PHYSICAL REVIEW ACCELERATORS AND BEAMS 24, 014601 (2021)

Multiobjective optimization of the dynamic aperture using surrogate models
based on artificial neural networks
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Modern synchrotron light source storage rings, such as the Swiss Light Source upgrade (SLS 2.0), use
multibend achromats in their arc segments to achieve unprecedented brilliance. This performance comes at
the cost of increased focusing requirements, which in turn require stronger sextupole and higher-order
multipole fields for compensation of their effects on particles with energy deviation and lead to a
considerable decrease in the dynamic aperture and/or energy acceptance. In this paper, to increase these two
quantities, a multiobjective genetic algorithm (MOGA) is combined with a modified version of the well-
known tracking code TRACY. As a first approach, a massively parallel implementation of a MOGA is used.
Compared to a manually obtained solution this approach yields very good results. However, it requires a
long computation time. As a second approach, a surrogate model based on artificial neural networks is used
in the optimization. This improves the computation time, but the quality of the results deteriorates beyond
that of the manually obtained solution. As a third approach, the surrogate model is retrained during the
optimization. This ensures a solution quality comparable to the one obtained with the first approach while
also providing an order of magnitude speedup. Finally, good candidate solutions for SLS 2.0 are shown and

further analyzed.
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I. INTRODUCTION

The upgrade of the Swiss Light Source, named SLS 2.0,
is scheduled for 2023-2024. To increase the brilliance, the
current third generation storage ring will be replaced by one
employing seven-bend achromats, including reverse bends
and longitudinal gradient bends [1]. The stronger focusing
requirements need higher sextupole and higher-order multi-
pole fields for chromatic compensation. This makes finding
a reasonably large dynamic aperture (DA) for injection and
an energy acceptance for a sufficient beam lifetime more
challenging and more important. It can either be done
indirectly, by computing and minimizing the dominant
resonance driving terms [2], or directly, by computing and
maximizing the DA and energy acceptance [3,4].

In this work the latter approach is used and a constrained
multiobjective optimization problem is formulated (Sec. II).
The search space comprising the strengths of sextupole
families, as well as horizontal and vertical linear chromaticity
is considered. Similarly to the approach in [3], the objective
functions are defined to maximize the transverse DAs at three
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different energies and to prevent the tune resonances from
being crossed, thus maximizing the energy acceptance and
beam lifetime. These figures of merit are computed using
direct particle tracking with a modified version of the well-
known tracking code TRACY [5].

Out of the many multiobjective optimization algorithms,
particle swarm optimization [6], differential evolution [7,8]
and multiobjective genetic algorithms [3,9—14] have
already been successfully applied to the problem of
optimizing the DA. In this work a multiobjective genetic
algorithm (MOGA) is chosen and further extended with
constraint-handling methods (Sec. III).

Previous work includes approaches that speed up the
convergence of the multigeneration optimization method
by, e.g., preselecting points that are likely to be good using
k-means clustering [4] or a surrogate model [15-17], i.e.,
an approximation model which captures the significant
properties of a given simulation model and is also very
cheap to evaluate. In this work an artificial neural network
(ANN) surrogate model is used for the optimization, in
combination with a MOGA. The approach is similar to
the one from [18]. In particular, the solution quality is
improved by retraining the surrogate model during the
optimization.

First, the ANN surrogate model is built to approximate
the objective functions (Sec. IV). In particular, good
hyperparameters are determined and the surrogate model
quality is shown. The surrogate model is then used for
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optimization and augmented by a retraining procedure
(Sec. V). The run-time and the solution quality of this
approach are compared with those of a massively parallel
implementation of a MOGA coupled with TRACY. The
solution quality is determined in comparison with an
existing manually obtained solution.

Finally, good candidate solutions are shown and further
analyzed (Sec. VI). In particular, the transverse DAs at the
three considered energies are shown and compared with
those of the manually obtained solution.

