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Radiation reaction force in a relativistic beam, also known as the CSR wakefield, is often computed
using a 1D model of a line charge. While this model can serve as a useful tool for a quick calculation, in
many cases its accuracy is not sufficient. In particular, this model misses the so-called compression effects
associated with the change of the electromagnetic energy when the beam is compressed longitudinally
or transversely. The existing 3D simulation codes that take this effect into account are often slow and
are not easy to use. In this work, we propose a new approach to the calculations of radiation and space
charge longitudinal forces in free space based on the use of the integrals for the retarded potentials. Our
main result expresses the rate of change of particles’ energy through 2D (in a 2D model) or 3D integrals
along the beam orbit.
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I. INTRODUCTION

When the trajectory of a relativistic beam is bent by
magnetic field, the beam radiates electromagnetic field and
experiences a radiation reaction force. This force plays an
important role in generation, transport and accumulation of
high-current, low-emittance electron beams, and is cus-
tomarily designated as the coherent synchrotron radiation
(CSR) wakefield. Its account is crucial in the design of
bunch compressors for modern x-ray free electron lasers
(FELs) and linear colliders. It can also affect the beam
dynamics in electron synchrotron accelerators.
There are several approaches to the calculation of the

CSR wakefield. A popular 1D model for a circular motion
in free space was developed in Refs. [1–3]. It has later been
generalized in Refs. [4,5] for a bending magnet of finite
length and is currently implemented in several computer
codes routinely used for simulations of beam dynamics in
accelerators. Various refinements and improvements of the
original 1D model, as well as generalization for a beam line
with several bending magnets, can be found in Refs. [6–9].
The CSR wake in free space is often a good approxi-

mation to reality for extremely short bunches encountered
in bunch compressors of FELs, where the bunch length
after compression can be as small as tens of microns. In
electron synchrotrons, where the typical bunch length is
in the range of centimeters, the metal boundaries of the

vacuum chamber cannot be neglected. These boundaries
introduce the so-called shielding effect that suppresses
both the synchrotron radiation at low frequencies and
the CSR wake, often to the level when it can be neglected.
Various aspects of the shielding effect are studied in
Refs. [6,10–18]. In this paper, we ignore the shielding
effect of the metal boundaries aiming our study to the very
short bunches of modern linear accelerator.
The 1D models mentioned above are simple and easy to

use but they might miss an important part of the total force
in relativistic beams moving in a curvilinear trajectory. The
attention to this force was attracted by M. Dohlus in 2002
[19], when he pointed out that if the beam is compressed
(either longitudinally or transversely) the change of the
energy of its Coulomb field alters the kinetic energy of the
beam particles. A force that is responsible for this change
can be called the compression force. Note that this force is
different from the radiation reaction force because the
compression is a reversible process—this force changes
sign when the beam is being decompressed. It cannot be
associated with what is conventionally called the space
charge force because the latter typically scales as γ−2 with γ
the Lorentz factor. The compression-decompression effect
occurs even in the limit γ → ∞ (hence, v ¼ c), when the
conventional space charge force vanishes.
The 3D approach to the calculation of the CSR wake

in free space is often based on the Liénard-Wiechert
expressions for the electromagnetic field of a point charge
[20–22]. One of the difficulties of this approach is that even
at finite distance from the radiating particle there are spatial
regions where its field varies on extremely small scale
∝ γ−3. In the ultrarelativistic limit, γ → ∞, the field has a
singularity line [20] which requires a special treatment.
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Currently the model developed in Refs. [21,22] is still
limited to a steady state wake of a bunch moving on a
circular orbit. This difficulty is overcome in the 3D option of
the computer program CSRTRACK [23] through the intro-
duction of a pseudo-Green function of a spherically sym-
metric macroparticles in the beam. Unfortunately, CSRTRACK
requires a large number of macro particles and long run time
to calculate the wake for practical beam lines.
In this paper we propose a different approach to the

calculation of the 3D CSR wake when the beam propagates
in free space (that is neglecting the effects of metal
boundaries). In our approach, the beam is represented by
its charge density ρðr; tÞ that depends on time t and
coordinate vector r, and its velocity vðr; tÞ, with the beam
current density j given by the product j ¼ ρv. For given
functions ρðr; tÞ and jðr; tÞ we then derive an equation for
the electric field in the beam, Eðr; tÞ, and calculate the
instantaneous energy change per unit time and per unit
charge,

Wðr; tÞ ¼ vðr; tÞ · Eðr; tÞ: ð1Þ

The result is expressed as an integral over the volume
around the beam trajectory at preceding times, tret < t.
We will loosely call W the longitudinal wake, even though
the classical wakefields are typically associated with the
energy loss integrated over the transverse cross section of
the beam.
A similar approach to the calculation of electromagnetic

fields was advocated in Refs. [17,18], although the
emphasis in those papers was on the proper account of
the metal boundaries and the effects of the wake on particle
motion. While the method developed in those papers is
adequate for studies of such problems as microbunching
instability, where the self-consistent nature of the particle-
field interaction is crucial, here we aim at the applications
of the CSR wake in situations when it is relatively small
and can be treated as a perturbation. These situations appear
in the design of bunch compressors with a high peak
current where even a relatively small CSR wake can lead to
a large transverse emittance growth of the beam.
An initial part of this work has been started by one of

the authors (GS) in collaboration with D. Ratner and is
documented in D. Ratner’s thesis [24]. Preliminary results
of our study have been reported in Refs. [25–27]—for
completeness we included some of them in this paper.
This paper is organized as follows. In Sec. II we derive

equations for the wakefield W in terms of a three-
dimensional integral along the beam orbit. In Sec. III we
specialize these equations for the case of a 2D Gaussian
bunch assuming that its trajectory can be described by
linear optics. In Sec. IV, the geometrical aspect of the
integration in the curvilinear coordinate system associated
with the reference orbit of the beam is worked out. In
Sec. V a numerical example is presented of the CSR

wakefield of a beam that is being longitudinally com-
pressed inside a bending magnet, and the wakefield is
compared with the result of 1D wake and CSRTRACK. In
Sec. VI we apply the technique developed in this paper to a
bunch compressor and compare the emittance growth in
our model with the one calculated for 1D CSR wake. We
conclude the paper with Sec. VII by summarizing our
results.
We use the CGS system of units throughout this paper.

