for any longitudinal potential provided only that the long-range wakefield varies slowly
over the bunch. The theory is expressed in terms of the usual coupled-bunch eigenvalues at zero
chromaticity, and when the longitudinal motion is simple harmonic our solution only requires numerical
root-finding that is easy to implement and fast to solve; the more general case requires some additional
calculations, but is still relatively fast. The theory predicts that the coupled-bunch growth rates can be
significantly reduced when the chromatic betatron tune spread is larger than the coupled-bunch growth
rate at zero chromaticity. Our theoretical results are compared favorably with tracking simulations for the
long-range resistive wall instability, and we also indicate how damping and diffusion from sychrotron
emission can further reduce or even stabilize the dynamics.
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I. INTRODUCTION

Coupled-bunch transverse instabilities occur when long-
range forces between particle bunches resonantly drive
betatron oscillations. In a storage ring this results in a
coordinated bunch instability whose growth rate increases
with the total stored current [1,2]. The resulting coupled-
bunch motion can lead to emittance growth and even
particle loss, so that predicting the growth rates is an
important part of storage ring design.
The simplest theory of coupled-bunch motion models

each bunch as a point particle, and the problem reduces to a
collection of coupled oscillators [3,4]. The coupling matrix
is specified by the long-range wakefield, and stability is
determined by the eigenvalues of the linear system. The
point bunch model can be derived from the coupled set of
Vlasov equations in the limit that the long-range wakefield
is essentially constant over the bunch (which is typically
true) and that chromatic effects can be neglected (which
often does not hold).
Theoretical treatments that apply at nonzero chromaticity

must also include dynamics within each bunch, which is
typically achieved by expressing each particle distribution
function as a sum over orthogonal modes. For example,
the formalism developed by Sacherer [5–7] expands each

bunch in terms of azimuthal and radial modes, which are in
turn coupled together by the long-range wakefield so that
the resulting matrix equation can become quite large and
complicated. Typically used “handbook formulas” neglect
the coupling between modes [8], but this becomes a poor
approximation as the chromaticity increases. Laclare’s
approach [9], in which the distribution function is only
azimuthally expanded into synchrotron modes and the
problem reduces to an eigenvalue equation when mode
coupling is neglected, provides better results at large
chromaticity [10]. Nevertheless, these methods have a
few deficiencies: they can become complicated and some-
what opaque when the instability growth rate becomes
comparable to the synchrotron frequency, they typically
neglect the damping and diffusion due to synchrotron
emission, and they furthermore do not directly apply when
the longitudinal motion is not simple harmonic.
This paper plans to address several of the aforementioned

theoretical shortcomings, and compare the resulting predic-
tions with detailed tracking simulations using the code
ELEGANT [11]. While we could consider achieving many
of these goals by applying the Vlasov-Fokker-Planck analy-
sis developed in Refs. [12–14], we believe that more insight
can be obtained by starting with a Vlasov-based approach
similar to those used in Refs. [15–17], from which we obtain
a dispersion relation that is identical to that of Ref. [18] when
the potential is harmonic. We then include the physics of
synchrotron emission, showing in detail how its diffusion
can stabilize the dynamics at high chromaticity beyond that
predicted by the usual radiation damping.
We begin in Sec. II by deriving the theory, with II A

giving a brief overview of our approach and assumptions,
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Secs. II B–II D providing the details, and Sec. II E con-
cluding with the dispersion-type integral solution that will
form the basis of the rest of the paper. In Sec. III we apply
the theory to a simple harmonic longitudinal potential
appropriate for a single rf system, with the end result being
the dispersion derived in Ref. [18] using a different
approach. We show that the theory predicts two distinct
regimes depending upon whether the zero-chromaticity
growth rate is smaller or larger than the chromatic tune
spread over the bunch; in the former “weak” limit the
instability is strongly suppressed by the chromaticity, while
in the latter “strong” instability regime this no longer holds.
Our theory differs from the classical one of Sacherer

[5–7] in that it does not expand the perturbation into
orthogonal modes; rather, growing solutions to the
dispersion relation give all unstable modes. In the “weak”
instability regime we find that the unstable solutions are
approximately synchrotron modes that can be identified
with a single value of the azimuthal index, and that there is
only one such unstable mode per azimuthal number. Hence,
we conclude that at nonzero chromaticity the instability is a
superposition of several radial modes, and the often-used
approximation that the radial modes remain uncoupled
fails. As stated previously this result agrees with the
findings of Ref. [10], and we will further discuss the
connections between our theory and that of Sacherer and
that of Laclare [9] in Sec. III C. Finally, our theory neglects
the nonlinear tune-shift with amplitude, which applies if the
emittance is sufficiently small such that the tune-shift over
the bunch due to the transverse amplitude is much smaller
than that due to chromaticity.
In Sec. III D we compare our theoretical predictions to

those obtained from ELEGANT tracking simulations, finding
very good agreement between the two if synchrotron
emission can be neglected; when synchrotron emission
is included the theory and simulation agree when the
instability is strong, while in the weak limit the diffusion
due to synchrotron emission further reduces the growth
rate. We proceed in Sec. III E to derive an approximate
dispersion relation that generalizes the Vlasov result by
including longitudinal damping, and show how this can
explain stability in the presence of synchrotron emission.
Next, in Sec. IV we apply the theory to a quartic

longitudinal potential relevant to double rf systems tuned
to “optimally” stretch the bunch. We show that the coupled-
bunch instability in a quartic potential has the same general
phenomenology as that of a quadratic potential with the
same bunch length: there is a weak regime in which the
growth rate is suppressed somewhat more than that in a
quadratic potential, and a strong regime where this reduc-
tion no longer holds. The theory agrees quite well with
tracking simulations presented in Sec. IV B, and again
indicates that the diffusion due to synchrotron emission can
play an important role to stabilize the weak regime. Finally,
we conclude in Sec. V.

II. THEORY

In this section we derive a theory that describes the
stability of coupled-bunch transverse oscillations including
chromaticity and for an arbitrary longitudinal potential. The
derivation is rather long, so in Sec. II Awe take a step back
to sketch the major steps and assumptions involved. We
then proceed in the next three subsections to carry out the
program; those focused on results could skip this. The final
product is an integral equation for the complex coupled-
bunch growth rate Ω in terms of the zero chromaticity
growth rate λ, the characteristic synchrotron frequency
αcσδ=σt, and the head-tail (chromatic) phase shift over the
bunch kξσz; here, αc is the momentum compaction, σδ is the
rms energy spread, σz ¼ cσt is the rms bunch length, and
ckξ ¼ ξω0=αc is the head-tail (chromatic) frequency for a
ring with chromaticity ξ and revolution frequency ω0.

A. Outline of the derivation and assumptions

Our starting point is the single particle dynamics
including the (linear) transverse betatron motion, the
longitudinal focusing, and the chromatic coupling between
the two. Our first step is to choose a new set of coordinates
that approximately eliminates the chromatic coupling; this
coordinate change involves the well-known head-tail (or
chromatic) phase, which will become one of the important
parameters in the theory. Once we have two independent
degrees of freedom, we then add the long-range transverse
wakefield and simplify the problem by neglecting any
change in the wakefield over the length of the bunch. This
approximation is equivalent to assuming that all particles
within a bunch receive the same wakefield kick, and that
the dipole wakefield produced by any bunch is proportional
to the transverse displacement its centroid; it is typically a
very good approximation for the long-range resistive wall,
and is often suitable for wakefields due to higher-order rf
cavity modes.
Having specified the particle motion via the linear,

chromatic, and long-range wakefield terms, we then tackle
the problem of coupled-bunch stability using the Vlasov
formalism. In this approach the distribution function of
each bunch satisfies its own Vlasov equation, which in turn
is coupled to the other bunches through the long-range
transverse wakefield. Hence, the theory is Hamiltonian,
and any dissipative effects of, e.g., synchrotron emission,
can only be approximately included at the end. We then
proceed to reduce the set of Vlasov equations into a
coupled set of linear, ordinary differential equations for
the transverse centroid positions. This process is basically
done in two steps. The first step involves linearizing the
problem about the equilibrium distribution function, multi-
plying by the transverse complex dipole displacement, and
then integrating over the transverse degree of freedom.
After dropping fast oscillating terms and then taking the
Fourier transform, we are left with a coupled set of linear
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equations for the dipole-weighted longitudinal distribu-
tion function. The second step involves transforming to
longitudinal action-angle variables, solving for the
dipole-weighted longitudinal distribution function, and
then integrating over longitudinal phase space to obtain a
set of coupled equations for the transverse dipole
moments in terms of the long-range wakefield and
equilibrium quantities. Finally, we show how to reduce
this to a set of independent equations through the usual
matrix diagonalization, provided that the background
equilibrium is the same for all bunches. This final
requirement can be somewhat restrictive, but in the
Appendix A we also indicate how it can be relaxed to
include periodic variations in the equilibrium that may
arise due to beam-loading of rf cavities with a nonuni-
form fill pattern. At the end, we will find an integral
equation for the complex coupled-bunch growth rate Ω in
terms of the zero chromaticity growth rate λ and the
equilibrium distribution.

B. Particle equations of motion

We begin with the single particle Hamiltonian describ-
ing motion in a linear lattice including chromatic effects;
we will add the long-range wakefield shortly, and then the
dissipative effects of synchrotron emission after that. We
use the position s along the ring as the independent
variable and adopt the coordinates ðz; pzÞ to describe the
longitudinal motion. These are a canonical coordinate
pair, with z ¼ s − ct denoting the comoving position
of a relativistic particle moving at (approximately) the
speed of light c that arrives at location s at time t, while
pz ¼ −ðγ − γrÞ=γr gives the (negative) scaled energy
deviation of a particle from the reference energy γr. In
the transverse plane we introduce the dynamical angle-
action variables ðΨ;J Þ, which characterize the phase and
amplitude of the betatron oscillation and are related to the
transverse position via y ¼ ffiffiffiffiffiffiffiffiffiffiffi

2βyJ
p

cosΨ. In terms of
these variables, the linear plus chromatic motion over one
turn can be described by the ring-averaged (or smooth)
Hamiltonian

H0 ¼ Hzðz; pzÞ þ
ωβ

c
J −

ω0ξ

c
pzJ ½1þ cosð2ΨÞ�

≈Hzðz; pzÞ þ
ωβ

c
J −

ω0ξ

c
pzJ : ð1Þ

In the second line we have dropped the term ∼ cosð2ΨÞ
under the assumption that its effect on the betatron motion
averages to zero. Then, we find that the linear dynamics
preserves the action J as an invariant, while the angle Ψ
increases by the energy-dependent (chromatic) betatron
phase ðωβ − ξω0pzÞT0 every turn, where ωβ is the betatron
frequency, ξ is the chromaticity, and T0 ¼ 2π=ω0 is the
revolution time. In addition, we will assume that the
evolution associated with the longitudinal Hamiltonian

Hzðz; pzÞ occurs over a timescale much longer than that
of the transverse betatron motion, but otherwise leaveHz to
be specified later.
The dynamics in the transverse plane is only independent

from that in the longitudinal plane when the chromaticity
vanishes; to decouple the motion when ξ ≠ 0 we transform
coordinates using the “type-two” [19,20] mixed-variable
generating function given by

S2ðp̄z; J̄ ; z;ΨÞ ¼ J̄Ψþ p̄zzþ
ω0ξ

αcc
J̄ z; ð2Þ

where bars indicate the new coordinates. The new and old
variables are related by

z̄ ¼ ∂S2
∂p̄z

¼ z pz ¼
∂S2
∂z ¼ p̄z þ

ω0ξ

αcc
J̄ ð3Þ

Ψ̄ ¼ ∂S2
∂J̄ ¼ Ψþ ω0ξ

αcc
z J ¼ ∂S2

∂Ψ ¼ J̄ ; ð4Þ

and we find that inserting these into H0 eliminates the
chromatic coupling term ðω0ξ=cÞpzJ . Furthermore, since
the energy spread σδ is typically several orders of magni-
tude larger than ðω0ξ=αccÞεy, we can approximately set
p̄z ¼ pz in Hzðz; pzÞ, and S2 generates a coordinate
transformation that decouples transverse and longitudinal
coordinates. Finally, we find that the new betatron angle is
related to the old one by adding on the so-called “head-tail
phase” [21,22]

ω0ξ

αcc
z̄ ¼ 2πξ

αccT0

z≡ kξz: ð5Þ

The head-tail phase arises because the betatron frequency
depends linearly on the energy for ξ ≠ 0, which in turn
leads to the betatron phase accumulating a shift that is
proportional to the longitudinal coordinate z as it performs
synchrotron oscillations.
In summary, at lowest order the chromatic (head-tail)

coordinate transformation eliminates the chromatic part of
H0 while replacing the betatron phase via Ψ → Ψ̄ − kξz̄.
The other new coordinates are essentially the same as the
old ones, so for simplicity we will only retain the bar on the
new betatron phase; the new and uncoupled Hamiltonian
is then