II. OPTIMIZATION PROBLEM
A. Dynamic aperture (DA)

The DA can be loosely defined as an area in the
transverse phase space in which stable particle motion
can occur. To quantify the size of the DA the approach from
[3] together with the modifications from [9] is adopted. As
the DA area is dependent on the local linear optics given by
the Twiss parameters o and S at the starting location of the
particle tracking, the DA coordinates r and 6 in Floquet
space are mapped to the coordinates for tracking via

<x> B ( P )rcos@k
X —0y ﬁx/ I
<y> B < Py >rsin9k

y ! —ay ﬁ y/ I

with the invariant / = 1 ym. For SLS 2.0, r =1 corre-
sponds to /1 /e, ~ 80 horizontal rms beamwidths, with ¢,
being the horizontal emittance (see Table I). The particle
trajectories along 2K rays in the (x,y) Floquet space

starting at the origin are considered. The angles between
these rays and the x axes are

(1)

0, =krn/K for ke {0,....,2K—1}. (2)
Since particles get lost on the vacuum chamber walls, it is
reasonable to assume that a realistic DA will not exceed the
aperture at the reference energy that would exist if all
sextupoles and higher-order magnets were turned off. This

TABLE 1. Basic parameters and design constraints of the
considered SLS 2.0 lattice.

Parameter Value
Beam energy 2.7 GeV
Circumference 288 m
Horizontal emittance €, (rms, no insertions) 157 pm
Energy spread (rms) 1.1 x 1073
Horizontal tune Q. 39.35
Vertical tune Q, 15.25
Horizontal chromaticity &, 0<é <1
Vertical chromaticity &, 0<¢, <1

assumed upper limit is referred to as the linear aperture,
and the length it spans on the kth ray is denoted by L(6;).
Similarly, the length that the DA at a relative energy offset &
spans on this ray is denoted by

L(6y. ). (3)

In order not to reward cases with L(6,5) > L(6;), the line
objective is defined as

max{0, L(6;) — L(6;,68)}
L(6%) .

fro= (4)

Both L(6)) and L(6;,5) are computed using the biased
binary search as presented in [9]. For the L, search the
dimensionless initial length in Floquet space is set to a
sufficiently large reference radius of 10, corresponding to
x =~ 41 mm and y = 26 mm at the insertion position for the
SLS 2.0 lattice, which is well outside of the vacuum
chamber. The initial radius for L(y, ) is then set to L.
The DA objective for a given relative energy offset o is
defined as

2K-1

1 2
DA; =7 kz:; frs (5)

In a flat lattice there is vertical symmetry of the aperture
area, so (5) becomes

1 K—1
DAj; = TR (f(zm + fx s+ 2;&5). (6)

Due to the normalizations in Egs. (4) and (5), the DA
objective is always in [0,1].

In this paper the on-momentum and off-momentum DA
objectives are considered. In particular,

DA_(;, DAO and DAE,

(7)
where 6 = 0.03. Note that the maximization of the DA
corresponds to the minimization of the DA objectives
DA_;;, DAO and DA5

B. Crossing tune resonances

The DA objectives in Eq. (7) are computed to ensure
a sufficiently large aperture region in phase space.
Unfortunately, the binary search used to compute the line
objectives in Eq. (4) is sufficient only when the aperture
region is simply connected, i.e., every closed curve within
the region can be shrunk continuously to a point that is in
the region. This is not always the case, especially when
particles cross tune resonances. Therefore, additional
requirements that take into account the crossing of tune
resonances need to be defined. For this, the tune
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-

O(x,y,0) = (Qx(x,y,6), Oy(x,y,9)) (8)

and the fractional tune

v(x,y,6) = (ba(x,,6), 1y(x,y,9)) ©)

are considered as functions of the initial positions x, y in
transverse Floquet space and the relative energy deviation
0. In the case of the considered SLS 2.0 lattice their
relationship is given by
v, =0, -39, vy = Qy, —15. (10)
For a sufficient energy and amplitude acceptance it is
beneficial to constrain the variation of tunes so that no low-
order resonances are crossed. In particular, in this paper the
variation of tunes, known as the tune footprint, is con-
strained inside the triangle formed by three first- and
second-order resonances around the on-momentum tune.
In the case of the considered SLS 2.0 lattice the on-
momentum tune is

-

0(0,0,0) = (39.35,15.25) (11)

(see Table I) and the vertices of this triangle (see Fig. 7 on
p. 13, red lines) are

{(39.15),(39.5.15.5), (39.5,15)}. (12)

The triangle is also shown in the fractional tunes coor-
dinates v, and v, in Fig. 1 (dashed line). To prevent
particles from getting lost on resonance stop bands, a
margin of 0.025 around the resonance lines is used in this
work (see the blue triangle in Fig. 1 or Fig. 7).