II. ELECTROMAGNETIC FIELD OF THE BEAM

We start from the so called retarded potentials [28]—the
expressions for the scalar potential ϕ and the vector
potential A generated by a beam with the charge density
ρ and current density j ¼ ρv,

ϕðr; tÞ ¼
Z

d3r0
ρðr0; tretÞ
jr0 − rj ;

Aðr; tÞ; ¼ 1

c

Z
d3r0

vðr0; tretÞρðr0; tretÞ
jr0 − rj ; ð2Þ

where the retarded time is tretðr; r0; tÞ ¼ t − jr0 − rj=c and
the integration goes over the whole space. The electric field
is given by

Eðr; tÞ ¼ −∇rϕðr; tÞ −
1

c
∂Aðr; tÞ

∂t : ð3Þ

To find the contribution to E from the scalar potential,
we evaluate

∇rϕ ¼
Z

d3r0
�∇rρðr0; tretÞ

jr0 − rj þ ρðr0; tretÞ∇r
1

jr0 − rj
�

¼
Z

d3r0
�∇rρðr0; tretÞ

jr0 − rj − ρðr0; tretÞ∇r0
1

jr0 − rj
�
; ð4Þ

where we have replaced the gradient ∇r acting on the
variable r by the gradient −∇r0 acting on r0 when applied
to the combination jr0 − rj−1. Integrating this expression by
parts and using the fact that the charge density vanishes at
infinity gives

∇rϕ ¼
Z

d3r0

jr0 − rj ½∇rρðr0; tretÞ þ∇r0ρðr0; tretÞ�

¼
Z

d3r0

jr0 − rj
�∂ρðr0; tretÞ

∂tret ∇rtret þ ∂r0ρðr0; tretÞ

þ ∂ρðr0; tretÞ
∂tret ∇r0 tret

�
; ð5Þ

where here (and below) we use the notation ∂r0ρðr0; tretÞ to
indicate differentiation with respect to the space coordi-
nates in function ρðr0; tretÞ keeping tret fixed (in other words,
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in contrast to ∇r0 , the operator ∂r0 ignores the fact that tret
also depends on r0). Noting that∇rtret ¼ −∇r0 tret, we obtain

∇rϕ ¼
Z

d3r0

jr0 − rj ∂r0ρðr0; tretÞ: ð6Þ

For the contribution to E from the vector potential we
need to calculate the time derivative of A,

∂A
∂t ¼ 1

c

Z
d3r0

jr0 − rj ½vðr
0; tretÞ∂tretρðr0; tretÞ

þ ρðr0; tretÞ∂tretvðr0; tretÞ�; ð7Þ

where we have used the fact that ∂t ¼ ∂tret . We now use the
continuity equation ∂tρþ∇ · ðρvÞ ¼ 0 to find ∂tretρ,

∂tretρðr0; tretÞ ¼ −∂r0 · ½vðr0; tretÞρðr0; tretÞ�
¼ −vðr0; tretÞ · ∂r0ρðr0; tretÞ
− ρðr0; tretÞ∂r0 · vðr0; tretÞ: ð8Þ

Putting this expression into Eq. (7) gives

∂A
∂t ¼ −

1

c

Z
d3r0

jr0 − rj vðr
0; tretÞ½vðr0; tretÞ · ∂r0ρðr0; tretÞ

þ ρðr0; tretÞ∂r0 · vðr0; tretÞ�

þ 1

c

Z
d3r0

jr0 − rj ρðr
0; tretÞ∂tretvðr0; tretÞ: ð9Þ

Finally, combining Eqs. (6) and (9) we obtain the following
expression for Wðr; tÞ ¼ vðr; tÞ · Eðr; tÞ,

W ¼ W1 þW2 þW3; ð10Þ

where

W1ðr; tÞ ¼ −c
Z

d3r0

jr0 − rj ½βðr; tÞ − ðβðr; tÞ · βðr0; tretÞÞ

× βðr0; tretÞ� · ∂r0ρðr0; tretÞ; ð11aÞ

W2ðr; tÞ ¼ c
Z

d3r0

jr0 − rj ðβðr; tÞ · βðr
0; tretÞÞρðr0; tretÞ

× ∂r0 · βðr0; tretÞ; ð11bÞ

W3ðr; tÞ ¼ −
Z

d3r0

jr0 − rj ρðr
0; tretÞβðr; tÞ · ∂tretβðr0; tretÞ;

ð11cÞ

with β ¼ v=c. Note that due to the factor jr0 − rj−1 the
integrands have a singularity at r0 → r which, however, is
integrable in three dimensions.

Our result Eqs. (11) to some degree is similar to
Jefimenko’s expression for the electric field of arbitrary
charge distribution varying with time [29]. In contrast to
Jefimenko’s formula, however, we expressed the current
density as a product of the charge density and the local
velocity in the beam, and eliminated the time derivative of
the charge using the continuity equation.
At a first glance, it might seem that W2 and W3 in

Eqs. (11) are much smaller than W1. Indeed, W1 involves
the spatial derivative of ρ that can be estimated as
j∂r0ρj ∼ ρ=σ, where σ is the characteristic size of the beam.
In the last two integrals, we have the spatial and time
derivatives of the velocity field in the beam that are
estimated as j∂r0 · βj ∼ 1=L and j∂tretβj ∼ c=L, respectively,
with L the external scale of the problem determined by the
magnetic lattice (L can, for example, be associated with the
radius of curvature of the beam orbit). If we assume that
the size of the beam is much smaller than L, σ ≪ L, it
seems that the last two integrals in Eq. (11) would be much
smaller than the first one. This conclusion however is not
generally true even in the limit σ ≪ L because the spatial
derivative of the distribution, ∂r0ρ, changes sign when
integrated over the space, and the contributions from
various parts of this derivative partially cancel each other,
while the integrands inW2 andW3 involve ρ that is always
positive.
The integrals (11) can also be computed in two

dimensions with the three dimensional integrationR
d3r0 replaced by a 2D one,

R
d2r0. This corresponds

to the model of a ribbon beam where ρ has a meaning of
the charge per unit area. Note that the singularity jr0 − rj−1
is still integrable in 2D (however it is not integrable in one
dimension of a line charge model). The 2D model of the
beam makes sense in bunch compressors where the beam
is mostly spread out in the horizontal plane due to the
combination of a large dispersion and an energy chirp in
the beam. In the rest of this paper we will adopt a 2D
version of Eq. (11) which simplifies numerical calcula-
tion of the integrals.
We will also make one more approximation assuming a

relativistic beam with β ¼ 1. This assumption eliminates
the conventional space charge forces that scale as γ−2. Note
that in this limit the singularity jr0 − rj−1 in the integrand of
Eq. (11a) disappears because the expression in the square
brackets tends to zero when r0 → r.
Finally, we note that in principle Eqs. (11) can be

generalized to include the shielding effect of metal parallel
plates using image charges, as it has been done in
Refs. [6,16].