H0 ≈Hzðz; pzÞ þ
ωβ

c
J : ð6Þ

C. Wakefields in the Vlasov description

Now that we have the nicely uncoupled, chromatic
Hamiltonian (6), it is time to add the perturbing transverse
wakefields. To do this, we introduce the particle distribu-
tion function of bunch j as FjðZ; sÞ, where we abbreviate
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the phase-space coordinates as Z ¼ ðz; pz;Ψ;J Þ, and
normalize Fj such that

R
dZFj ¼ 1 for 0 ≤ j ≤ Nb − 1,

with Nb the number of bunches. Furthermore, we will
include both the dipolar wakefield, for which the kick on
the trailing particle is proportional to the displacement of
the leading particle, and the quadrupolar wakefield that
comes about when the vacuum chamber is not cylindrically
symmetric and whose effect on the trailing particle scales

with its own displacement. The total kick on any particle is
obtained by summing both wakefield contributions over all
bunches in the ring and over all previous turns. We define
the equilibrium centroid spacing between bunch n and j to
be Ln;j with Ln;j > 0 if j > n and Ln;j ¼ −Ln;j if j ≤ n, in
which case we can write the potential due to the quad-
rupolar wakefield as

VQ ¼ y2

2

XNb−1

j¼0

e2Nj

γmcT0

X
l¼0

Z
dZ0 FjðZ0; s − lcT0ÞWQ½z − ðz0 þ lcT0 þ Ln;jÞ�

≈ J
XNb−1

j¼0

e2Nj

2γmcT0

X∞
l¼0

Z
dZ0 FjðZ0; s − lcT0ÞWβ

Q½z − ðz0 þ lcT0 þ Ln;jÞ�; ð7Þ

where we used y2 ¼ 2βyJ cos2Ψ̄ ≈ βyJ under the assumption that we can neglect fast oscillations at twice the betatron

frequency ∼ cosð2Ψ̄Þ, and have defined the beta-function-weighted wakefield Wβ
QðζÞ ¼ βyWQðζÞ. Our final simplification

of the long-range wakefield will be to assume that it varies slowly over distances of order the bunch length σz; we therefore
Taylor expand the long-range wakefields about the equilibrium bunch position that has z − z0 ¼ 0 and keep only the lowest
order term. In this case (7) reduces to

VQ ≈ J
XNb−1

j¼0

e2Nj

2γmcT0

X∞
l¼0

Wβ
Qð−lcT0 − Ln;jÞ

Z
dZ0 FjðZ0; s − lcT0Þ ¼ J

ωQ

c
; ð8Þ

and we find that the effect of the long-range quadrupolar wakefield is to shift the betatron frequency by an amountωQ that is
independent of s (see, e.g., [23]).
For the dipolar wakefield, we perform a similar Taylor expansion and change of coordinates, finding that

VD ¼ y
XNb−1

j¼0

e2Nj

γmcT0

X∞
l¼0

Z
dZ0 y0 FjðZ0; s − lcT0ÞWD½z − ðz0 þ lcT0 þ Ln;jÞ�

≈
ffiffiffiffiffi
J

p
cosðΨ̄ − kξzÞ

XNb−1

j¼0

2e2Nj

γmcT0

X∞
l¼0

Wβ
Dð−lcT0 − Ln;jÞ

Z
dZ0

ffiffiffiffiffiffi
J 0

p
cosðΨ̄0 − kξz0ÞFjðZ0; s − lcT0Þ ð9Þ

¼ ffiffiffiffiffi
J

p
cosðΨ̄ − kξzÞ

XNb−1

j¼0

Wn;jðsÞ; ð10Þ

where for notational brevity we have definedWn;j to be proportional to the kick that a particle in bunch n receives due to the
centroid displacement of bunch j.
The final step of our treatment of the single particle Hamiltonian involves transforming the longitudinal coordinates to the

angle-action pair ðΦ; IÞ of the unperturbed, longitudinal Hzðz; pzÞ. While the formulas defining ðz; pzÞ → ðΦ; IÞ will
depend upon the longitudinal potential, in general the transformation results in Hzðz; pzÞ → HzðIÞ, so that inserting
Eqs. (6), (8), and (10) into the single particle Hamiltonian H ¼ H0 þ VQ þ VD yields

HðZ; sÞ ¼ HzðIÞ þ
ωβ þ ωQ

c
J þ ffiffiffiffiffi

J
p

cos½Ψ̄ − kξzðΦ; IÞ�
XNb−1

j¼0

Wn;jðsÞ; ð11Þ

where, again, Wn;j is the dipolar kick defined by (9)–(10), and zðΦ; IÞ depends on the rf potential that will be
specified later.
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D. Coupled-bunch equations including synchrotron emission

The Hamiltonian (11) specifies the conservative equations of motion within our model, and to determine collective
stability we will consider the Vlasov-Fokker-Planck equations associated with H. We assume that the number of electrons
in each bunch is constant, so that each bunch n satisfies its own Vlasov-Fokker-Planck equation given by

∂Fn

∂s þ ωðIÞ
c

∂Fn

∂Φ þ ωβ þ ωQ

c
∂Fn

∂Ψ þ
XNb−1

j¼0

Wn;j

�
cosðΨ − kξzÞ

2
ffiffiffiffiffi
J

p ∂Fn

∂Ψ þ ffiffiffiffiffi
J

p
sinðΨ − kξzÞ

∂Fn

∂J
�
¼ EFP½Fn�; ð12Þ

where we have introduced the amplitude-dependent longitudinal (i.e., synchrotron) frequency ωðIÞ ¼ ∂Hz=∂I, we have
neglected the (assumed small) transverse wakefield in the longitudinal force, and the dissipative effects of synchrotron
emission are incorporated with the Fokker-Planck operator EFP. In particular, the emission of synchrotron radiation results
in damping and diffusion that we model with the following differential operator (see, e.g., [24,25])

EFP ¼
2

cτz

�
σ2δ

∂2

∂p2
z
þ pz

∂
∂pz

þ 1

�
þ 2

cτy

�
εy;0

�
J

∂2

∂J 2
þ 1

4J
∂2

∂Ψ2
þ ∂
∂J
�
þ
�
J

∂
∂J þ 1

��
; ð13Þ

where τz and τy are the longitudinal and vertical damping times, respectively, σδ is the equilibrium energy spread, and εy;0 is
the equilibrium emittance.
To get an equation for the transverse dipole moment, we multiply (12) by

ffiffiffiffiffi
J

p
e−iΨ and integrate over transverse phase

space. We use

ffiffiffiffiffi
J

p
e−iΨ

∂F
∂Ψ ¼ ∂

∂Ψ ð ffiffiffiffiffi
J

p
e−iΨFÞ þ i

ffiffiffiffiffi
J

p
e−iΨF; J e−iΨ

∂F
∂J ¼ ∂

∂J ðJ e−iΨFÞ − e−iΨF; ð14Þ

to simplify the Hamiltonian left-hand side of (12), and evaluate the right-hand side EFP½Fn� using
ffiffiffiffiffi
J

p
e−iΨ

�
J

∂2Fn

∂J 2
þ 1

4J
∂2Fn

∂Ψ2
þ ∂Fn

∂J
�

¼ ∂
∂J

��
J 3=2 ∂

∂J −
ffiffiffiffiffi
J

p �
e−iΨFn

�
þ ∂
∂Ψ
�
e−iΨ

4
ffiffiffiffiffi
J

p
� ∂
∂Ψþ i

�
Fn

�
ð15Þ

and

ffiffiffiffiffi
J

p
e−iΨ

�
J

∂Fn

∂J þ Fn

�
¼ −

1

2

ffiffiffiffiffi
J

p
e−iΨFn þ

∂
∂J ðJ 3=2e−iΨFnÞ: ð16Þ

Then, all the transverse dependence involves either terms ∝
ffiffiffiffiffi
J

p
e−iΨFn or are derivatives with respect toΨ or J that vanish

upon integration over transverse phase space. Hence, if we define fnðz; pz; sÞ ¼
R
dJ dΨ

ffiffiffiffiffi
J

p
e−iΨFnðZ; sÞ and integrate

over transverse phase space we arrive at� ∂
∂sþ

ωðIÞ
c

∂
∂Φþ i

ωβ þ ωQ

c
þ 1

cτy

�
fnðΦ; I ; sÞ

þ fnðΦ; I ; sÞe−ikξz
XNb−1

j¼0

ie2Ne;j

2γmc3T0

X∞
l¼0

WDð−lcT0 − LnjÞ
Z

dΦ0dI 0½fjðΦ0; I 0; s − lcT0Þeikξz0 þ c:c:� ¼ Ek
FP½fn�: ð17Þ

Here, we have used the definition in Eqs. (9)–(10) to expand Wn;j in terms of the wakefield and the longitudinal
distribution. The first line of (17) describes the single-bunch evolution of the centroid-weighted longitudinal distribution,
and includes the synchrotron and betatron oscillations as well as the radiation damping that stabilizes the vertical
oscillations. The second line contains the long-range wakefield perturbation from all other bunches, along with the reduced,
longitudinal Fokker-Planck operator defined by

Ek
FP½fn� ¼

2

cτz

�
σ2δ

∂2

∂p2
z
þ pz

∂
∂pz

þ 1

�
fnðΦ; I ; sÞ: ð18Þ

STABILIZING EFFECTS OF CHROMATICITY AND … PHYS. REV. ACCEL. BEAMS 24, 024402 (2021)

024402-5



Now, we linearize the problem by separating fn into its
equilibrium part f̄n and its perturbation gn via

fnðΦ;I ;sÞ¼ f̄nðIÞþe−iðωβþωQÞsgnðΦ;I ;sÞ

¼ f̄nðIÞþe−iðωβþωQÞs
Z

dΩe−iΩs=cg̃nðΦ;I ;ΩÞ;

ð19Þ

where the final equality introduces the Fourier transform of
the perturbation g̃n. Note that we have extracted the linear
betatron motion with the factor e−iðωβþωQÞs, so that in the
absence of wakefields Ω ¼ 0. Inserting the expansion (19)
into (17), multiplying by eiðωβþωQÞs, and taking the Fourier
transform of the result leads to

�
−
iΩ
c
þ 1

cτy
þ ωðIÞ

c
∂
∂Φ
�
g̃nðΦ; I ;ΩÞ þ

XNb−1

j¼0

ie2Ne;j

2γmc3T0

X∞
l¼0

WDð−lcT0 − LnjÞeilðωβþωQþΩÞT0

× f̄nðIÞe−ikξz
Z

dΦ0 dI 0½g̃jðΦ0; I 0;ΩÞeikξz0 þ g̃�jðΦ0; I 0;−Ω − 2ωβ − 2ωQÞeikξz0 � ¼ Ek
FP½g̃n�: ð20Þ

Wewill assume that the perturbation is weak in the sense
that any modification to the betatron frequency is much
smaller than the revolution frequency, jΩj ≪ 1=T0. In this
case we use eilðωβþωQþΩÞT0 ≈ eilðωβþωQÞT0 in the top line of
(20), and additionally use the fact that g̃ is centered about
Ω ≈ 0 to drop the second term in the bottom line. Then, we
see that the long-range wakefield term splits into a product
of three pieces: the first depends upon the perturbation g̃n
and will become our dynamical variable, the second
contains the coupling force due to wakefields, and the
third is a function of the single-bunch equilibrium. We will
denote the first two of these as

DjðΩÞ≡
Z

dΦdI g̃jðΦ; I ;ΩÞeikξz;

Mn;j ¼
e2Ne;j

2γmc2T0

X∞
l¼0

WDð−lcT0 − LnjÞeilðωβþωQÞT0 ;

ð21Þ

so that DjðΩÞ is the (chromatic) dipole moment of the jth
bunch, while M is the chromaticity-independent coupling
matrix due to the long-range wakefields. The matrix M is
essentially the same as that used in the point-bunch model
of Thompson and Ruth [4], which in turn can be related
to the frequency/impedance theory of, e.g., Ref. [6]. Using
the definitions (21), we find that our stability equation
reduces to

�
Ωþ i

τy
þ iωðIÞ ∂

∂Φ
�
g̃nðΦ; I ;ΩÞ − f̄nðIÞe−ikξzðΦ;IÞ

×
XNb−1

j¼0

Mn;jDjðΩÞ ¼ icEk
FP½g̃n�: ð22Þ

Solving the full Fokker-Planck equation (22) requires
knowing the longitudinal potential and equilibrium, and we
will return to that for a simple harmonic potential in
Sec. III E. In the next section we instead take the Vlasov

(dissipation-free) limit by setting Ek
FP½g̃� → 0, and show that

in this case we can derive a relatively simple dispersion
relation for the coupled bunch problem.

E. Coupled-bunch dispersion relation in the Vlasov
(no damping or diffusion) limit

In this section we assume that the effects of synchrotron
damping and diffusion are negligible. The validity of this

limit is complicated by the fact that the diffusive part of Ek
FP

involves second derivatives with respect to pz, and there-
fore will depend upon the phase space density profile of the
unstable perturbation. We will revisit how the applicability
of our Vlasov results depends upon the damping, chroma-
ticity, and strength of the wakefields in Sec. III E, but for

now we just set Ek
FP½g̃� → 0 and see where that takes us.