1. Chromatic tune footprint (CTFP)

The chromatic tune footprint is approximately computed
by sampling the energy-dependent fractional tunes v, and
vy at the energy offsets

)
s :p max7 p:—P,_..,P. (13)

There are cases for which the particle motion is unstable
and the tunes cannot be computed. Denoting by ¢(v) the
squared Euclidean distance of o from the aforementioned
triangle with margins (see Fig. 1, blue triangle) the fune
footprint distance is defined as

ctfp =

pE{-P....P}
computable

Taking into account that [see Eqs. (11) and (10)]
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FIG. 1. The isolines of the function g from Sec. IIB 1. The
dashed lines show the resonance triangle. The blue area denotes
the triangle with margins, which is derived from the resonance
triangle using a margin of 0.025. Inside this blue area g vanishes.
Outside of it g > 0 grows quadratically with the distance to that
triangle.

(0,0, 680) = v(0,0,0) = (0.35,0.25) (15)
is inside the triangle with margins, it holds that
9(¢(0,0.0)) = 0. (16)
so Eq. (14) becomes

ctfp = 9(¢(0,0,6,)). (17)

pe{-P....P}\{0}
computable

If the chromatic tune footprint extends outside of the
triangle with margins, ct fp > 0. Furthermore, as in [3],

unstabley = 1— 16, +|/Omnax (18)

is defined, with 6, , and §,_ denoting the first (i.e.,
smallest in magnitude) positive and negative values,
respectively, for which the tunes are located outside the
triangle or not computable. It follows from Egs. (13) and
(18) that the set of values which unstable, can attain is

{1-p/Plp€{0,1,...,P}}. (19)
The value of P needs to be high enough to achieve a

sufficient resolution in tune space, without superfluous

computational overhead—in this paper P = 25 is used.
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The required energy acceptance for SLS 2.0 is defined
by the requirements for sufficient Touschek lifetime.
The momentum aperture has the approximate range

6 € [-0.062,0.047] (20)
and the positive values dominate the lifetime contributions.
Therefore, for this study J,,,x = 0.05 is used.

2. Amplitude-dependent tune shifts (ADTS)

The betatron oscillation is nonlinear and thus anhar-
monic. Therefore, a number of different amplitudes have
to be considered. In this work, to achieve a sufficient
resolution, Q = 20 equidistant points are taken on each of
the following two line segments in the transverse Floquet
plane: the horizontal line segment [see the sentence con-
taining Eq. (3) for the definition of L(-,0)]

{(z,4)]r €]0, L(0,0)]} (21)
and the vertical line segment
{(A,1)|t €]0, L(x/2,0)]}. (22)

In these points (with § = 0) the tunes are computed as
the fundamental frequencies of turn-by-turn data in each
plane. To compute these frequencies, the FFT of 128
tracked turns with zero padding to 512 samples is used.
To excite both oscillation modes A = 10~* is used, off-
setting these line segments from the original rays of the DA
computation.

As in the case of computing the tune footprint distance
ctfp in Eq. (17), the squared Euclidean distance of the
footprint points from the triangle with margins (blue
triangle in Fig. 1) is subsumed into the amplitude-
dependent tune footprint distance

Y 9]
adts= >  g(0x,.A.0)+ > g(#(Ay,.0)). (23)

g =1
computable compu[able

Here “computable” refers to the tracked particle not being
lost in 512 turns.

C. Search space

Sextupoles are mainly used to compensate chromaticity,
but they also limit the on-momentum transverse DA.
To have the possibility to extend the DA limits, more than
two sextupole families are used. The strengths of these two
sextupole families are subsumed into a vector of tuning
sextupole strengths 7 = (#,,1,), whose linear relationship
with chromaticity is quantified by the matrix T. The
sextupole strengths of the remaining families are grouped

into a vector ¥, and their influence on (linear) chromaticity
&= (&,.¢&,) is characterized by a matrix M, so that

E=MK+Ti + &, (24)
where Eua is the chromaticity of the unaltered lattice. By
magnet design, the applicable sextupole strength is limited
to some interval [—Kpax, Kmax)-

In addition to the sextupole strengths &, the chromaticity
is also taken to be a part of the search space. To prevent
head-tail instability, it must be non-negative. On the other
hand, the upper limit &, can be adjusted.

To sum up, a design point in the search space is

(_i):(gx’fy’Kl’""KS)’ (25)

where

é:x.y € [Ov émax]’ K; € [_KmaxaKmax]' (26)
The SLS 2.0 sextupoles have a bore of 22 mm and a
maximum poletip field of 0.71 T at 2.7 GeV, which
corresponds to Ky, = 650 m~3. Furthermore, in this work

Enax 18 set to 1.