III. GAUSSIAN BEAMS AND BEAM OPTICS

The CSR wake alters particles’ energy, modifies their
trajectories and changes the distribution function of the beam
as it travels through the beam line. In general, this means that
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the wake calculation should be done self-consistently with
account of the variation of ρ and β functions caused by
the wake itself. However, in many cases the effect of the
beam self-field is relatively small and can be taken into
account as a perturbation: the particle trajectories and
the beam charge and current densities are first calculated
without the account of the beam fields and used for
calculation of W. After W is computed, one can find
corrections to the original trajectories and the modifi-
cation of the beam distribution function caused by the
wake. As a first step in this approach, in this section, we
will show how to calculate the functions ρðr; tÞ and
vðr; tÞ in a beam line with a linear lattice assuming a
given Gaussian distribution function of the beam at the
beginning of the line. We will use the technique
developed in Ref. [30] and, as already was mentioned,
limit our analysis to two dimensions—the horizontal and
longitudinal ones.
We use the following notations: x for the horizontal

particle offset relative to the nominal orbit, θ ¼ dx=ds for
the angular slope of the orbit, η ¼ ΔE=E for the relative
energy deviation of the particle, z for the longitudinal
coordinate of the particle in the bunch relative to the
reference particle, and s for the path length along the
nominal orbit. The beam distribution function Fðx; θ; z;
η; sÞ is a function of integrals of motion (see, e.g., [31]); it is
normalized by

R
F dx dθ dz dη ¼ Nb where Nb is the

number of particles in the bunch. We will assume that F
depends on the following three integrals of motions. The
first one is the action variable for the betatron oscillations in
the horizontal plane,

J ¼ 1

2

α2 þ 1

βf
ðx −DηÞ2 þ 1

2
βfðθ −D0ηÞ2

þ αðx −DηÞðθ −D0ηÞ; ð12Þ

where βfðsÞ is the beta function (not to confuse with the
vector β ¼ v=c and its components βx and βs below),
αðsÞ ¼ − 1

2
dβf=ds, DðsÞ is the horizontal dispersion and

D0ðsÞ ¼ dD=ds. The second integral of motion is the
energy deviation η, which remains constant because we
assume that the beam is not accelerated in the beam line
and ignore the change of η caused by the CSR wake.
Finally, the third integral is obtained if one expresses the
initial value of the coordinate z at the beginning of the
beam line (at s ¼ 0) though the values of z, η, x and θ on
the orbit using the transport matrix RðsÞ [30,32]. Since
this initial value is a constant, the resulting expression,
which we denote by Z, is an integral of motion. Using the
symplecticity of the matrix R, Z can be written as (see the
derivation in Appendix A)

Z ¼ z − R56ðsÞηþ xR26ðsÞ − θR16ðsÞ: ð13Þ

By construction, RijðsÞ with i ≠ j are equal to zero at
s ¼ 0, where the coordinate Z is equal to the longitudinal
coordinate z in the beam.
We assume a Gaussian distribution function F,

F ¼ Nb

2πϵ

1

2πσησz0
exp

�
−
J
ϵ
−
ðη − hZÞ2

2σ2η
−

Z2

2σ2z0

�
; ð14Þ

where ϵ is the horizontal emittance, σz0 is the rms bunch
length of the beam at s ¼ 0 and ση is the uncorrelated
energy spread of the beam. The chirp parameter h in this
equation accounts for a possible correlation between the
position of the particle in the bunch and its energy. This
energy chirp in combination with the R56 element of the
transport matrix is responsible for the longitudinal com-
pression of the bunch as it travels through the beam line.
By integrating F over θ and η we can find the two-

dimensional charge density of the beam along the reference
orbit,

ρðx; z; sÞ ¼ e
Z

F dθ dη; ð15Þ

and its transverse velocity

βxðx; z; sÞ ¼
e

ρðx; z; sÞ
Z

F θdθ dη; ð16Þ

where for a relativistic beam we used the approximation
vx ≈ cθ for the horizontal component of the velocity.
Substituting Eqs. (12) and (13) into Eq. (14) one can carry
out the integrations in Eqs. (15) and (16) analytically. The
result of the integration obtained with the symbolic integra-
tor inMathematica [33] is given by the following equations:

ρðx; z; sÞ ¼ eNb

2πΣ
exp

�
−
Ax2 þ Bxzþ Cz2

2βfΣ2

�
;

βxðx; z; sÞ ¼
Exþ Fz
βfΣ2

; ð17Þ

where the functions AðsÞ, BðsÞ, CðsÞ, EðsÞ, FðsÞ, and ΣðsÞ
are,1

1The expressions for these functions given in [26] are
incomplete.
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A ¼ ðα2 þ 1ÞD2ϵþ 2αβfDD0ϵþ βf ½βfD02ϵþ σ2z0ðhR56 þ 1Þ2 þ R2
56σ

2
η�;

B ¼ −2βffD½−αϵþ hσ2z0ðhR56 þ 1Þ þ R56σ
2
η� − βfD0ϵg;

C ¼ βf ½βfϵþD2ðh2σ2z0 þ σ2ηÞ�;
E ¼ ðα2 þ 1ÞD3D0ϵðh2σ2z0 þ σ2ηÞ −D2ϵfhσ2z0½ðα2 þ 1ÞðhR56 þ 1Þ − 2αβfD02h� þ σ2ηð−2αβfD02 þ α2R56 þ R56Þg

þ βfDD0½βfD02ϵðh2σ2z0 þ σ2ηÞ þ σ2ησ
2
z0 þ ϵ2� þ βfϵ½R56σ

2
ηðβfD02 − αR56Þ − σ2z0ðhR56 þ 1Þðα − βfD02hþ αhR56Þ�;

F ¼ σ2ηϵ½ðα2 þ 1ÞD3 þ αβfDð2DD0 þ R56Þ þ β2fD
0ðDD0 þ R56Þ� þ βfϵðhR56 þ 1Þðhσ2z0ðαDþ βfD0Þ þDϵÞ; ð18Þ

and

βfΣ2 ¼ βfD2ðϵ2 þ σ2ησ
2
z0Þ þ ϵσ2z0½ðα2 þ 1ÞD4h2 þ 2αβfD2hðDD0hþ hR56 þ 1Þ þ β2f ðDD0hþ hR56 þ 1Þ2�

þ σ2ηϵððα2 þ 1ÞD4 þ 2αβfD2ðDD0 þ R56Þ þ β2f ðDD0 þ R56Þ2Þ: ð19Þ

In these calculations we assumed zero dispersion and its
derivative at the starting point, Dð0Þ ¼ D0ð0Þ ¼ 0. In
Eqs. (17) we need to substitute z ¼ s − ct; this makes ρ
and βx functions of x, s and time t and they can be used for
calculations of the integrals in Eqs. (11). For the ease of
notation, in what follows we will rewrite Eqs. (17) as

ρðx; s; tÞ ¼ nðsÞe−aðsÞx2−bðsÞxðs−ctÞ−dðsÞðs−ctÞ2 ; ð20aÞ

βxðx; s; tÞ ¼ eðsÞxþ fðsÞðs − ctÞ; ð20bÞ

where a ¼ A=2βfΣ2, b ¼ B=2βfΣ2, d ¼ C=2βfΣ2, n ¼
qNb=2πΣ, e ¼ E=βfΣ2 and f ¼ F=βfΣ2. Here q denotes
the particles charge.
In application of these formulas, we found a useful

consistency test which helps to verify the correctness of
numerical calculations. In this test, Eqs. (20) are substituted
into the continuity equation ∂tρþ∇ · ðρvÞ ¼ 0 and the
coefficients in front of x2, xz, z2 and the term that does not
contain these variables are equated to zero. It is derived in
Appendix B and consists of four equations (B8) to which
the functions a, b, d, n, e, and f should satisfy.

IV. CALCULATION OF 2D INTEGRALS

In this section, we will show how to carry out the
integration in Eqs. (11) in 2D in curvilinear coordinate
system x, s associated with a plane reference orbit of the
beam. This is a standard accelerator coordinate system
defined by the equation

rðsÞ ¼ r0ðsÞ þ nðsÞx; ð21Þ

where r0ðsÞ is the reference orbit, nðsÞ is the normal vector
and s is the arc length. The unit vector nðsÞ in combination
with the tangent vector τðsÞ ¼ dr0ðsÞ=ds provide the basis
vectors for the local coordinate system; they are continuous
functions of s. They satisfy the Frenet-Serret equations,

dτ
ds

¼ n
R
;

dn
ds

¼ −
τ
R
; ð22Þ

where RðsÞ is the radius of curvature (defined by
R−1 ¼ n · dτ=ds). In this coordinate system, for the differ-
ence jr0 − rj we have

jr0 − rj ¼ jr0ðs0Þ þ nðs0Þx0 − r0ðsÞ − nðsÞxj: ð23Þ

The 2D integration is carried out using the rule

Z
d2r0 →

Z
dx0ds0

�
1 −

x0

Rðs0Þ
�
; ð24Þ

where the factor 1 − x0=R is the Lamé coefficient that takes
into account the curvilinear nature of the coordinate system
(the minus sign in this coefficient corresponds to a specific
choice of the direction of vector n—flipping the direction
of n changes this sign from minus to plus).
We will use an approximation in which the transverse

component βx is assumed small, of the first order.
Neglecting terms of the second order and higher, for the
tangential component of the normalized velocity we have
βs ≈ 1, and the velocity vector β,

βðx; s; tÞ ¼ τðsÞ þ nðsÞβxðx; s; tÞ: ð25Þ
Using abbreviated notations: βðr0; tretÞ ¼ β0, τðs0Þ ¼ τ0,
nðs0Þ ¼ n0, βxðx; s; tÞ ¼ βx, and βxðx0; s0; tretÞ ¼ β0x, we
write the expression in the square brackets of Eq. (11a) as

β−ðβ ·β0Þβ0
¼ ðτþnβxÞ− ½ðτþnβxÞ ·ðτ0 þn0β0xÞ�ðτ0 þn0β0xÞ
¼ τ−ðτ ·τ0Þτ0 þnβx−βxðn ·τ0Þτ0−β0xðτ ·n0Þτ0−β0xðτ ·τ0Þn0;

ð26Þ

where we have neglected terms of the order of ∼β2x
and higher. Using the relations τ − ðτ · τ0Þτ0 ¼ ðn0 · τÞn0
and n − ðn · τ0Þ ¼ ðn · n0Þn0 ¼ ðτ · τ0Þn0, we obtain
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β− ðβ · β0Þβ0 ¼ ðn0 · τÞn0 þ ðβx − β0xÞðτ · τ0Þn0 − β0xðτ · n0Þτ0:
ð27Þ

When we multiply this expression by ∂r0ρðr0; tretÞ in
Eq. (11a) the product contains two partial derivatives of ρ,

τ0 · ∂r0ρðr0; tretÞ ¼
1

1 − x0=Rðs0Þ ∂s0ρðr0; tretÞ;

n0 · ∂r0ρðr0; tretÞ ¼ ∂x0ρðr0; tretÞ; ð28Þ

where the factor ½1 − x0=Rðs0Þ�−1 in the first equation is due
to the curvilinear coordinate system x, s. As a result, the
integral (11a) becomes

W1ðr; tÞ ¼ −c
Z

dx0ds0½1 − x0=Rðs0Þ�
jr0 − rj

×
�
½n0 · τ þ ðβx − β0xÞðτ · τ0Þ�∂x0ρðr0; tretÞ

−
β0xðτ · n0Þ

1 − x0=Rðs0Þ ∂s0ρðr0; tretÞ
�
: ð29Þ

This integral does not have a singularity at r0 → r. The two
partial derivatives in Eq. (29) are found from Eq. (20a):

∂x0ρðx0; s0; tretÞ ¼ ½−2aðs0Þx0 − bðs0Þðs0 − ctretÞ�ρðx0; s0; tretÞ;
ð30Þ

and

∂s0ρðx0; s0; tretÞ ¼ ½−bðs0Þx0 − 2cðs0Þðs0− ctretÞ�ρðx0; s0; tretÞ

þ
�

1

nðs0Þ
dnðs0Þ
ds0

−
daðs0Þ
ds0

x02

−
dbðs0Þ
ds0

x0ðs0− ctretÞ−
dcðs0Þ
ds0

ðs0− ctretÞ2
�

× ρðx0; s0; tretÞ: ð31Þ

For the second term, W2 in Eq. (11b), we need the
divergence of β, which is computed with the help of
Eq. (25),