Under this assumption we can reduce Eq. (22) into an
equation for the transverse dipole moment DðΩÞ, thereby
eliminating the dependence on the longitudinal variables
ðΦ;IÞ. To do this, we use the approach of [15,16] to rewrite
(22) with vanishing right-hand side as follows:

eiΩΦ=ωðIÞ ∂
∂Φ ½e−iΩΦ=ωðIÞg̃n� ¼ −

ie2f̄nðIÞe−ikξzðΦ;IÞ

2γmc2T0ωðIÞ
XNb−1

j¼0

Ne;jDjðΩÞ
X∞
l¼0

WDð−lcT0 − LnjÞeilðωβþωQÞT0 : ð23Þ

Then, we can integrate over angle from Φ to Φþ 2π and use the fact that g̃n is periodic in Φ to obtain
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g̃n ¼
e2f̄nðIÞe2πiΩ
2iγmc2T0ωðIÞ

eiΩΦ=ωðIÞ

1− e2iπΩ

Z
Φþ2π

Φ
dΦ0 e−ikξzðΦ0;IÞe−iΩΦ0=ωðIÞXNb−1

j¼0

Ne;jDjðΩÞ
X∞
l¼0

WDð−lcT0−LnjÞeilðωβþωQÞT0 : ð24Þ

Finally, we obtain a closed-form coupled set of expressions for the dipole moments DnðΩÞ by multiplying by eikξzðΦ;IÞ and
integrating over longitudinal phase space ðΦ; IÞ. We then simplify the resulting expression by changing coordinates to
θ ¼ Φ −Φ0 þ 2π, finding that

DnðΩÞ ¼
XNb−1

j¼0

e2Ne;jDjðΩÞ
2iγmc2T0

X∞
l¼0

WDeilðωβþωQÞT0

Z
∞

0

dI
f̄nðIÞ
ωðIÞ

Z
2π

0

dΦ
eiΩΦ=ωeikξz

e−2πiΩ − 1

Z
Φþ2π

Φ
dΦ0e−ikξz0e−iΩΦ0=ω

¼ e2

2iγmc2T0

XNb−1

j¼0

Ne;jDjðΩÞ
X∞
l¼0

WDð−lcT0 − LnjÞeilðωβþωQÞT0

×
Z

∞

0

dI
f̄nðIÞ
ωðIÞ

Z
2π

0

dΦ
eikξzðΦ;IÞ

1 − e2πiΩ

Z
2π

0

dθe−ikξzðΦ−θ;IÞeiΩθ=ωðIÞ: ð25Þ

To make further progress, we now assume that the
equilibrium distribution f̄n is independent of n, but we
show in Appendix A how to generalize our approach to fill
patterns with two or more approximately identical bunch
trains. Assuming that f̄nðIÞ ¼ f̄ðIÞ for all n reduces (25)
to the matrix problem

Dn ¼
XNb−1

j¼0

Mn;jDj

Z
∞

0

dI
Z

2π

0

dΦ
f̄ðIÞ
ωðIÞ

eikξzðΦ;IÞ

1 − e2πiΩ=ωðIÞ

×
Z

2π

0

dθeiΩθ=ωðIÞe−ikξzðΦ−θ;IÞ; ð26Þ

where the coupling matrix M has components

Mn;j¼
e2Ne;j

2γmc2T0

X∞
l¼0

WDð−lcT0−LnjÞeilðωβþωQÞT0 : ð27Þ

The matrix M is essentially the same as the theory of
Thompson and Ruth [4], which in turn can be understood as
the time-domain version of the familiar impedance-based
theory of, e.g., [6]. The formula (26) is particularly
convenient because it divides into two pieces: one piece
that is the usual matrix theory, and the other which involves
the longitudinal distribution function and the chromaticity.
The former can be diagonalized in the standard way; if we
assume that this has been done, i.e., a matrix U has been
found such that UMU−1 ¼ λI with I the identity, then

1 ¼ λ

2πi

Z
∞

0

dI
Z

2π

0

dΦ
2πf̄ðIÞ
ωðIÞ

eikξzðΦ;IÞ

1 − e2πiΩ=ωðIÞ

×
Z

2π

0

dθ eiΩθ=ωðIÞe−ikξzðΦ−θ;IÞ: ð28Þ

Now zðΦ; IÞ is periodic in Φ, and can be expanded in a
Fourier series. For the cases that we consider we can

usefully approximate the motion using only the lowest
harmonic in this series, in which case we can write
zðΦ; IÞ ≈ ζðIÞ cosΦ, where ζðIÞ is a function of action
that will be determined by the longitudinal Hamiltonian
Hz. Then, we can take two different routes to simplify
Eq. (28). One route, which we find useful for some
numerical calculations and detail in Appendix C, uses
the Jacobi-Anger identity to integrate over angles. The
second path will form the basis of our subsequent theo-
retical analysis, and combines the exponentials involving z
in (28) as

e−ikξ½zðΦ−θ;IÞ−zðΦ;IÞ� ¼ e−ikξζðIÞ½cosðΦ−θÞ−cosΦ�

¼ eikξζðIÞ½ð1−cos θÞ cosΦ−sin θ sinΦ�

¼ e2ikξζðIÞ sinðθ=2Þ cosðΦþψÞ; ð29Þ

where ψ is a phase that is irrelevant to our calculation.
Inserting (29) into (28), we find that the integration over Φ
can be performed in the following way

Z
2π

0

dΦe−ikξ½zðΦ−θ;IÞ−zðΦ;IÞ�

¼
Z

2π

0

dΦe2ikξζ sinðθ=2Þ cosðΦþψÞ

¼
Z

2π

0

dΦ
X
l

ilJl½2kξζðIÞ sinðθ=2Þ�eilðΦþψÞ

¼ 2πJ0½2kξζðIÞ sinðθ=2Þ�; ð30Þ

where J0ðxÞ is the usual Bessel function.
Finally, we will find it convenient to introduce the

dimensionless eigenvalue λ̂ and complex growth rate Ω̂
by scaling each with a characteristic value of the synchro-
tron frequency. We do this using αcσδ=σt, which is of the
order of the mean synchrotron frequency for a bunch of
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rms energy spread σδ and temporal duration σt, so that we
introduce

λ̂ ¼ λ

αcσδ=σt
; Ω̂ ¼ Ω

αcσδ=σt
: ð31Þ

Then, in terms of the scaled longitudinal frequency
ω̂ ¼ ωðIÞ=ðαcσδ=σtÞ stability is determined by

1 ¼ −iλ̂
Z

∞

0

dI
2πf̄ðIÞ

ω̂ðIÞ½1 − e2πiΩ̂=ω̂ðIÞ�
×
Z

2π

0

dθ J0½2kξζðIÞ sinðθ=2Þ�eiΩ̂θ=ω̂ðIÞ: ð32Þ

Solving the integral equation (39) gives the (scaled)
coupled bunch complex growth rate Ω̂ in terms of two
dimensionless parameters: the scaled, ξ ¼ 0 matrix eigen-
value λ̂, and the chromatic (head-tail) phase shift kξσz.
Equation (32) can in principal be solved once we have
specified the longitudinal dynamics through Hzðz; pzÞ and
equilibrium f̄ðIÞ; the former determines the frequency
ωðIÞ and Fourier coefficient ζðIÞ, while σt and σδ can be
computed from both f̄ andHz. The rest of the paper will be
devoted to applying this theory to a few specific cases, and
to comparing the predictions with tracking simulations.
For these we will assume that the longitudinal distribution
is exponential in Hz, with

2πf̄ðIÞ ¼ Ae−HzðIÞ=αcσ2δ ð33Þ

and A fixed such that
R
dIe−HzðIÞ=αcσ2δ ¼ 1=A. We illustrate

how the predictions may vary with different assumptions
for f̄ in Appendix D.

III. HARMONIC POTENTIAL
OF A SINGLE RF SYSTEM

In this section we will assume that the longitudinal
potential is given by the harmonic approximation of a
single rf system, for which the Hamiltonian

Hz ¼
αc
2
p2
z þ

ω2
s

2αcc2
z2 ð34Þ

where ωs is the synchrotron frequency. The transformation
to action-angle variables is well known (see, e.g., [19,20])
as

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Iαcc
ωs

s
cosΦ pz ¼ −

ffiffiffiffiffiffiffiffiffiffiffi
2Iωs

αcc

s
sinΦ; ð35Þ

so that ζðIÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Iαcc=ωs

p
. Making the transformation

(35) results in the unperturbed Hamiltonian HzðIÞ ¼
ωsI=c, which in turn implies that the oscillation frequency

is independent of action and that the unperturbed distri-
bution function (33) is an exponential function of I . In this
case one can show that ωs ¼ αcσδ=σt in equilibrium and
that the quantities in (32) become

f̄ðIÞ ¼ e−I=σδσz

2πσδσz
; ω̂ ¼ 1; ζðIÞ ¼ σz

ffiffiffiffiffiffiffiffiffi
2I
σδσz

s
: ð36Þ

Then, we can integrate over action in (32) to get

1 ¼ −iλ̂
1 − e2πiΩ̂

Z
2π

0

dθe−k
2
ξσ

2
zð1−cos θÞeiΩ̂θ: ð37Þ

This is closely related to the single-bunch result derived
in [16], although it is significantly simpler since we only
consider the first order Taylor series expansion of the long-
range wakefield. Furthermore, in the Appendix we show
that Eq. (37) is equivalent to the dispersion relation (C3),
which was previously derived in Ref. [18]. Coupled-bunch
stability can be found for a given long-range wakefield
eigenvalue λ and chromaticity kξ ¼ ξω0=αcc by solving
(37) for Ω; if ℑðΩÞ ≤ 0 the system is stable, while an
instability occurs if ℑðΩÞ > 0. In the limit that the
chromaticity vanishes we have kξ ¼ 0 and the integration
can be easily done to find that

ξ ¼ 0 ⇒ Ω ¼ λ: ð38Þ

Hence, at zero chromaticity the coupled-bunch growth
rate equals the long-range eigenvalue λ. Note that this result
can actually be derived from the general Eq. (28), so that in
the zero chromaticity limit stability is independent of the
longitudinal potential provided the long-range wakefield
varies slowly over the bunch length. This is to be expected,
since when ξ ¼ 0 the transverse motion is uncoupled from
the synchrotron motion, and one cannot affect the other. On
the other hand, at nonzero chromaticity the transverse
betatron frequency depends upon the particle energy and
therefore on its longitudinal position in the bunch, so that
the collective oscillation is more complicated when ξ ≠ 0.
We plot solutions to Eq. (32) with largest imaginary part

as the diagonal crosses in Fig. 1, with panels (a) and
(b) showing the instability growth rate ℑðΩ̂Þ as a function
of ℑðλ̂Þ for three values of the chromatic phase kξσz; panel
(a) assumes that ℜðλÞ ¼ ℑðλÞ as might be the case for
the long-range resistive wall wake, while panel (b) uses
ℜðλ̂Þ ¼ 0 as applies when the wakefield is due to a resonant
higher-order rf-cavity mode. Although the former case with
ℜðλÞ ¼ ℑðλÞ consistently has a somewhat larger instability
growth rate, both panels show the same qualitative behav-
ior. In particular, when ξ ≠ 0 two specific regimes can be
identified: the first applies when ℑðλ̂Þ≲ 3kξσz=4, and
displays an instability growth rate ℑðΩ̂Þ that increases
with ℑðλ̂Þ at a rate inversely proportional to kξσz; the
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second regime takes over when ℑðλ̂Þ≳ 3kξσz=4, and
predicts that the slope of the growth rate with ℑðλ̂Þ is
greater than (but comparable to) that for ξ ¼ 0.
We can understand these limiting behaviors in more

detail using an approximate expression for Eq. (37), which
we derive by splitting the integration region into one for
0 ≤ θ ≤ π and the other for π ≤ θ ≤ 2π, changing variables
in the second integral to θ0 ¼ 2π − θ, and combining to
write

1 ¼ −iλ̂
Z

π

0

dθe−k
2
ξσ

2
zð1−cos θÞ e

iΩ̂θ þ e2πiΩ̂e−iΩ̂θ

1 − e2πiΩ̂
: ð39Þ

This is useful because in general we have either kξσz ≫ 1

or ℑðΩ̂Þ ≳ 1 or both, in which case the integrand is
negligible for θ ≳ 1 and the value of the integral is
dominated by the region with θ ≪ 1. Then, we approxi-

mate e−k
2
ξσ

2
zð1−cos θÞ ≈ e−k

2
ξσ

2
zθ

2=2, extend the upper integra-
tion limit to þ∞, and integrate the result to obtain

1 ¼ −
iλ̂
kξσz

ffiffiffi
π

2

r
e−Ω̂

2=2k2ξσ
2
z

1 − e2πiΩ̂

×

�
erfc

�
−iΩ̂ffiffiffi
2

p
kξσz

�
þ e2πiΩ̂erfc

�
iΩ̂ffiffiffi
2

p
kξσz

��
; ð40Þ

alternatively, it may be more convenient to replace the
complementary error function in favor of the Faddeeva
function wðzÞ ¼ e−z

2

erfcð−izÞ.
We have found that the solutions of the approximate (40)

differ from Eq. (37) by less than 5% for any kξσz and λ̂, but
Eq. (40) has the advantage that it can be evaluated and
solved using widely available mathematical packages. In
addition, it provides a useful starting point to investigate the
two limiting regimes identified in Fig. 1: the first where the
chromatic effect significantly suppresses the transverse
instability, and the second in which the chromaticity no
longer provides a strong stabilizing force. We will often
differentiate these two limits as “weak” or “strong,”
respectively, and in what follows consider each in turn.