D. Multiobjective optimization problem

Summing up the three preceding sections, the con-
strained multiobjective optimization problem considered
in this paper is [see Egs. (6), (7), (18) and (25)]

F F, F3 F4.Fs
min(DA_;, DA, DA, unstable), (27)
d
subject to [see Egs. (17) and (23)]
1,1 € [~Kmax»Kmax) and ctfp+adts =0. (28)

The second constraint ensures that the tune footprint
distance ct fp and the amplitude-dependent tune footprint
distance adts from the triangle with margins (see blue
triangle in Fig. 1) are both zero.

III. MULTIOBJECTIVE GENETIC
ALGORITHM (MOGA)

In Eq. (27) multiple objectives have to be optimized
simultaneously. There are many multiobjective algorithms
for this purpose, such as particle swarm optimization
[6,19-21], ant colony optimization [22], simulated
annealing [23], artificial immune system [24], differential
evolution [7,8] or genetic algorithm [25]. Multiobjective
genetic algorithms (MOGA) are probably the most popular
and they have already been successfully applied in the field
of particle accelerator physics [12,18,26-29], in particular
also for the DA optimization [3,4,10,11,13,14].
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A design point ;il [see Eq. (25)] dominates ;lz if it is not
worse in any of the objectives [see Eq. (27)], and it is
strictly better in at least one objective. A MOGA allows
independent evaluations of solution candidates and is
therefore suitable for parallelization. In this work a mas-
sively parallel implementation of a MOGA [28-30] is used
to find points that are not dominated by any other point,
called Pareto optimal points. The basic steps of a MOGA
are shown in Algorithm 1.

Algorithm 1. Multiobjective genetic algorithm.

1: random population of individuals, L_fi fori=1,....M
2: compute F(d;) fori=1,....M

3: while a stopping criterion not reached do

4 for pairs of individuals d;, d;,;_do .

5: crossover(d;, d;, ), mutate(d;), mutate(d;, )

6 for each new individual d,,,, compute F(d, )

7 choose M fittest individuals for the next generation

In the context of a MOGA a design point is referred to as
an individual. First, in line 1, M individuals are chosen
uniformly at random from intervals in Eq. (26). In line 2
their objective function values [Eq. (27)] are computed.
Then, in lines 3—7, a number of cycles are performed, each
resulting in a new generation. In every cycle new individ-
uals are created from the existing ones using two recombi-
nation operators: crossover and mutation (lines 4-5). The
crossover operator used in this paper is the simulated binary
crossover. It creates two new individuals (children) from
two existing individuals (parents). The mutation operator
creates a new individual from a single existing individual to
ensure diversity in the population. In this paper indepen-
dent bit mutation is used, which means that each of the
design variable values of the existing individual is changed
with a given probability. In particular, it is ensured that the
new individuals belong to the search space, i.e., that their
design variable values are in the bounds from Eq. (26).
The objective function values of the newly created indi-
viduals are then computed in line 6. Finally, in line 7,
approximately M fittest individuals are chosen to comprise
the new generation. The implementation from [26,30]
(called opPT-PILOT) is used, where the algorithm is imple-
mented in C+-+ and parallelized using MPI such that
a new generation is created (line 7) once the objective
function values have been computed for n new individuals
(line 6).

A. Particle tracking and lattice configuration

The particle tracking code TRACY [5] is used to compute
the objective function values [Eq. (27)] and constraint
violations [Eq. (28)] for a given design point d [Eq. (25)].
TRACY is a flexible and well-tested beam dynamics library
that was also used for SLS [31]. It uses a fourth-order
symplectic integrator [32] for all multipole orders and

allows fast tracking of single particles, enabling a trade-off
between computation time and accuracy.

For the purpose of this paper the tracking code is
modified, including the computation of the amplitude-
dependent tune shifts and chromatic tune footprints (see
Sec. II B) and the DA (see Sec. II A). Furthermore, an
interface was created so that the values needed in Eqs. (27)
and (28) could be obtained by OPT-PILOT.

In this paper the current lattice for SLS 2.0 is used [33].
This lattice is based on the multibend achromat scheme,
including reverse bends and bends with a three-step
longitudinal profile and additional quadrupole focusing.
The magnet lattice has a threefold symmetry. For on-
momentum particles a “virtual” 12-fold symmetry exists
due to the proper adjustment of betatron phase advances
between sextupoles in the insertion spaces. In this work the
particles are tracked for 500 turns.