∂r0 · βðr0; tretÞ ¼
1

1 − x0=Rðs0Þ
∂
∂x0 ½1 − x0=Rðs0Þ�β0x

≈
eðs0Þ

1 − x0=Rðs0Þ ; ð32Þ

and

βðr; tÞ · βðr0; tretÞ ¼ β · β0 ¼ τ · τ0 þ βxðn · τ0Þ þ β0xðτ · n0Þ
¼ τ · τ0 þ ðβx − β0xÞðn · τ0Þ; ð33Þ

where we have used n · τ0 ¼ −τ · n0. With these formulas,
we obtain the following expression for W2

W2ðr; tÞ ¼ c
Z

ds0dx0eðs0Þ
jr0 − rj τ · τ0ρðx0; s0; tretÞ; ð34Þ

where we have neglected higher order terms ∼β2x. Note that
the integrand has an integrable singularity when r → r0.
Finally, to calculate W3, we need

∂tretβðr0; tretÞ ¼ −cfðs0Þn0: ð35Þ

This gives the following expression,

W3ðr; tÞ ¼ c
Z

ds0dx0ð1− x0=Rðs0ÞÞfðs0Þ
jr0 − rj τ · n0ρðx0; s0; tretÞ;

ð36Þ

where we again neglected terms ∼β2x. This integral does not
have a singularity at r → r0.

V. NUMERICAL EXAMPLE

Here we will illustrate the technique developed in the
previous sections by calculating the CSR wake for a
beam with an energy chirp passing through a bending
magnet. Previously [26,27] we have shown that our method
reproduces the transient wake in a bend of finite length in
excellent agreement with 1D model [4,5] when the energy
chirp in the beam is neglected. The energy chirp introduces
two additional elements to the problem. First, due to the
horizontal dispersion in the bend the beam spreads out in
the transverse direction eventually deviating from the
approximation of the 1D model. Second, the bunch length
varies along the beam path—the effect that is not accurately
treated in 1D.2 To focus on only these two effects we
calculate the wake far enough from the entrance to the
bend, so that the effects associated with the entrance are
ignored.
The parameters of the calculations are the following:

at s ¼ 0 the beam enters into uniform magnetic field
and travels on a circular orbit with the bending radius
R ¼ 1 m. The initial beta function in the horizontal plane,
βfð0Þ ¼ 8 m and has zero derivative, αð0Þ ¼ 0. The beam
has the following parameters: the horizontal emittance
ϵ ¼ 5 nm, the rms relative energy spread ση ¼ 10−4, the
initial rms bunch length σz;0 ¼ 1 mm, the energy chirp
h ¼ 0.01 mm−1. These parameters correspond to the initial
rms transverse size σx;0 ¼ 0.2 mm. The plot of functions

2Strictly speaking, in the derivation of the 1D CSR wake [4,5],
the bunch length is assumed constant. In practical applications,
this requirement is usually ignored when one uses the local bunch
length on the orbit.

GENNADY STUPAKOV and JINGYI TANG PHYS. REV. ACCEL. BEAMS 24, 020701 (2021)

020701-6



aðsÞ, bðsÞ, dðsÞ, eðsÞ and fðsÞ defined in Eqs. (20) for this
case is shown in Fig. 1.
As the beam travels on a circular orbit its rms dimensions

change. The plots of σzðsÞ and σxðsÞ are shown in Fig. 2.
The length σz reaches the minimum value of 0.01 mm at
s ¼ s� ¼ 0.85 m and starts to increase at s > s� where the
beam enters into an “overcompression” mode, with the
particles that were initially at the head of the bunch shifted
toward the tail.
As is well known, the distribution function (20a) has

elliptic isolines in the plane x − z. The major axis of such an
ellipse is initially directed along the z-axis. Inside the
magnet, due to the combination of the energy chirp and
dispersion, the tilt angle ξ of this ellipse (this angle is initially
equal to zero) rotates in the x–z plane. As a function of s this
angle is defined by the following equation,

tan ξ ¼ a − d −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − dÞ2 þ b2

p
b

: ð37Þ

The angle ξ reaches the value π=2 at the point of the
minimum bunch length, s ¼ s�, where tan ξ ¼ ∞. In our

calculations we compute the wake on the major axis of the
beam, that is along the line x ¼ z tan ξ (we remind the reader
that the positive values of z correspond to the head of
the bunch).
Using equations derived in Sec. IV we calculated the

CSR wake at three different locations in the magnet,
s ¼ 0.6, 0.8 and 0.99 m. Note that the last value of s
corresponds to the over-compressed bunch. The plots of the
wakefields are shown in Fig. 3 together with the steady-
state 1D wake that uses the local value of σz. We also
calculated the wake with the computer code CSRTRACK

using 50 thousand macroparticles—they are shown in
Fig. 3 by green dots.3 One can see that our 2D results
agree reasonably well with the 3D option of the CSRTRACK,
even though the latter shows much noise due to the
discreteness of macroparticles. At the same time, the 1D
model strongly deviates from both the 2D and 3D wakes,
which is not surprising because the beam at these locations
has a relatively large tilt and a rapidly varying bunch
length—the features that are not properly treated in 1D.
To illustrate the contribution of the three different parts

of the wake W, in Fig. 4 we plot the functions W1ðzÞ,
W2ðzÞ and W3ðzÞ defined by Eqs. (29), (34), and (36),
respectively, for s ¼ 0.99 m. One can see from this plot that
while the last term,W3ðzÞ, is relatively small, the other two
are comparable to each other. From Eq. (11) it follows that
W2ðzÞ is defined by the divergence of the velocity
distribution inside the bunch that is responsible for com-
pression (or decompression) of the bunch charge distribu-
tion. At the other two locations shown in Fig. 3, s ¼ 0.6 m
and (c) s ¼ 0.8 m, the relative magnitude ofW1ðzÞ,W2ðzÞ
andW3ðzÞ is qualitatively the same:W3ðzÞ is much smaller
than W1ðzÞ, W2ðzÞ, which are about of the same magni-
tude and of opposite sign.

FIG. 1. Plot of the functions aðsÞ, bðsÞ, dðsÞ (left panel) and eðsÞ, fðsÞ (right panel). Note that the first three functions have dimension
of the inverse length squared and are measured in mm−2, while the last two have the dimension of the inverse length and are measured in
m−1. The arc length s is measured from the entrance to the magnet.

FIG. 2. Plot of the rms longitudinal (red) and horizontal (blue)
bunch lengths as functions of arc length s.