A. “Weak” instability limit

The first limit of interest assumes that ξ is large enough
to significantly reduce the instability growth rate, so that
both kξσz ≫ 1 and ℑðΩ̂Þ ≪ ℑðλ̂Þ. We then expand (40) to
second order in Ω̂=kξσz using e−x

2 ¼ 1 − x2=2þOðx4Þ
and erfcðxÞ ¼ 1 − 2x=

ffiffiffi
π

p þOðx3Þ. After some algebra we
find that

tanðπΩ̂Þ
π

≈
λ̂ffiffiffiffiffiffi

2π
p

kξσz

�
1þ Ω̂ λ̂

k2ξσ
2
z
−

Ω̂2

2k2ξσ
2
z

�
: ð41Þ

(a)

(b)

(c)

FIG. 1. Scaled complex instability frequency Ω̂ as a func-
tion of the scaled ξ ¼ 0 matrix growth rate ℑðλ̂Þ for three
values of the chromatic phase kξσz. Panel (a) plots the
instability growth rate assuming that ℜðλÞ ¼ ℑðλÞ, where
the diagonal crosses are the full theory Eq. (32), while the
red and blue lines show the approximate, limiting Eqs. (42)
and (43), respectively; panel (b) plots the same when the
matrix eigenvalue is pure imaginary. Panel (c) plots the
instability frequency ℜðΩ̂Þ when ℜðλÞ ¼ ℑðλÞ, showing that
the unstable mode oscillates at a harmonic of ωs if
λ≲ 3ξω0σδ=4, but is not well described by a single synchro-
tron mode when Eq. (43) applies.

STABILIZING EFFECTS OF CHROMATICITY AND … PHYS. REV. ACCEL. BEAMS 24, 024402 (2021)

024402-9



Note that the left-hand side is periodic and gives the same
result for Ω̂ as for Ω̂þm for integer m. Furthermore, we
only expect the above relation to hold for small πΩ̂, so that
Taylor expanding the left-hand side and setting Ω̂ → m on
the right-hand side implies that

Ω̂ ≈mþ λ̂ffiffiffiffiffiffi
2π

p
kξσz

�
1þ m

k2ξσ
2
z

�
λ̂ −

m
2

��
ð42Þ

for integer m.
The first thing Eq. (42) predicts is that the coupled-bunch

growth rate can be reduced from its ξ ¼ 0 value by an
amount proportional to the chromatic phase over the bunch.
For small values of λ̂ the reduction is by a factor

ffiffiffiffiffiffi
2π

p
kξσz,

which can be quite large. Additionally, the instability
depends upon m: for a sufficiently small coupled-bunch
eigenvalue λ̂ the mode with m ¼ 0 has the largest imagi-
nary part, while a larger λ̂ can lead to modes with higher m
being dominant, depending upon the nature of the coupled-
bunch instability (i.e., depending upon λ̂). For example, if
ℜðλÞ ¼ 0 then the m ¼ 0 mode is always the most
unstable, while if ℜðλÞ ¼ ℑðλÞ then Eq. (42) implies that
the mode withm equal to the integer part of 2½ℜðλ̂Þ − 1

4
� has

the largest growth rate. Since m identifies the integer part
of ℜðΩ̂Þ, these unstable modes oscillate with a higher
frequency as they grow.
We summarize the predictions from Eq. (42) that were

just described using the red solid lines in Figs. 1. In panels
(a) and (b) these plot the largest instability growth rate
ℑðΩ̂Þ, while panel (c) plots the instability frequency ℜðΩ̂Þ
for a long-range resistive wall wakefield that has
ℜðλÞ ¼ ℑðλÞ. The figures show that Eq. (42) applies
provided ℑðλ̂Þ≲ 3kξσz=4 and ℑðΩ̂Þ ≪ 1.

B. “Strong” instability limit

On the other hand, when the instability growth rate
becomes of order the synchrotron frequency, ℑðΩ̂Þ≳ 1, we
have je2πiΩ̂=ω̂ðIÞj ≪ 1 and Eq. (40) simplifies to

1 ¼ −iλ̂
kξσz

ffiffiffi
π

2

r
e−Ω̂

2=2k2ξσ
2
zerfc

�
−iΩ̂ffiffiffi
2

p
kξσz

�
: ð43Þ

While solutions to Eq. (43) depend upon both the real and
imaginary parts of λ, if jℜðλÞj ≤ ℑðλÞ as is typical, we find
that Eq. (43) predicts that ℑðΩ̂Þ ¼ 0 when the instability
strength λ̂ ≈ ð0.74� 0.06Þkξσz. Increasing ℑðλ̂Þ beyond
this range results in a similar (or larger) increase in the
coupled-bunch instability growth rate, and the reduced
slope given by (42) no longer applies. Hence, we find that
the chromaticity is only effective in controlling the insta-
bility provided that

ℑðλÞ≲ 3kξσz
4

αcσδ
σt

¼ 3

4
ξω0σδ: ð44Þ

Taken together, our analysis has shown that the coupled-
bunch instability growth rate is reduced according to
Eq. (42) if the spread in the betatron frequency due to
chromatic effects ξω0σδ is much larger than the ξ ¼ 0
growth rate λ. This is the usual condition for phase mixing:
the instability can be dramatically reduced when the spread
in frequency is much greater than the instability growth
rate. In contrast, phase mixing becomes less effective when
ℑðλÞ≳ ξω0σδ, in which case the growth rate is given by
(44) and ℑðΩÞ becomes significantly larger than that
implied by (42).
We show the “strong instability” limit given by Eq. (43)

using blue lines in Fig. 1. Panels (a) and (b) show how the
growth rate increases quite rapidly once (44) no longer
applies, while Fig. 1(c) shows that in this limit the
frequency of the instability increases smoothly, and
describing the unstable mode in terms of a single modal
number is increasingly suspect.

C. Connection to previous theories

So far we have focused on the most unstable solution to
the dispersion relation (37), since the solution with largest
ℑðΩÞ will ultimately determine multibunch stability.
However, this approach somewhat obscures how to connect
our theory to the more familiar mode-based theories of
Sacherer and of Laclare. The former Sacherer theory [7]
expands the distribution function in terms of a set of
orthogonal azimuthal and radial modes, which in our case
would result in a sum over Gauss-Laguerre functions.
Hence, in terms of the scaled action r ¼ I=σzσδ we would
expand the perturbation as

g̃nðr;ΦÞ ∝
X
m;l

Gm;l
n eimΦe−rrm=2Lm

l ðrÞ; ð45Þ

which reduces the full theory to a matrix equation that in
general has two mode indices [the azimuthal and radial
numbers ðm;lÞ] to go along with the multibunch mode
number n. The eigenvalues of the matrix equation yield a
set of complex growth rates Ω that determine stability.
If we assume that the azimuthal and radial modes remain

uncoupled in the presence of the wakefield then the
eigenvalue problem reduces to the simple equation

Ω̂p;m ¼ ωs þ λ̂
e−k

2
ξσ

2
z ðk2ξσ2z=2Þ2pþm

p!ðpþmÞ! : ð46Þ

This predicts a unique unstable growth rate for each value
of m and p. Unfortunately, solutions to the full matrix
problem only display one unstable mode for each value of
m (the rest are stable or marginally stable), and also show
that the unstable mode is typically a linear combination of
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many radial modes. The fact that the radial modes are
strongly coupled is not surprising, since for a fixed
synchrotron number m all radial modes of the unperturbed
problem are degenerate.
While the unperturbed problem does not distinguish

between radial modes, it does separate the synchrotron
modes by integral values of the synchrotron frequency.
Hence, we expect the synchrotron modes to approximate
the unstable system when the wakefield is sufficiently
weak. In this case we should be able to apply Laclare’s
method [9] that solves for the mth azimuthal component,
and then assumes that the coupling between synchrotron
modes can be neglected. In general this procedure results in
an integral eigenvalue problem over the impedance, but by
assuming that the long-range wakefield is constant over the
bunch reduces Laclare’s solution to

Ω̂m ¼ mþ λ̂e−k
2
ξσ

2
z Imðk2ξσ2zÞ: ð47Þ

This reduction of the growth rate was obtained in integral
form by Ref. [26], and later as derived here by [18].
When k2ξσ

2
z ≫ 1 we can apply the asymptotic expansion

ImðxÞ ∼ ex=
ffiffiffiffiffiffiffiffi
2πx

p
, in which case we reproduce Eq. (42)

provided jλ̂j ≪ kξσz.
We illustrate how our theory reflects certain features of

the azimuthal modes in Fig. 2, where we plot the complex
growth rate of the nine modes with 0 ≥ ℜðΩ̂Þ ≥ −8.5 as a
function of the wakefield strength when kξσz ¼ 6. Panel
(a) plots the real part of Ω̂ as a function of the ξ ¼ 0 growth
rate ℑðλ̂Þ, and shows that the scaled frequency slowly
decreases from its integer value in the “weak” regime where
ℑðλÞ ≈ 3kξσz=4, beyond which the mode with ℜðΩ̂Þ ≈ −6
shows a rapid decrease indicating that it is no longer well-
described by a synchrotron mode.
Panels (b) and (c) of Fig. 2 plots the corresponding

growth rates of the same modes. Panel (b) shows the
significant suppression of the instability when ℑðλÞ≈
3kξσz=4, followed by the significant increase of ℑðΩÞ in
the strong regime of the instability. Panel (c) plots the
growth rate after subtracting the ℑðλ̂Þ= ffiffiffiffiffiffi

2π
p

kξσz character-
istic of the weak regime. We see which mode is most
unstable depends upon the wakefield strength, which is
another way of describing what was previously plotted in
Figs. 1(a) and (c).

D. Comparison with tracking

This section compares the theoretically predicted multi-
bunch growth rates with those obtained from simulations
using the particle tracking code ELEGANT [11]. Although
the results will be presented in the same dimensionless
form introduced in the previous section, the actual lattice
parameters were chosen with an eye toward its eventual
application to the APS-U storage ring, and are listed in

Table I. There are two particular parameters from this list
that we would like to highlight. The first is the matrix
growth rate, whose strength we vary while maintaining the
ratio ℜðλÞ=ℑðλÞ that was derived for the long-range
resistive wall wakefield assuming a fractional tune of 0.1
and a fill pattern of 48 equally-spaced bunches; since Ω

(a)

(b)

(c)

FIG. 2. Complex growth rate of the unstable modes when
kξσz ¼ 6. (a) plots the real part (frequency) of Ω̂ for nine
different unstable modes, while (b) and (c) plot the correspond-
ing growth rates.
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depends upon both the real and imaginary parts of λ we
provide further details of its calculation in Appendix E.
The second parameter of note from Table I is the bunch

length σz: the APS-U will employ a harmonic rf cavity to
lengthen the bunch, which we simulate here using a
single rf cavity whose voltage and harmonic number were
chosen to match the rms bunch length σz of the double rf
system. We will revisit this approximation in Sec. IV,
where we will see that the predictions for the growth rate
given here for a harmonic oscillator agree well in the
strong instability limit when ℑðΩÞ > αcσδ=σt, namely,
ℑðΩ̂Þ > 1, and otherwise only modestly overestimates the
growth rate of a quartic potential with same rms bunch
length. Further details of the ELEGANT simulations are in
Appendix F.
In the first set of simulations we do not include the

physics of damping and diffusion associated with the
emission of sychrotron radiation. Hence, the simulated
growth rates should be directly comparable to the Vlasov
theory developed in Sec. II. We make this comparison for
several different values of kξσz in Fig. 3(a), and find that the
simulation and theory agree quite well over the entire range.
In particular, the simulations clearly show the two regimes
of multibunch stability that are distinguished by whether
the ξ ¼ 0 growth rate ℑðλÞ is smaller or greater than the
chromatic tune shift ξω0σδ.
Figure 3(b) shows what happens when we add synchro-

tron radiation to the simulations, where for this comparison
we have subtracted the vertical damping rate 1=ðτyωsÞ ≈
0.064 from the theory. The agreement is quite good when
kξσz ≲ 2, but for higher chromaticities the simulations
show no evidence of the weak instability limit described
by Eq. (42), and are now stable when ℑðλÞ≲ 3ξω0σδ=4. On
the other hand, in the strong instability limit that has
ℑðλÞ≳ 3ξω0σδ=4, the difference in simulated growth rates
between panel (a) and (b) is approximately that of the
vertical damping rate. Hence, at high chromaticity syn-
chrotron emission can entirely eliminate the weak limit, in

which case stability is well predicted by the strong limit
Eq. (43) for all λ.
We will show that the disparity in the simulated growth

rates observed between Figs. 3(a) and (b) is due to the
stochastic nature of synchrotron emission, and that it is the
diffusion in the longitudinal plane that stabilizes the motion
at high chromaticity. To understand the physics prior to
diving into the mathematics, we first note that the unstable
transverse dipole mode can have significant longitudinal
structure when ξ ≠ 0. This is because the instability
develops when the wakefield delivers kicks that are
continually in phase with the particle’s betatron oscillation,
while the oscillation frequency depends both on the bare

TABLE I. Parameters used in ELEGANT simulations.