3
CSRTRACK uses an adaptive time step which does not allow to

output the wake at arbitrary values of s. In Fig. 2 we show the
CSRTRACK wakes at positions nearest to the values indicated in
the plots.
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To conclude this section, we note that calculations of the
CSR wake with our method turned out to be from 6 to
30 times faster than with CSRTRACK. Our algorithm was
implemented as a MATLAB script, and we expect that its

speed can be further improved when it is implemented as a
stand-alone code in one of modern computer languages.

VI. BERLIN BENCHMARK CHICANE

To illustrate how our model can be used on general
linear lattice, we calculated the CSR wake in a four-dipole
chicane compressor studied at the CSR workshop at DESY-
Zeuthen in 2002 [34]. The four magnets have the length
L ¼ 0.5 m with the bending radius R ¼ 10.35 m resulting
in the momentum compaction factor R56 ¼ 2.5 cm. We
chose a similar set of beam parameters: 5.0 GeV nominal
energy, 1 nC charge, 10−4 initial slice energy spread and
200 μm initial rms length. The energy chirp of the beam is
tuned from 36 m−1 to 40 m−1 to achieve the final bunch
length ranging from 20 μm to 2 μm, corresponding to final
peak current ranging from 6 kA to 36 kA.
The CSR wake calculated by 1D and 2D models inside

different magnets of the chicane is shown in Fig. 5. The 2D
wakes plotted are actually calculated along the axis of the
tilted beam. In all three cases, our method shows good
agreement with CSRTRACK. In the second and third magnet

FIG. 4. Plot the functions W1ðzÞ, W2ðzÞ, and W3ðzÞ for
s ¼ 0.99 m. The sum of these functions gives the solid line in
Fig. 3(c).

(a) (b) (c)

FIG. 5. Wakes calculated in 1D model are shown by blue lines and ones calculated in our 2D model and CSRTRACK are shown by
circles and yellow lines respectively: (a) in the middle of the second magnet, (b) in the middle of the third magnet, and (c) in the middle
of the fourth magnet. The coordinate z is normalized by the rms bunch length, σzðsÞ, at the location of the bunch.

(a) (b) (c)

FIG. 3. Plots of the CSR wake along the semi major-axis of the beam, x ¼ z tan ξ, at three locations, (a) s ¼ 0.6 m, (b) s ¼ 0.8 m and
(c) s ¼ 0.99 m, shown by solid lines; for comparison also shown by dashed lines is the CSR wake calculated using the 1D CSR model
with a local value of σz. The green dots show the CSR wakefield calculated with CSRTRACK. In each case the longitudinal coordinate z is
normalized to the local value of σz.
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[Fig. 5(a) and (b)], 2D models show large deviation from
1D model due the beam tilt in x–z plane and therefore the
transverse size of the bunch becomes much larger than
the longitudinal one. As a comparison, in the last magnet
the results from 1D and 2D methods converge as the tilt
vanishes.
The emittance growth and other statistical properties of

the beam can be simulated in our approach in a perturbative
way. In the first step we divide the whole chicane into
multiple slices, with more slicing in the magnets and less
slicing in the drifts. At each slice we calculate the CSR
induced energy loss rate in x–z plane, for which the 2D
mesh is defined to cover the tilted beam. In the second step
we launch macroparticles with Gaussian distribution and
the same initial beam parameters, propagating it along the
chicane by its transfer matrix. At each slice, we modify
the energy of each macroparticle by 2D interpolation of the
energy loss in x–z plane calculated in the first step. The
emittance is then obtained from the particles at the end of
the chicane.
The comparison between the emittance from 1D and 2D

model is shown in Fig. 6. As we can see in Fig. 6(b), at
relatively low peak current, 1D and 2D models show
consistent final emittance, since most part of the energy
loss happens in the last magnets where differences between
1D and 2D models are not significant. However, for beam
with final peak current over 20 kA, emittance calculated by
2D model is more than 20% larger than the results in 1D.

VII. CONCLUSIONS

In this paper, we derived equations for the longitudinal
CSR wakefield in free space that reduce the calculation
to 3D (or 2D) integration along the orbit of the beam.
This wake includes the effects of the beam radiation, as
well as the energy change caused by the transverse and
longitudinal compression of the beam. We obtained

analytical expressions for the integrands for a 2D
Gaussian bunch with an energy chirp propagating through
an arbitrary general linear lattice. Our numerical examples of
a bunch with an energy chirp moving inside a bending
magnet showed a good agreement with CSRTRACK in a
situation where the 1D model fails to accurately predict the
wakefield. Our method can be used for quick evaluation of
the CSR wakefields in bunch compressors, wigglers, and
other magnetic systems if the bunch is short enough that one
can neglect the shielding effects of the metal boundaries.
Our analysis in this paper was limited by the assumption

of a Gaussian distribution function (14) of the beam, which
allowed us to carry out some of the integrations analyti-
cally. It can be straightforwardly extended to more general
distribution functions by representing them as a super-
position of Gaussian ones. Another option is, of cause, to
compute the charge and the transverse velocity of the beam,
Eqs. (15) and (16), by a direct numerical integration of the
distribution function F.
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APPENDIX A: DERIVATION OF EQ. (13)

We need to define a four-dimensional transport matrix
RðsÞ, given by

RðsÞ ¼

0
BBB@

R11 R12 0 R16

R21 R22 0 R26

R51 R52 1 R56

0 0 0 1

1
CCCA: ðA1Þ

(a) (b)

FIG. 6. Comparison of emittance growth calculated by 1D and 2D models. (a) Normalized emittance growth inside the chicane as a
function of longitudinal coordinates s, with energy chirp h ¼ 36 m−1. Dispersion is subtracted with second order polynomial fitting.
(b) Final emittance at the end of the chicane as a function of final peak current.
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This matrix acts on the coordinate vector ðX;Θ; Z; ηÞT,
where the capital letters denote the values of the corre-
sponding variables x, θ and z at the entrance, and
propagates it from the beginning of the beam line to
position s. We emphasize that RðsÞ is a symplectic matrix,
i.e. it satisfies the equality RTJR ¼ J, with

J ¼

0
BBB@

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA: ðA2Þ

Using Eq. (A1), we can find that the change in the
longitudinal position of a particle from the entrance to
position s is given by

z ¼ Z þ R51X þ R52Θþ R56η: ðA3Þ

The backward transformation from position s to the
entrance is given by the inverse matrix R−1. From the
symplectic character of R, we can show that R−1 ¼ −JRTJ.
Calculating R−1 and then multiplying this matrix by
ðx; θ; z; ηÞT , one finds that

Z ¼ zþ R26x − R16θ − R56η; ðA4Þ

which is Eq. (13).

APPENDIX B: CONTINUITY EQUATION AND
CONSISTENCY TEST

The continuity equation for the beam charge density and
velocity can be also written as

d ln ρ

dt
þ div v ¼ 0; ðB1Þ

For the charge density from Eq. (20a) we have

ln ρ ¼ ln nðsÞ − aðsÞx2 − bðsÞxðs − ctÞ − dðsÞðs − ctÞ2:
ðB2Þ

For the velocity, we use the expression v ≈ cτ þ cβxn with
βx ≪ 1, and neglect higher-order terms in βx. Using
Eq. (20b) for βx, in the lowest approximation, we find,

div v ≈ c
∂βx
∂x ¼ ceðsÞ; ðB3Þ

and

d ln ρ

dt
¼ ∂ ln ρ

∂t þ v ·∇ ln ρ

≈
∂ ln ρ

∂t þ c
1

1 − x=R
∂ ln ρ

∂s þ vx
∂ ln ρ

∂x : ðB4Þ

Note that calculating∇ρwe took into account the curvature
of the trajectory through the factor ð1 − x=RÞ−1 ≈ 1þ x=R.
We assume that x ≪ R and will use this correction only
with the largest term below. Using Eq. (B2), for the partial
time derivative we obtain

∂ ln ρ

∂t ¼ cðbxþ 2dzÞ; ðB5Þ

with z ¼ s − ct (in this equation and in what follows we
drop the argument s in all functions). For the second term
on the right of Eq. (B4) we obtain

�
1þ x

R

� ∂ ln ρ
∂s ≈

n0

n
− a0x2 − b0xz − d0z2

−
�
1þ x

R

�
bx − 2

�
1þ x

R

�
dz; ðB6Þ

where the prime denotes the derivative with respect to s.
The last two terms in this expression are the biggest ones,
so we keep the small factor x=R in front of them; for
the other terms we neglected x=R. Finally, for the last term
in (B4), we have

vx
∂ ln ρ
∂x ¼ −cðexþ fzÞð2axþ bzÞ: ðB7Þ

Combining everything and requiring that the resulting
expression be identically equal to zero for arbitrary x
and z we arrive at the following four relations:

n0

n
¼ −e;

2eaþ e
R
¼ −a0;

fb ¼ −d0;

2faþ ebþ 2d
R

¼ −b0: ðB8Þ

Given the complexity of the expressions for a, b, d, e, f, n,
these relations provide a useful check of numerical calcu-
lations of these functions for a given beam line.

[1] J. B. Murphy, S. Krinsky, and R. L. Gluckstern, Longi-
tudinal wakefield for synchrotron radiation, in Proc. IEEE
Particle Accelerator Conference and International
Conference on High-Energy Accelerators, Dallas, 1995

GENNADY STUPAKOV and JINGYI TANG PHYS. REV. ACCEL. BEAMS 24, 020701 (2021)

020701-10



(IEEE, Piscataway, NJ, 1996), pp. 2980–2982, (IEEE
Conference Record 95CH35843).

[2] J. B. Murphy, S. Krinsky, and R. L. Gluckstern, Longi-
tudinal wakefield for an electron moving on a circular
orbit, Part. Accel. 57, 9 (1997).

[3] Y. S. Derbenev, J. Rossbach, E. L. Saldin, and V. D.
Shiltsev, Microbunch Radiative Tail-Head Interaction,
DESY FEL Report TESLA-FEL 95-05 (Deutsches
Elektronen-Synchrotron, Hamburg, Germany, 1995).

[4] E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, On the
coherent radiation of an electron bunch moving in an arc of
a circle, Nucl. Instrum. Methods Phys. Res., Sect. A 398,
373 (1997).

[5] G. Stupakov and P. Emma, CSR wake for a short magnet in
ultrarelativistic limit, in Proceedings of the 8th European
Particle Accelerator Conference, Paris, 2002 (EPS-IGA
and CERN, Geneva, 2002), p. 1479.

[6] C. Mayes and G. Hoffstaetter, Exact 1D model for co-
herent synchrotron radiation with shielding and bunch
compression, Phys. Rev. Accel. Beams 12, 024401
(2009).

[7] D. Sagan, G. Hoffstaetter, C. Mayes, and U. Sae-Ueng,
Extended one-dimensional method for coherent synchro-
tron radiation including shielding, Phys. Rev. Accel.
Beams 12, 040703 (2009).

[8] W. Lou and G. H. Hoffstaetter, Coherent sync-
hrotron radiation wake expressions with two bending
magnets and simulation results for a multiturn energy-
recovery linac, Phys. Rev. Accel. Beams 23, 054404
(2020).

[9] A. Brynes, P. Smorenburg, I. Akkermans, E. Allaria, L.
Badano, S. Brussaard, M. Danailov, A. Demidovich, D. N.
Giovanni, D. Gauthier, G. Gaio, B. van der Geer, L.
Giannessi, M. Loos, N. Mirian, G. Penco, P. Ribic, F.
Rossi, I. Setija, and S. Di Mitri, Beyond the limits of 1d
coherent synchrotron radiation, New J. Phys. 20, 073035
(2018).

[10] R. L. Warnock and P. Morton, Fields excited by a beam in a
smooth toroidal chamber, Part. Accel. 25, 113 (1990).

[11] G. V. Stupakov and I. A. Kotelnikov, Shielding and syn-
chrotron radiation in toroidal waveguide, Phys. Rev. Accel.
Beams 6, 034401 (2003).

[12] T. Agoh and K. Yokoya, Calculation of coherent synchro-
tron radiation using mesh, Phys. Rev. Accel. Beams 7,
054403 (2004).

[13] G. Stupakov and I. A. Kotelnikov, Calculation of CSR
impedance using mode expansion method, Phys. Rev.
Accel. Beams 12, 104401 (2009).

[14] T. Agoh, Steady fields of coherent synchrotron radiation in
a rectangular pipe, Phys. Rev. Accel. Beams 12, 094402
(2009).

[15] D. Zhou, K. Ohmi, K. Oide, L. Zang, and G. Stupakov,
Calculation of coherent synchrotron radiation impedance
for a beam moving in a curved trajectory, Jpn. J. Appl.
Phys. 51, 016401 (2012).

[16] G. Stupakov and D. Zhou, Analytical theory of coherent
synchrotron radiation wakefield of short bunches shielded
by conducting parallel plates, Phys. Rev. Accel. Beams 19,
044402 (2016).