Parameter Symbol Value

Vertical tune νy 36.1
Chromaticity ξy 0 to 5.5
Momentum compaction αc 4.04 × 10−5

Bunch length σz 16.06 mm
Energy spread σδ 0.135%
Revolution time T0 3.68 ms
Synchrotron frequency ωs=2π 160 Hz
Chromatic phase kξσz 0 to 12.5
Number of bunches Nb 48
Total current Itot 200 mA
Vertical damping time τy 15.4 ms
Longitudinal damping time τz 20.5 ms
Coupled-bunch eigenvalue λ ℑðλÞði − 0.6Þ

(a)

(b)

FIG. 3. Comparison of the growth rates obtained by tracking
(dots) to those of theory (solid lines) when Vz ∝ z2. Tracking in
panel (a) is Hamiltonian with no damping or diffusion, and we see
very good agreement between theory and simulation. Panel
(b) includes synchrotron emission in tracking as a stochastic
process that leads to both damping and diffusion. In this case
the additional physics of diffusion stabilizes the motion when the
instability is weak and Eq. (42) applies; in contrast, when the
growth rate is larger than the chromatic tune spread,
ℑðλÞ≳ 3ξω0σδ=4, tracking shows that diffusion does not affect
the growth rate, and ℑðΩÞ is approximately that given by Eq. (43)
minus the scaled damping of 0.064.

RYAN R. LINDBERG PHYS. REV. ACCEL. BEAMS 24, 024402 (2021)

024402-12



betatron tune and on the energy due to chromatic effects.
Hence, the accumulated betatron phase will vary with
longitudinal position as the particle makes synchrotron
oscillations, and the instability will have a more compli-
cated longitudinal structure as the chromaticity is increased.
Next, we recall the fact that diffusion due to synchrotron

emission acts to smooth density perturbations along the
energy pz with a characteristic smoothing time proportional
to the square of the perturbation scale length. We therefore
expect that diffusion will play an important stabilizing role
on the higher-order synchrotron modes when kξσz > 1, and
that this stabilization will be effective provided particles
make many synchrotron oscillations during a growth time.
In the next section we will derive an approximate
dispersion relation that quantifies the effects of longitudinal
damping and diffusion on stability. Since it is approximate,
the dispersion relation in Sec. III E works best at moderate
values of kξσz; for the parameters in Fig. 3 the theory agrees
with simulation to better than 1% when kξσz ≲ 2, and
overestimates the onset of the strong regime by ∼5% when
kξσz ¼ 4, and by ∼20% when kξσz ¼ 8.

E. Instability theory including the longitudinal
damping and diffusion

We wish to add the physics of longitudinal damping
and diffusion to our coupled-bunch stability theory.
Unfortunately, the relatively simple-looking Fokker-
Planck operator (18) becomes decidedly less so when
we change variables from ðz; pzÞ to the action-angle
variables ðΦ; IÞ. To simplify matters somewhat we intro-
duce the dimensionless action r ¼ I=σzσδ, in terms of
which we find that

Ek
FP ¼

2

cτz

�
r
∂2

∂r2 þ ð1þ rÞ ∂
∂rþ

1

4r
∂2

∂Φ2
þ 1

�

−
�
e2iΦ

cτz

�
r
∂2

∂r2 þ r
∂
∂r −

1

4r
∂2

∂Φ2

þ i
∂2

∂Φ∂rþ i
r − 1

2r
∂
∂Φ
�
þ c:c:

�
: ð48Þ

Equation (22) with the right-hand-side given by (48) can be
cast into an eigenvalue problem by expanding the pertur-
bation as a sum of orthogonal modes as shown in
Refs. [25,27]. Here, however, we choose to proceed with
an approximate solution that is more in line with our Vlasov
analysis, and that we believe gives another useful perspec-
tive to the stability problem.
Our approximate solution begins by expanding the

perturbation in azimuthal (angular) modes as follows

g̃nðΦ; I ;ΩÞ ¼
X
l

glnðI ;ΩÞeilΦ: ð49Þ

Inserting the expansion (49) into Ek
FP results in the first line

of (48) that is diagonal in the azimuthal index l, while the
second two lines couple the mode l to those at l� 2. We
will neglect this latter coupling between modes in the
Fokker-Planck operator, which applies provided the longi-
tudinal damping is sufficiently weak for the given chro-
matic phase kξσz. Next, we use the azimuthal expansion
(49) in Eqs. (22) and (48), neglect the coupling between

synchrotron modes in the Fokker-Planck operator Ek
FP, and

isolate the modes by multiplying by e−imΦ=2π and inte-
grating over angle from 0 to 2π; for the simple harmonic
potential we obtain

�
r
d2

dr2
þ ð1þ rÞ d

dr
−
m2

4r
þ 1 −

τz
2i
ðΩ −mωsÞ −

τz
2τy

�
gmn

¼ iτze−r

2

Z
2π

0

dΦ
e−imΦ−ikξσz

ffiffiffiffi
2r

p
cosΦ

ð2πÞ2σzσδ
XNb−1

j¼0

Mn;jDjðΩÞ

¼ iτz
e−rJmðkξσz

ffiffiffiffiffi
2r

p Þ
4πimσzσδ

XNb−1

j¼0

Mn;jDjðΩÞ: ð50Þ

We would like to invert the differential operator on the
left-hand side of (50). This can be done using a suitable
Green function, and we show in Appendix B that the result
of this inversion is

gmn ¼
X∞
p¼0

ðkξσ2=
ffiffiffi
2

p Þ2pþjmjek
2
ξσ

2
z=2

Ω −mωs þ i=τy þ ið2pþ jmjÞ=τz

×
e−rrjm=2jLjmj

p ðrÞ
2πimσzσδðpþ jmjÞ!

XNb−1

j¼0

Mn;jDjðΩÞ: ð51Þ

Now, we obtain an equation for the dipole moment DnðΩÞ
by multiplying by eimΦeikξσz

ffiffiffiffi
2r

p
cosΦ, integrating over

ðΦ;IÞ ¼ ðΦ; σzσδrÞ, and summing over azimuthal index
m. We take the phase space integrals using [28]Z

2π

0

dΦeimΦeix cosΦ ¼ 2πimJmðxÞ; ð52Þ

Z
∞

0

dr e−rrm=2Lm
p ðrÞJmð2x

ffiffiffi
r

p Þ ¼ e−x
2

p!
x2pþm; ð53Þ

and diagonalize the wakefield matrix M as before to arrive
at the dispersion relation

1 ¼
X∞

m¼−∞

X∞
p¼0

λe−k
2
ξσ

2
z

p!ðpþ jmjÞ! ðk
2
ξσ

2
z=2Þ2pþjmj

×

�
Ω −mωs þ

i
τy

þ i
τz
ð2pþ jmjÞ

�
−1
: ð54Þ
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The full dispersion relation (54) appears to have an
additional dampinglike term ∼ð2pþ jmjÞ=τz in the sum.
Interestingly, the modal analysis of Ref. [25] identifies this
same quantity as the additional damping associated with
the synchrotron mode whose radial and azimuthal numbers
are ðp;mÞ. We argued in Ref. [27] that the physical origin
of this mode number-dependent damping is the longi-
tudinal diffusion, which tends to smooth out the rapidly
varying higher-order modes more effectively than those of
lower order. The advantage of the dispersion relation (54) is
that all modes are taken together, with the only caveat that
we neglected the modal coupling due to the Fokker-Planck
operator itself.
To understand how Eq. (54) reflects the fact that higher-

order modes are more readily damped, we first consider the
Vlasov limit that obtains when the longitudinal damping is
negligible. In this case we take τz → ∞ to find that the
sum over p equals the series representation for modified
Bessel function Ijmjðk2ξσ2zÞ, and we use the fact that
IjmjðxÞ ¼ ImðxÞ for integer m to derive the Vlasov limit

1 ¼
X∞

m¼−∞

λe−k
2
ξσ

2
z Imðk2ξσ2zÞ

Ω −mωs þ i=τy
: ð55Þ

We show in the discussion leading up to (C3) that this is
equivalent to our previously derived (37).
We have found that the dissipation-free result is recov-

ered when the sum over p in (54) converges sufficiently
rapidly such that the terms with ð2pþjmjÞ=τz≳ jΩ−mωsj
contribute negligibly to the sum. This rapid convergence is
typically guaranteed when the chromaticity is sufficiently
small such that kξσz ≲ 1. Larger values of kξσz require ever
more terms in the sum for it to converge, in which case the
finite τz eventually plays a role.
We illustrate the effects of the longitudinal damping and

diffusion on coupled bunch stability in Fig. 4, where we
plot the ratio of the Fokker-Planck growth rate ℑðΩFPÞ
derived from (54) to that of the Vlasov limit Eq. (55) as a
function of the ξ ¼ 0 dimensionless growth rate ℑðλ̂Þ.
Figure 4 graphs this ratio for three values of chromatic
phase kξσz, and the solid lines have the scaled longitudinal
damping τzωs ¼ 1=500 while the dashed lines use
τzωs ¼ 1=100. We see that even relatively small longi-
tudinal damping can significantly reduce the instability
growth rate in the weak regime where ℑðλ̂Þ≲ 3kξσz=4,
particularly as the chromatic phase becomes large. In
addition, Fig. 4 predicts that the growth rate approaches
its nominal, undamped value when ℑðλ̂Þ ≳ 3kξσz=4, which
is consistent with the APS-U tracking results of Fig. 3(b).
To further explore the roles of diffusion and mode shape

on stability, Fig. 5 shows three examples of the unstable
perturbation in longitudinal phase space obtained from
ELEGANT simulations of the long-range resistive wall
instability. These phase portraits map how the unstable

betatron motion varies in the longitudinal plane, with red
indicating particles that on average have a larger transverse
displacement than the mean, while blue denotes a locally
smaller betatron oscillation amplitude; we describe how
they were obtained in Appendix F. Panels (a) and (b) in
Fig. 5 compare the unstable mode profiles when the
growth rate is smaller than ωs to that when ℑðΩÞ > ωs
for the case with no synchrotron emission and kξσz ¼ 8.
When the instability is weak with a matrix growth rate
ℑðλ̂Þ ¼ 5.5 < 3kξσz=4, Fig. 5(a) shows that the unstable
mode has the approximate azimuthal symmetry of a
synchrotron mode. This is in stark contrast to the mode
with nearly vertical stripes shown in Fig. 5(b), for which
ℑðλ̂Þ ¼ 7 > 3kξσz=4, the growth rate ℑðΩÞ > ωs, and
Eq. (43) applies. Since diffusion acts to smooth gradients
along pz, its effect on the mode profile of Fig. 5(a) will be
much stronger than that of Fig. 5(b). Indeed, simulations
show that including the effects of synchrotron emission
stabilizes the weak instability example in Fig. 5(a), even
though the vertical damping rate is much smaller than the
growth rate observed without synchrotron radiation,
1=τy ≪ ℑðΩÞ. On the other hand, when ℑðΩÞ > ωs the
unstable perturbation in Fig. 5(b) is a mixture of modes that
limits the effect of diffusion and looks very similar to the
one including synchrotron emission and shown in Fig. 5(c).
In summary, we have found that when the instability is

strong such that ℑðλÞ > 3ξω0σδ=4 and ℑðΩÞ≳ ωs, stability
is governed by Eq. (43) and the diffusion due to synchro-
tron emission plays essentially no role. When the instability
is weak with ℑðλÞ < 3ξω0σδ=4 and ℑðΩÞ ≪ ωs, however,
the unstable mode is approximately a synchrotron mode
whose variations along pz tend to be smoothed by
diffusion. In general these diffusive effects are proportional
to the longitudinal damping rate and become more

FIG. 4. Ratio of the theoretical growth rate including
longitudinal damping to that with τz → ∞ as a function of
the dimensionless growth rate at zero chromaticity ℑðλ̂Þ.
Solid lines assume τzωs ¼ 1=500, while the dashed lines
have τzωs ¼ 1=100.

RYAN R. LINDBERG PHYS. REV. ACCEL. BEAMS 24, 024402 (2021)

024402-14



significant at large kξσz; more precise numerical predic-
tions can be obtained with the dispersion relation (54). For
the parameters of the APS-U listed in Table I, the damping
and diffusion of synchrotron emission completely elimi-
nates the “weak” instability provided kξσz ≳ 3.

IV. QUARTIC POTENTIAL OF AN IDEALLY
TUNED DOUBLE RF SYSTEM

Many of the next generation ultralow emittance storage
rings, including MAX-IV [29,30], APS-U [31], and ALS-U
[32], rely (or plan to rely) on a higher harmonic rf system to
stretch the bunch and reduce the particle density, thereby
increasing the lifetime and decreasing emittance growth
due to intrabeam scattering. What is often called “optimal
stretching” is achieved when the two rf systems are tuned
such that the longitudinal potential near the equilibrium
point becomes a quartic function of position, VzðzÞ ∝ z4.
To be more explicit, if one starts with a main cavity of
fundamental frequency ωrf, and then adds to that a
harmonic cavity with frequency hωrf for integer h, then
the total potential is

Vz ¼ V1 sinðωrfz=cþ ϕ1Þ þ Vh sinðhωrfz=cþ ϕhÞ; ð56Þ

where V1;h and ϕ1;h are the main and harmonic voltages
and phases, respectively.
We now Taylor expand Eq. (56) for small displacements

about the equilibrium where jhωrfz=cj ≪ 1, and find that
for a given main voltage V1 we can choose the parameters
Vh=V1, ϕ1, and ϕh such that the linear term balances
the average energy loss per turn while the quadratic and
cubic terms vanish, thereby obtaining a quartic potential.
Having done this, we again assume that the equilibrium
f̄ðIÞ ∝ e−Hz=αcσ2δ , so that we can write the longitudinal Hz
in terms of the rms bunch length σz and energy spread σδ as

Hzðz; pzÞ ¼
αc
2
p2
z þ

αcσ
2
δΓð3=4Þ2

σ4zΓð1=4Þ2
z4 ð57Þ

¼ αcσ
2
δ

� ffiffiffi
π

p
Γð3=4Þ3=2ffiffiffi

2
p

Γð1=4Þ3=2
3I
σδσz

�
4=3

; ð58Þ

where ΓðxÞ is the usual Gamma function and the second
line gives the equilibrium Hamiltonian as a function of the
action I ; details can be found in Ref. [33].
Now, we investigate to what extent the nonlinear

Hamiltonian (58) affects multibunch transverse stability.
We have already shown that transverse stability is inde-
pendent of the longitudinal dynamics at zero chromaticity,
and the focus here will be on ξ ≠ 0. We will find that the
phenomenology of coupled-bunch stability is quite similar
to that derived in the previous section, but with somewhat
more complicated details. In particular, we will again be
able to identify “weak” and “strong” limits of the instability
that are distinguished by whether the ξ ¼ 0 growth rate
ℑðλÞ is smaller or larger than the chromatic tune spread
ξω0σδ.
Prior to this theoretical investigation, we will introduce a

different but equivalent expression to Eq. (32) that we
found more convenient for numerical work in the nonlinear

FIG. 5. Unstable longitudinal phase space density perturbations
extracted from ELEGANT simulations for kξσz ¼ 8. Panel (a) has
no synchrotron emission and displays a complicated azimuthal
dependence with m ≈ 5 symmetry when ℑðλ̂Þ ¼ 5 and chroma-
ticity plays an important role to control the instability. This
contrasts with panel (b) for which the perturbation becomes more
aligned with the pz axis as the wakefield strength increases such
that ℑðλ̂Þ ¼ 7 > 3kξσz=4. Panel (c) has the same parameters as
(b) but also includes synchrotron emission.
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quartic potential. First, recall that we will require expres-
sions for f̄, ζ, and ω̂; using the Hamiltonian (58) we find
that the longitudinal equilibrium is

2πf̄ðIÞ ¼ 4a
3Γð3=4Þ exp½−ðaIÞ

4=3�; ð59Þ

with a ¼ 3
ffiffiffi
π

p
Γð3=4Þ3=2ffiffiffi

2
p

Γð1=4Þ3=2σδσz
≈
0.7388
σδσz

; ð60Þ

while the quartic oscillator has a scaled oscillation fre-
quency ω̂ and Fourier coefficient ζ given by [33]

ω̂ðIÞ ¼ 2
ffiffiffiffiffiffi
2π

p
Γð3=4Þ3=2

Γð1=4Þ3=2 ðaIÞ1=3; ð61Þ

ζðIÞ ¼ σz
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πΓð3=4Þp

coshðπ=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1=4Þp ðaIÞ1=3: ð62Þ

Then, we show in Appendix C that multibunch stability
is governed by Eq. (C2), which we rewrite here as

1 ¼ λ̂

Z
∞

0

dI2πf̄ðIÞ
X∞

m¼−∞

Jm½kξζðIÞ�2
Ω̂ −mω̂ðIÞ : ð63Þ

The dispersion relation (63) is faster to solve numerically
than (32) because it has exchanged one integration for an
infinite sum, and we have found that the sum achieves
sufficient convergence for all parameters considered here if
we truncate it to jmj ≤ 25. Equation (63) applies provided
ℑðΩÞ > 0; when ℑðΩÞ ≤ 0 we in general have to deform
the integration contour as prescribed by Landau to account
for the poles in the integrand [34]. However, for small
values of the wakefield strength we find that jΩ̂j ≪ 1, in
which case the dispersion relation is dominated by the
m ¼ 0 term of the sum in Eq. (63), while the contributions
from the poles when m ≠ 0 become vanishingly small.
Hence, when jλ̂j ≪ 1 we have

Ω̂ ≈ λ̂

Z
∞

0

dI2πf̄ðIÞJ0½kξζðIÞ�2; ð64Þ

and Landau damping plays essentially no additional role.
We show several representative solutions to (63) for the

coupled-bunch growth rates ℑðΩÞ in a quartic longitudinal
potential in Fig. 6. These results assume the basic
parameters listed in Table I, in particular using an identical
lattice, bunch pattern, and long-range resistive wall wake-
field so that λ ¼ ℑðλÞði − 0.6Þ, and furthermore assumes
the same single bunch σz and σδ (the one distinction from
the Table is that the quartic potential does not have a
unique synchrotron frequency ωs). The graph in Fig. 6(a)
displays the same features as does the simple harmonic
potential in the previous section, namely, a significant
reduction in the dependence of ℑðΩÞ with ℑðλÞ when the
ξ ¼ 0 growth rate is much smaller than the chromatic tune

spread, followed by a dramatic increase in the slope
when ℑðλÞ≳ ξω0σδ.
Figure 6(b) directly compares the maximum long-range

resistive wall growth rates in a quartic and harmonic
potential at two different values of kξσδ. We see that when
ℑðλÞ ≪ ξω0σδ the quartic potential reduces ℑðλÞ below the
value predicted in the quadratic potential, while in the
strong instability limit the growth rates are very similar.
To make these statements more quantitative, we turn to
analyzing the dispersion relation Eq. (39) in the weak and
strong limits.

A. Weak and strong instability regimes

We begin with the weak limit which obtains when both
jΩ̂j ≪ 1 and kξσz ≫ 1. Then, we expand the exponentials
in (32) assuming that jΩ=ωðIÞj ≪ 1, in which case the
subsequent integration over θ is symmetric about θ ¼ π
and we obtain

(a)

(b)

FIG. 6. (a) Theoretically predicted growth rates for the quartic
potential as a function of the ξ ¼ 0 growth rate ℑðλÞ. Crosses are
the full theory, while the red and blue lines represent the weak and
strong instability limits, respectively. (b) Comparison of the
growth rates between the quartic (red and blue) and the quadratic
(magenta and cyan) longitudinal potentials, for two different
values of the chromaticity.
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1 ≈
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: ð65Þ

The second line uses sinðθ=2Þ ≈ θ=2 which can be applied
provided kξσz ≫ 1, while the third line involves a hyper-
geometic function [35] that we expand for large argument
using 1F2ð1=2;1;3=2;−x2=4Þ¼x−1=2þOðx−3=2Þ. Inserting
the quartic equilibrium distribution (59) and Fourier coef-
ficient (62) into (65) results in an integral we can evaluate.
Hence,

Ω̂ ¼ coshðπ=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1=4Þp

4πΓð3=4Þ3=2
λ̂

kξσz
≈ 0.703

λ̂ffiffiffiffiffiffi
2π

p
kξσz

ð66Þ

if the instability is weak and jΩ̂j ≪ 1. We plot Eq. (66) as
red lines in Fig. 6(a), which again shows that the weak limit
can be used if ℑðλÞ ≲ 3ξω0σδ=4.
Equation (66) predicts that chromatic effects reduce

the growth rate by an amount inversely proportional to
the head-tail phase kξσz when jΩj ≪ αcσδ=σt (or equiv-
alently when jλj ≪ ξω0σδ). Hence, both the quartic and
quadratic potentials exhibit a similar weak instability
regime when the ξ ¼ 0 growth rate is much less than the
chromatic tune shift over the bunch. If we directly
compare Eqs. (66) and (42) we find that the growth
rate of the flattened quartic potential is about 70% that of
the harmonic potential when ℑðΩÞ ≪ 1. Additionally,
Fig. 6(b) shows that the difference between the two
growth rates increases as a function of the coupled-
bunch instability when the weak limit still applies. These
predictions are broadly consistent with the theoretical
and tracking results of Ref. [10].
Now, we turn to deriving an expression for the complex

coupled-bunch frequency Ω when the instability is strong.
This case is defined by ℑðΩ̂Þ ≫ 1, in which case we can
neglect the small quantity e2πiΩ̂ in the solution Eq. (59).
Furthermore, we have jeiΩ̂θ=ω̂j ≪ 1 unless jθj ≪ 1, so that
we expand sinðθ=2Þ ≈ θ=2 and extend the integration
region over θ to infinity to obtain

1 ≈ −iλ̂
Z

∞

0

dI
2πf̄ðIÞ
ω̂ðIÞ

Z
∞

0

dθ J0½kξζðIÞθ�eiΩ̂θ=ω̂ðIÞ

¼ −
iλ̂
kξσz

Z
∞

0

dI
2πf̄ðIÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ω̂ðIÞζðIÞ�2 − ðΩ̂=kξσzÞ2
q : ð67Þ

The last part of the calculation involves inserting the
equilibrium distribution f̄, scaled oscillation frequency ω̂,
and Fourier coefficient ζ of the quartic oscillator into (67).
We use Eqs. (59)–(62), and define the dimensionless
integration variable x ¼ aI and the quantity

b ¼ coshðπ=2ÞΓð1=4Þ2
8π

ffiffiffi
2

p
Γð3=4Þ2 ≈ 0.618: ð68Þ

Then, the integration in (67) becomes

1 ¼ −b
iλ̂
kξσz

Z
∞

0

dx
4

3Γð3=4Þ e
−x4=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x4=3 − ðbΩ̂2=kξσzÞ2
q

¼ −b
iλ̂
kξσz

U
�
1

2
;
3

4
;−

b2Ω̂2

k2ξσ
2
z

�
; ð69Þ

where U is the confluent hypergeometric function of the
second kind [28] (also called the Tricomi function).
Solutions to (69) are given by the blue lines in Fig. 6(a),

which we see agree quite well with the full theory when
ℑðλ̂Þ≳ 3kξσz=4. In this strong limit we have found that the
coupled-bunch motion appears to be largely independent
of the longitudinal potential; for a given kξσz the complex
frequency Ω is nearly the same if Vz ∝ z4 as it is when
Vz ∝ z2.

B. Comparison of theory to tracking

Now we turn to comparing the theory just presented to
results derived from the tracking code ELEGANT. As done in
Sec. IV B, the basic lattice parameters were chosen to
model the APS Upgrade multibend achromat design, and
are listed in Table I. In this case, however, the tracking
includes the planned double rf system, which is modeled as
two prescribed accelerating voltages and phases applied
once per turn; the rf parameters are listed in Table II.
As in the previous section, we will first compare the

predictions of our Vlasov theory with Hamiltonian simu-
lations that neglect the diffusion due to synchrotron
emission. There are (at least) two ways we can do this:
(1) eliminate synchrotron emission entirely or (2) model it
as a single energy loss given to all particles once per turn.

TABLE II. Parameters of the double rf system used in ELEGANT

simulations.