[17] G. Bassi, J. A. Ellison, K. Heinemann, M. Venturini, and R.
Warnock, Self-consistent computation of electromagnetic
fields and phase space densities for particles on curved
planar orbits, in Proceedings of the 2007 Particle Accel-
erator Conference (IEEE, New York, 2007).

[18] G. Bassi, J. A. Ellison, K. Heinemann, and R. Warnock,
Microbunching instability in a chicane: Two-dimensional
mean field treatment, Phys. Rev. Accel. Beams 12, 080704
(2009).

[19] M. Dohlus, Field calculations for bunch compressors, in
ICFA Beam Dynamics mini workshop: Coherent Synchro-
tron Radiation and its impact on the dynamics of high
brightness electron beams (DESY-Zeuthen, Germany,
2002).

[20] G. Stupakov, Synchrotron radiation wake in free space, in
Proceedings of the 1997 Particle Accelerator Conference,
Vol. 2 (IEEE, Piscataway, NJ, 1998), pp. 1688–90.

[21] Y. Cai, Coherent synchrotron radiation by electrons mov-
ing on circular orbits, Phys. Rev. Accel. Beams 20, 064402
(2017).

[22] Y. Cai and Y. Ding, Three-dimensional effects of coherent
synchrotron radiation by electrons in a bunch compressor,
Phys. Rev. Accel. Beams 23, 014402 (2020).

[23] M. Dohlus and T. Limberg, CSRtrack: Faster calculations
of 3-D CSR effects, in Proceedings of FEL2004
Conference (Comitato Conferenze Elettra, Trieste, Italy,
2004), pp. 18–21.

[24] D. Ratner, Much ado about microbunching: Coherent
bunching in high brightness electron beams, Ph.D. thesis,
SLAC, 2011.

[25] G. Stupakov, A Novel One-Dimensional Model for CSR
Wakefields, in Proceedings, 39th International Free Elec-
tron Laser Conference, FEL2019 (JACoW Publishing,
Geneva, Switzerland, 2019), p. THP037, https://doi.org/
10.18429/JACoW-FEL2019-THP037.

[26] J. Tang and G. Stupakov, Fast two-dimensional calculation
of coherent synchrotron radiation in relativistic beams, in
Proceedings of the 2019 North American Particle
Accelerator Conference (NAPAC19), Lansing, Michigan
(JACoW Publishing, Geneva, Switzerland, 2019),
p. WEPLS09, https://doi.org/10.18429/JACoW-NA-
PAC2019-WEPLS09.

[27] G. Stupakov, New Method of Calculation of the Wake due
to Radiation and Space Charge Forces in Relativistic
Beams, in Proceedings, 10th International Particle
Accelerator Conference: Melbourne, Australia, May 19-
24, 2019 (JACoW, Geneva, 2019), p. 1223.

[28] L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields, 4th ed., Course of Theoretical Physics, Vol. 2
(Pergamon, London, 1979) (Translated from Russian).

[29] J. D. Jackson,Classical Electrodynamics (Wiley, New York,
1999).

[30] S. Heifets, G. Stupakov, and S. Krinsky, Coherent syn-
chrotron radiation instability in a bunch compressor,
Phys. Rev. Accel. Beams 5, 064401 (2002).

[31] G. Stupakov and G. Penn, Classical Mechanics and
Electromagnetism in Accelerator Physics, Graduate Texts
in Physics (Springer International Publishing, New York,
2018).

CALCULATION OF THE WAKE DUE TO RADIATION … PHYS. REV. ACCEL. BEAMS 24, 020701 (2021)

020701-11

https://doi.org/10.1016/S0168-9002(97)00822-X
https://doi.org/10.1016/S0168-9002(97)00822-X
https://doi.org/10.1103/PhysRevSTAB.12.024401
https://doi.org/10.1103/PhysRevSTAB.12.024401
https://doi.org/10.1103/PhysRevSTAB.12.040703
https://doi.org/10.1103/PhysRevSTAB.12.040703
https://doi.org/10.1103/PhysRevAccelBeams.23.054404
https://doi.org/10.1103/PhysRevAccelBeams.23.054404
https://doi.org/10.1088/1367-2630/aad21d
https://doi.org/10.1088/1367-2630/aad21d
https://doi.org/10.1103/PhysRevSTAB.6.034401
https://doi.org/10.1103/PhysRevSTAB.6.034401
https://doi.org/10.1103/PhysRevSTAB.7.054403
https://doi.org/10.1103/PhysRevSTAB.7.054403
https://doi.org/10.1103/PhysRevSTAB.12.104401
https://doi.org/10.1103/PhysRevSTAB.12.104401
https://doi.org/10.1103/PhysRevSTAB.12.094402
https://doi.org/10.1103/PhysRevSTAB.12.094402
https://doi.org/10.1143/JJAP.51.016401
https://doi.org/10.1143/JJAP.51.016401
https://doi.org/10.1103/PhysRevAccelBeams.19.044402
https://doi.org/10.1103/PhysRevAccelBeams.19.044402
https://doi.org/10.1103/PhysRevSTAB.12.080704
https://doi.org/10.1103/PhysRevSTAB.12.080704
https://doi.org/10.1103/PhysRevAccelBeams.20.064402
https://doi.org/10.1103/PhysRevAccelBeams.20.064402
https://doi.org/10.1103/PhysRevAccelBeams.23.014402
https://doi.org/10.18429/JACoW-FEL2019-THP037
https://doi.org/10.18429/JACoW-FEL2019-THP037
https://doi.org/10.18429/JACoW-NAPAC2019-WEPLS09
https://doi.org/10.18429/JACoW-NAPAC2019-WEPLS09
https://doi.org/10.1103/PhysRevSTAB.5.064401


[32] P. Baxevanis and G. Stupakov, Transverse dynamics
considerations for microbunched electron cooling, Phys.
Rev. Accel. Beams 22, 081003 (2019).

[33] Wolfram Research, Inc., Mathematica, Version 12.1 (2020).

[34] P. Emma, CSR Benchmark Test-Case Results, in ICFA
Beam Dynamics mini workshop: Coherent Synchrotron
Radiation and its impact on the dynamics of high bright-
ness electron beams (DESY-Zeuthen, Germany, 2002).

GENNADY STUPAKOV and JINGYI TANG PHYS. REV. ACCEL. BEAMS 24, 020701 (2021)

020701-12

https://doi.org/10.1103/PhysRevAccelBeams.22.081003
https://doi.org/10.1103/PhysRevAccelBeams.22.081003