Parameter Symbol Value

Main rf voltage Vrf 4.6 MV
Main rf frequency frf 352.06 MHz
Main rf phase ϕ1 138.3°
Harmonic number h 4
Harmonic voltage V4 0.88 MV
Harmonic phase ϕ4 347.4°
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The former method requires changing the rf parameters to
maintain the flattened (quartic) potential, while the latter
eliminates diffusion but retains the transverse damping. We
have decided to adopt the second method since it easily
enables us to have identical longitudinal rf potentials for all
tracking simulations, which also means that in subsequent
comparisons we will also subtract the transverse damping
rate 1=τy from the theory.
We ran a number of ELEGANT simulations using the

lattice parameters from Table I and the Vz ∝ z4 rf system
from Table II, to which we added a long-range resistive wall
wakefield of various strengths. The multibunch growth rate
was extracted from the simulation by fitting an exponential
to both the centroid motion hyi and the rms width σy.
The growth rates from tracking are compared to theore-
tical predictions in Fig. 7(a), where the theory includes
the scaled transverse damping by subtracting off
τ−1y =ðαcσδ=σtÞ ≈ 0.064. Again, the behavior is quite similar
to that when the longitudinal potential is simple harmonic:
the growth rates are reduced by an amount ∼0.28=kξσz
when the ξ ¼ 0 growth rate is less than the chromatic tune
spread over the bunch, ℑðλÞ≳ 3ξω0σδ=4; for larger values
of ℑðλÞ the slope of ℑðΩ̂Þ vs ℑðλ̂Þ is of the order of one.
In addition, Fig. 7(b) presents a comparison at kξσz ¼ 8

between the quadratic and quartic potential predictions
for the unstable mode’s oscillation frequency shift from
ωβ, namely, ℜðΩÞ. When the instability is weak with
ℑðλÞ≲ 3ξω0σδ=4, Fig. 7(b) shows that frequency differ-
ence is nearly an integer multiple of αcσδ=σt, which is
consistent with the unstable mode being well-approximated
by a synchrotron mode. In the quadratic potential both the
theory (red line) and the simulation (magenta points)
indicate thatℜðΩ̂Þ decreases with ℑðλ̂Þ in a steplike fashion
with an average slope ≈−1. On the other hand, when
Vz ∝ z4 both theory (blue line) and simulation (cyan points)
predict that the frequency shift is approximately zero. This
was anticipated byRef. [10], and is physically due to the fact
that the synchrotron frequency in a quartic potential varies
with amplitude, so that synchrotron oscillations tend to mix
modes that have nontrivial angular dependence.
When the instability is strong, ℑðλÞ≳ 3ξω0σδ=4 and the

growth rate is larger than the typical synchrotron oscillation
frequency, Fig. 7(b) shows that ℜðΩÞ is no longer an
integer multiple of αcσδ=σt; rather, in this limit the
frequency difference decreases smoothly as a function of
ℑðλÞ, withℜðΩ̂Þ ∼ ℑðλ̂Þ. Furthermore, Fig. 7(b) shows that
the frequency shift of the strongly unstable mode is
approximately the same for the quadratic and quartic
potentials, which is further evidence that in this limit the
details of the longitudinal potential no longer impact
transverse multibunch stability.
The multibunch instability dynamics can be further

illuminated by inspecting the longitudinal phase space of
the unstable mode. We plot these for the quartic potential

and chromatic phase kξσz ¼ 8 in Fig. 8; note that the only
difference between these results and those of Fig. 5 is the
shape of the longitudinal potential. In particular, panels (a),
(b), and (c) have the same resistive wall strength and kξσz as
do the corresponding plots in Fig. 5, and panels (a) and (b)
of Fig. 8 here neglect synchrotron emission while
(c) includes it.
Figure 8(a) plots the Vz ∝ z4 mode in the weak insta-

bility regime where ℑðλ̂Þ ¼ 5 < 3kξσz=4. In this case the
perturbation is approximately azimuthally symmetric as
expected for an angular m ¼ 0 mode, but also has signifi-
cant structure in the radial (action) direction. We therefore
expect that this mode will be strongly damped by the

(a)

(b)

FIG. 7. Comparison of the unstable dynamics obtained by
tracking (dots) to those of theory (solid lines) when the
longitudinal damping and diffusion are neglected. Panel (a) com-
pares the predicted multibunch growth rate in the quartic potential
Vz ∝ z4 for four different values of kξσz. The comparison is rather
good and quite similar to that in Fig. 3(a). Panel (b) plots the
unstable frequency shift from ωβ when kξσz ¼ 8 for the quadratic
potential (red and magenta) and the quartic potential (blue, cyan).
The frequency shift is approximately an integer multiple of
αcσδ=σt when ℑðλÞ≲ 3ξω0σδ=4, while for larger values of the
instability strength ℜðΩÞ smoothly decreases with ℑðλÞ and is
largely independent of Vz.
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diffusion of sychrotron emission, much like its quadratic
potential counterpart.
On the other hand, Fig. 8(b) shows that when ℑðλ̂Þ ¼

7 > 3kξσz=4 the unstable mode consists of stripes that

are nearly parallel to the pz-axis, so that in this case
diffusion would play little role. Hence, it is not surprising
that panel (c) displays a very similar mode shape when
synchrotron emission is included. Furthermore, both panels
(b) and (c) look very similar to their quadratic counterparts
in Fig. 5(b)–(c). This makes sense, because in the strong
instability limit the growth rate is larger than the character-
istic synchrotron frequency and the longitudinal potential
does not significantly affect the dynamics.
As discussed previously, the physics of diffusion asso-

ciated with synchrotron emission can stabilize the coupled
bunch dynamics when ℑðλÞ ≪ ξω0σδ, and this effect
occurs regardless of the longitudinal potential. Indeed,
including the diffusion due to synchrotron radiation for
the APS-U essentially eliminates the weak instability in a
manner similar to that observed in Fig. 3. We demonstrate
this in Fig. 9, where we compare theoretical coupled-bunch
growth rates from Eq. (32) to full ELEGANT simulations of
the APS-U lattice. The red lines in Fig. 9 are the theory,
while the blue points are the planned APS-U lattice with
ξ ¼ 5.45. The simulation predicts that the APS-U will be
stable to coupled-bunch instabilities whose ξ ¼ 0 growth
rate ℑðλÞ ≲ 9 ms−1. For comparison, applying Eqs. (E2)
and (E7) to the APS-U vacuum chambers results in a ten
times smaller long-range resistive wall ℑðλÞ ≈ 0.9 ms−1,
and the APS-U is stable by a safe margin. Figure 9 also
includes the magenta and cyan points for illustration, with
the former assuming a chromaticity of 2, while the latter is
marginally unstable at ξ ¼ 0.75. Note that neither of these
are planned operating points, since ξ ¼ 5.5 was chosen to

FIG. 8. Unstable longitudinal phase space density perturbations
extracted from ELEGANT simulations for the quartic potential and
kξσz ¼ 8. Panel (a) has no synchrotron emission and shows that
while the instability is dominated by the m ¼ 0 mode it has
complicated radial dependence when ℑðλ̂Þ ¼ 5 and chromaticity
plays an important role to control the instability. When the
strength increases to λ̂ ¼ 7 > 3kξσz=4 we get the results in panel
(b), for which the perturbation becomes more aligned with the pz
axis. Panel (c) is for the same parameters as panel (b) but also
includes synchrotron emission.

FIG. 9. Resistive wall growth rate as a function of ξ ¼ 0 rate λ
for the APS-U. The theory subtracts off the transverse damping
rate 1=τy ≈ 0.065 1=ms, while the tracking results include the
nonlinear tune shift with amplitude and chromaticity; the APS-U
(blue dots) have the nominal chromaticity ξy ¼ 5.45 for which
kξσz ≈ 12.1. The green and points show results for ξy ¼ 3.6 and
ξy ¼ 0.75, respectively; the latter is nominally unstable to the
APS-U long-range resistive wall wakefield, whose growth rate
ℑðλÞ ≈ 0.88 1=ms.
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improve both the single-bunch collective stability and the
single-particle dynamics of the APS-U hybrid lattice.
The simulations of Fig. 9 added both the diffusion due to

synchrotron emission and a number of nonlinear effects,
including the first and second order nonlinear tune shift with
amplitude, the second and third order nonlinear chromatic-
ities, the lowest order energy dependence of the lattice
functions, and the lowest order variation of the path length
with energy and amplitude. While adding nonlinear effects
results in entirely different large-amplitude behavior includ-
ing instability saturation and sawtooth-type behavior, Fig. 9
shows that adding nonlinearities does not significantly
change the instability growth rates. The tune-shift with
amplitude does not affect stability because the small εx
implies that the tune-shift over the bunch is negligible, while
the nonlinear chromaticities shifts the growth rate curve by a
few percent along ℑðλÞ; for the APS-U adding the second
order chromaticity increases the growth rates by shifting the
curve left by ∼2.5% of ℑðλÞ, while the third order
chromaticity decreases ℑðΩÞ slightly such that the curve
shifts right by ∼0.5%. These differences are relatively
insignificant here, but they can lead to a sizeable fractional
change in ℑðΩÞ when ℑðΩ̂Þ < 1. If, for example, we
artificially eliminate the diffusion we have found that non-
linear chromatic effects in the APS-U can increase the
growth rates by up to 20%; further analysis of this effect is
beyond the scope of this paper.

V. CONCLUSIONS

We have derived a relatively easy-to-evaluate expression
for computing the transverse coupled-bunch instability
growth rates at any chromaticity and for both quadratic
and quartic longitudinal potentials. Furthermore, we have
generalized the former to include synchrotron emission,
and shown that this has an important stabilizing effect at
large chromaticity. The theory predicts that the coupled-
bunch growth rates can be significantly reduced when the
chromatic betatron tune spread is larger than the coupled-
bunch growth rate at zero chromaticity, and was shown to

agree quite well with tracking simulations for quadratic and
quartic (flattened) longitudinal potentials.
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APPENDIX A: EXTENSION TO CERTAIN
NONUNIFORM FILLS

This calculation is very similar to that in Ref. [33], but
corrects a few typos. We let T0=M be the minimum spacing
between bunches (equispaced bunches have M ¼ Nb), and
abbreviate the dispersionlike integration over the equilib-
rium f̄n that is in Eqs. (25) and (30):

XnðΩÞ ¼
Z

∞

0

dI
2πf̄nðIÞ

ωðIÞð1 − e2πiΩÞ
×
Z

2π

0

dθ J0½2kξζðIÞ sinðθ=2Þ�eiΩθ=ωðIÞ: ðA1Þ

Then, from Eqs. (26) and (27) we find that stability is
determined by the solutions to

Dn

Xn
¼
XM−1

j¼0

e2Ne;j

2γmc2T0

Dj

X∞
l¼0

eilðωβþωQÞT0WDðϒÞ; ðA2Þ

where ϒ ¼ −cT0½l − ðj − nÞ=M�. To make further
progress we introduce the coupled-bunch modes

τμ ¼
XM−1

n¼0

Dn

Xn
e−2πinμ=Me−inðωβþωQÞT0=M; ðA3Þ

in terms of which (A2) can be written as

τμ ¼
XM−1

j;μ0¼0

e2Ne;jX j

2γmc2T0

e2πijðμ0−μÞ=Mτμ0
XM−1

n¼0

X∞
l¼0

e−iðωβþωQþ2πμ=T0Þϒ=cWDðϒÞ

¼
XM−1

j;μ0¼0

e2Ne;jX j

2γmc2T0

e2πijðμ0−μÞ=Mτμ0
X∞
k¼0

ei½ðωβþωQÞT0þ2πμ�k=MWDð−kcT0=MÞ: ðA4Þ

The first line follows from inserting the definition (A3) into both sides of (A2), multiplying by e2πinμ=MeinðωβþωQÞT0=M and
summing over n, and using the fact that e2πiμl ¼ 1 for integer μ, l; in the second line we have exchanged the summation
over n and l to a single sum over k as was suggested in Ref. [36]. Continuing their analysis we then separate the summation
over μ0 to one where μ0 ¼ μ and the rest to arrive at

RYAN R. LINDBERG PHYS. REV. ACCEL. BEAMS 24, 024402 (2021)

024402-20



τμ ¼ τμ
XM−1

j¼0

e2Ne;jX j

2γmc2T0

X∞
k¼0

ei½ðωβþωQÞT0þ2πμ�k=MWDð−kcT0=MÞ

þ
XM−1

j¼0

XM−1

μ0≠μ

e2Ne;jX j

2γmc2T0

e2πijðμ0−μÞ=Mτμ0
X∞
k¼0

ei½ðωβþωQÞT0þ2πμ�k=MWDð−kcT0=MÞ: ðA5Þ

The first term represents the diagonal part of the matrix, while the second term gives the coupling between modes τ. For
uniformly spaced identical bunches the second line vanishes and each term in the first sum over j is the same. This is the
standard case. In addition, the second coupling term in (A5) also vanishes if the bunch pattern is comprised of two or more
approximately identical bunch trains; in this case stability is given by setting the weighted sum of dispersion integrals from
the top lines of (A5) equal to unity.

APPENDIX B: GREEN FUNCTION SOLUTION OF THE APPROXIMATE
FOKKER-PLANCK EQUATION

In this Appendix we derive the Green function Gðr; r̂Þ associated with the differential operator on the left-hand side of our
simplified diffusion equation (50), and then use G to solve for the mode coefficient gmn . To begin, we note that the spectral
theorem states that a self-adjoint operator has a complete set of eigenfunctions ΨpðrÞ with eigenvalues Λp, from which the
associated Green function can then be constructed using

Gðr; r̂Þ ¼
X∞
p¼0

1

Λp
Ψ†

pðrÞΨpðr̂Þ: ðB1Þ

Additionally, we can convert the left-hand side of (50) into a self-adjoint form by multiplying by er=2 and using the
fact that

er=2
�
r
d2

dr2
þ ð1þ rÞ d

dr
−
m2

4r
þ 1þ iτz

2
ðΩ −mωsÞ −

τz
2τy

�
gmn ¼ L½er=2gmn �

¼
�
r
d2

dr2
þ r

d
dr

þ r
4
−
m2

4r
þ 1

2
þ iτz

2
ðΩ −mωsÞ −

τz
τy

�
ðer=2gmn Þ ¼ iτz

e−r=2Jmðkξσz
ffiffiffiffiffi
2r

p Þ
4πimσzσδ

XNb−1

j¼0

Mn;jDjðΩÞ; ðB2Þ

where we defined the self-adjoint linear operator L. This operator satisfies L½ΨpðrÞ� ¼ ΛpΨpðrÞ with orthonormal

eigenfunctions ΨpðrÞ ¼ rjm=2jLjmj
p ðrÞe−r=2½p!=ðpþ jmjÞ!� and eigenvalues Λp ¼ i½τzðΩ −mωsÞ þ iτz=τy þ ið2pþ jmjÞ�,

which when inserted into Eq. (B1) yields the Green function

Gmðr; r̂Þ ¼
2

iτz

X
p

p!rjm=2jLjmj
p ðrÞe−r=2r̂jm=2jLjmj

p ðr̂Þe−r̂=2
ðpþ jmjÞ!½Ω −mωs þ i=τy þ ið2pþ jmjÞ=τz�

: ðB3Þ

We now use the Green function (B3) to invert (B2) and the following solution for gmn as given in Eq. (51).

gmn ðrÞ ¼ e−r=2
Z

∞

0

dr̂Gmðr; r̂Þiτz
e−r̂=2Jmðkξσz

ffiffiffiffiffi
2r̂

p Þ
4πimσzσδ

XNb−1

j¼0

Mn;jDjðΩÞ

¼
X∞
p¼0

ðkξσ2=
ffiffiffi
2

p Þ2pþjmjek
2
ξσ

2
z=2

Ω −mωs þ i=τy þ ið2pþ jmjÞ=τz
e−rrjm=2jLjmj

p ðrÞ
2πimσzσδðpþ jmjÞ!

XNb−1

j¼0

Mn;jDjðΩÞ ðB4Þ

APPENDIX C: ALTERNATE INTEGRAL SOLUTION FOR VLASOV STABILITY

In this Appendix we derive another integral equation forΩ that we have found is more efficient to numerically solve than
Eq. (32) when the potential is not harmonic. To obtain this alternative expression, we begin with Eq. (28). This time, we
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insert zðI ;ΦÞ ¼ ζðIÞ cosΦ and perform the angular integrations using the Jacobi-Anger identity; going step by step, the
right-hand side of (28) becomes

Z
2π

0

dΦ
eikξzðΦ;IÞ

2πiωðIÞ
Z

2π

0

dθ
eiΩθ=ω

1 − e2πiΩ=ω
e−ikξζðIÞ cosðΦ−θÞ ¼

Z
2π

0

dΦ
eikξzðΦ;IÞ

2πiωðIÞ
Z

2π

0

dθ
X∞
n¼−∞

eiΩθ=ωeinðΦ−θÞ

inð1 − e2πiΩ=ωÞ JnðkξζÞ

¼
Z

2π

0

dΦ
X∞

m¼−∞
imJmðkξζÞ

eimΦ

2π

X∞
n¼∞

inJ−nðkξζÞeinΦ
Ω − nωðIÞ

¼
X∞

m¼−∞

Jm½kξζðIÞ�2
Ω −mωðIÞ : ðC1Þ

Then, inserting (C1) into (28) implies that stability is
given by the dimensionless equation

1 ¼ λ̂

Z
∞

0

dI2πf̄ðIÞ
X∞

m¼−∞

Jm½kξζðIÞ�2
Ω̂ −mω̂ðIÞ : ðC2Þ

We find that Eq. (C2) has traded one integral from (32) at
the cost of an infinite sum. The number of terms required
for the sum to converge increases linearly with kξσz, and we
have found that restricting the sum to jmj ≤ 25 is sufficient
for kξσz ¼ 8. Finally, when the potential is simple harmonic
we can insert (36) into Eq. (C2) and integrate to get the
following expression in terms of the modified Bessel
function InðxÞ:

1 ¼ λ̂
X∞

m¼−∞

Imðk2ξσ2zÞ
Ω̂ −m

e−k
2
ξσ

2
z : ðC3Þ

APPENDIX D: INSTABILITY THEORY FOR A
“WATERBAG” LONGITUDINAL EQUILIBRIUM

All previous results in this paper assume that the
unperturbed momentum distribution is Gaussian, so that
f̄ðIÞ ∝ e−I=σzσδ . While this is appropriate when the equi-
librium is dictated by synchrotron radiation, other functions
may better describe the beam when radiation damping is
negligible. Our formalism accounts for the longitudinal
equilibrium f̄ as indicated by (C2), and in this Appendix
we illustrate to what extent a different f̄ might change
previous predictions. We do this by applying the simple
harmonic theory to the so-called “waterbag” distribution,
which is constant within a specified phase space ellipse and
zero elsewhere:

2πf̄ðIÞ ¼
� ð2σzσδÞ−1 if I ≤ 2σzσδ

0 if I > 2σzσδ
: ðD1Þ

Analytic results can also be computed for, e.g., air-bag
or parabolic models, but we think that the waterbag
distribution exemplifies how predictions depend on the

equilibrium, while also balancing realism with simplicity.
Inserting f̄ from (D1) into (C2) and integrating yields [28]

1 ¼ λ̂
X∞

m¼−∞

J2mðaÞ − Jmþ1ðaÞJm−1ðaÞ
Ω̂ −m

; ðD2Þ

where a ¼ 2kξσz.
We compare the predictions for the instability growth

rate for a waterbag distribution derived from Eq. (D2) with
the Gaussian theory of (C3) in Fig. 10. Figure 10 plots
the maximum theoretical growth rate for kξσz ¼ 4 and
kξσz ¼ 4, and compares these results with those derived
from simulation. We see that all cases show very similar
behavior, and in particular demonstrate the same character-
istic weak and strong instability regimes that arise when
kξσz is less than or greater than 3ℑðλ̂Þ, respectively.
Furthermore, the chromatic stabilizing effect is somewhat
stronger for the waterbag distribution than for the Gaussian
with a same value of σz, and these differences are well
predicted by the theory.

FIG. 10. Comparison of the maximum growth rate for Gaussian
(Gauss.) and waterbag (W.B.) equilibriums, assuming that the
longitudinal potential is simple harmonic.
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APPENDIX E: LONG-RANGE RESISTIVE
WALL INSTABILITY

Here we compute the ξ ¼ 0 complex frequencies λμ for
the long-range resistive wall instability. Although most of
the elements of this calculation can be found by combining
references such as [1] and [37], we were unable to find the
desired approximation for λ suitable to the parameters of
Table I. We will derive it from Eq. (A5), starting with the
fact that at zero chromaticity Eq. (A1) implies that
χn ¼ 1=Ω ¼ 1=λ. We furthermore assume that the quad-
rupolar frequency shift ωQ ¼ 0 and that there are M ¼ Nb

equally spaced bunches with equal charge Ne;j ¼ Ne. In
this case the second summation in (A5) vanishes, while the
first sum is over Nb identical terms so that the eigenvalues
are given by

λμ ¼
eItot

2γmc2T0

X∞
k¼0

e2πiðμþνβÞk=MWDð−kcT0=MÞ: ðE1Þ

Here, we have defined the vertical tune νβ ¼ ωβT0=2π and
the total current Itot ¼ eNeNb=T0.
The long-range resistive-wall wakefield is zero when

z ≥ 0, and otherwise scales as jzj−1=2 with the prefactor
determined by summing up the contributions from various
chambers around the ring. Labeling each chamber type
with the subscript l, the long-range resistive wall wakefield
can be written as [1]

WDðzÞ ¼
X
l

glβy;l
πb3l

ffiffiffiffiffiffiffiffiffiffi
Z0ρl
π

r
cLlffiffiffiffiffiffi
−z

p ¼ Wy

ffiffiffiffiffiffiffiffi
cT0

−z

r
; ðE2Þ

where βy;l, bl, ρl, and Ll are, respectively, the average
beta function, vertical aperture, resistivity, and length of
chamber l, while gl is a geometric factor that is unity for
round chambers and π2=12 for the highly elliptical inser-
tion device chambers used by the APS-U. Inserting the
ring-averaged resistive wall wakefield (E2) into (E1)
implies that the eigenvalues are

λμ ¼ −
eItot
2γmc2

Wyffiffiffiffiffiffi
Nb

p
X∞
k¼1

e2πiðμþνβÞk=Nbffiffiffi
k

p ðE3Þ

¼ −
e2Itot
2γmc2

Wyffiffiffiffiffiffi
Nb

p Li1
2
½e2πiðμþνβÞ=Nb �; ðE4Þ

where Li1=2ðxÞ is the polylogarithm function [35]. From
(E3) we see that the summation can be large when ðμþ
νβÞ=Nb is small. In this case we apply the Taylor expansion

Li1=2ðe2πixÞ ¼
1þ i
2
ffiffiffi
x

p þ ζð1=2Þ þOðxÞ ðE5Þ

for jxj ≪ 1 and the Riemann zeta function ζð1=2Þ ≈ −1.46.
Then, we find that the growth rate is maximized for the

mode number μ that has μþ νβ ¼ −1þ fνβg, where fνβg
is the fractional tune. The complex coupled-bunch fre-
quency with largest growth rate is therefore

λ ≈
eItotWy

4γmc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fνβg

p
"
i −

 
1þ 2ζð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fνβg

Nb

s !#
:

ðE6Þ

The correction to the real part involving ζð1=2Þ is
typically neglected, since it does not change the ξ ¼ 0
growth rate. It does, however, affect both the real and
imaginary parts of Ω at nonzero chromaticity, and for the
APS-U parameters it is an important factor. In particular,
when Nb ¼ 48 and fνβg ¼ 0.1 we find that

λ ≈
eItotWy

4γmc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fνβg

p ði − 0.6Þ ¼ ℑðλÞði − 0.6Þ: ðE7Þ

Hence, for APS-U the lowest order correction involving
ζð1=2Þ changes ℜðλÞ by 40%; the neglected higher-order
terms in (E5) change λ by less than 1%.

APPENDIX F: DETAILS OF THE
ELEGANT SIMULATIONS

We track particles through the ring using the ILMATRIX
element in ELEGANT, which allows for fast, symplectic
particle tracking through a periodic cell including chro-
matic and amplitude-dependent tunes, beta functions,
dispersion, and path-length. ILMATRIX does this by
computing a linear matrix for each particle that is deter-
mined both by user-supplied parameters and the particle
coordinates. The user-supplied quantities include the Twiss
parameters, tunes, dispersion, etc., and how these quantities
depend on the particle energy (giving chromatic effects
through third order in pz) and on the transverse coordinates
(which provide the nonlinear terms in J ). We have found
that the ILMATRIX element provides a fast and reasonably
accurate way to track particles through a wide variety of
lattices. For all simulations reported here other than those in
Fig. 9 we only include the linear and chromatic terms; we
have found numerically that setting the second and third
order chromatic effects to zero only changes the growth
rates by ≲15% in the weak regime, and ≲5% when the
instability is strong. On the other hand, including the other
nonlinear dependences does not affect the instability
thresholds, but does change the large amplitude oscillation
dynamics. In other words, for our parameters the beam
emittances are sufficiently small that stability is determined
predominantly by the linear lattice and chromaticity, while
the nonlinear chromaticities provides a small correction
to that.
The multiple bunches are initialized from a single

equilibrium of 50,000 particles that is copied 47 times
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and assigned evenly about the ring to arrive at the total of
48 bunches. The number of macroparticles required
increases with chromaticity and when the rf potential is
not harmonic. We found that increasing the number of
particles to 200,000 gave nearly indistiguishable results for
the quartic potential at the highest value of ξ, while
decreasing the number to 10,000 gave good results for
most cases except at the highest chromaticity in the quartic
potential; for consistency we decided to use 50,000
particles for all cases. We simulate the distributed long-
range resistive wall wakefield using one LRWAKE element
every other sector for a total of 20 elements per turn; using
multiple LRWAKE elements is only truly required when the
ξ ¼ 0 growth rate becomes large. We apply the resistive
wall wake summed over 25 turns, where the first 20 turns
are given by the analytic expression Eq. (E2), after which
the wakefield is smoothly brought to zero over the final five
turns using a Gaussian envelope. This ensures that the
numerical sum approximates its infinite value from
Eq. (E3) to better than 0.2%. We have also simulated a
HOM driven wakefield using the RFMODE element, for
which the wakefield is computed using the fundamental
theorem of beam loading and a phasor rotation. While the
LRWAKE element uses a point bunch approximation for
the wakefield, RFMODE does not, and we have seen no
discrepancies from the theory in either case.
The acceleration and focusing from the rf cavity (or

cavities) is modeled using the RFCA element(s), which
simulate active cavities with a prescribed frequency, phase,
and voltage. We complete our tracking simulation by
modeling the damping and diffusion due to synchrotron
emission using the SREFFECTS element, which takes as
input the energy loss per turn, damping partitions, and
equilibrium emittances and energy spread.
Finally, we obtained the perturbed distribution Figs. 5

and 8 from the ELEGANT simulation by making a weighted
histogram of the Nsim macroparticles in a bunch, where the
weight on the jth particle is

yj þ βyy0j
hyi

eiðωβs=c−kξzjÞ

NsimðΔzÞðΔpzÞ
; ðF1Þ

with Δz and Δpz the bin size in z and pz respectively, and
the division by the centroid amplitude hyi is done to
normalize the data near unity. The plots in Figs. 5 and 8
show the real part of (F1) as a function of z and pz (the
imaginary parts are similar), and use a nearest neighbor
smoothing to reduce granularity due to a finite number of
macroparticles.
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