B. Constraint handling

Only some randomly chosen individuals (around 48%)
satisfy the first constraint in Eq. (28), i.e., their tuning
sextupoles are inside of the bounds. In the following, such
individuals are called feasible. If an individual is infeasible,
its objective function values are not computed. Instead,
infeasible individuals are compared based on the severity of
their constraint violations. Since the objective function
values in Eq. (27) are at most one, this can be done by
simply setting [see Eq. (28)]

F; <2+ max {0, |t;| — kpar} fori=1,2, (29)

F; <2 fori =3,4,5. (30)

On the other hand, for individuals that violate the second
constraint in Eq. (28) (i.e., when tune resonances are
crossed) the objective function value computed in line 2
or 6 of Algorithm 1 is penalized as

F; « F; + penalty, (31)
where [see Egs. (17) and (23)]
penalty = a, -ctfp + a, - adts. (32)

If penalty > 1 at least one of the tune footprints extends
so far outside the triangle that this individual cannot be
considered better than all infeasible individuals. Therefore,
the possibility that the penalized objectives of this feasible
individual are compared with constraint violations of an
infeasible individual is allowed. This either results in the
standard behavior, i.e., the feasible individual being chosen,
or the infeasible individual being chosen—in which case its
tuning sextupoles are likely close to the admissible bounds.
In this work @; = 0.01 and @, = 1 are used.
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C. Results

All computations in this paper are run on Intel Xeon
Gold 6152 nodes of the PSI Merlin cluster. An optimization
using OPT-PILOT that was run for 48 h on three nodes (i.e.,
132 processes), with M = 300 and n = 130 (see Sec. III
above III A), computed 829 generations. The quality of a
generation is quantified by counting the number of distinct
design points in that generation which satisfy the con-
straints in Eq. (28) and have all of the objective function
values better than those of the manually obtained solution.
The values for a few representative generations, including
the last one, are shown in Table II. In particular, since the
values of the nonnegative objective functions F, and F’5 for
the manually obtained solution are zero, they are also zero
for all of the newfound points counted in Table II. This
follows from the fact that the newfound points counted in
Table II have all of the objective function values better than
those of the manually obtained solution, in particular Fy
and Fs.

When comparing the results it should also be taken into
account that the DAs of the manually obtained solution
were optimized beyond the linear aperture limits. The last
step of finding the manually obtained solution includes
supervising the amplitude-dependent footprints, chromatic
footprints, and dynamic aperture estimate while changing
the multipole knobs accordingly [34]. This can be consid-
ered a “fuzzy” manual local optimization routine. The
starting point of this local procedure is given by the lattice
designer and involves a less quantifiable procedure.

From these 31 good points from the last generation
(see Table II) three points are chosen based on different
criteria and their objective function values are compared to
those of the manually obtained solution in Table III. The
design point called point-1 is chosen because it has the
lowest value of the objective F;, DA_jy; = 0.021, and
point-2 because it has the lowest value of F, and,
coincidentally, also of F3, with values DA_jo3; = 0.001
and DAy = 0.002, respectively. The design point
point-3 was chosen because it improves all three
objectives by a comparable amount (for all of these points
F 4 — F 5 = 0)

To sum up, using the massively parallel implementation
OPT-PILOT of a MOGA, many design points with very good

TABLE II. The number of (nof) design points (pts) in a specific
generation that satisfy the constraints in Eq. (28) and have all of the
objective function values better than those of the manually obtained
solution, referred to as the “design solution.” This is abbreviated as
“nof pts better.” Generation 829 is the last one that is considered
because the optimization was stopped after 48 h. All of the
objective function values are computed with 500 turns in TRACY.

Generation 100 200 300 400 500 829
nof pts better 1 10 17 18 26 31

TABLE III. A comparison of the manually obtained design
solution with three good points found in the optimization with
OoPT-PILOT. The objective function values are computed with 500
turns in TRACY, and all of these design points satisfy the
constraints in Eq. (28). Out of the 31 design points in generation
829 computed in 48 h (see also Table II), point -1 is chosen as
the design point that has the lowest value of | and point-2 is
chosen to have the lowest value of F, (coincidentally, it also has
the lowest value of F3). point-3 is chosen to improve all of
these three objectives by a comparable amount. The column
labeled “gen” shows the generation in which the specific point
was found.

Objective F, F, F; F, Fs gen
Design solution  0.032  0.004  0.011 0 0

point-1 0.021 0.003 0.010 O 0 763
point-2 0.031  0.001 0.002 O 0 769
point-3 0.025 0.001 0.005 0 0 807

objective function values are found, but the run-time (48 h)
is quite long.

IV. BUILDING THE SURROGATE MODEL

The convergence of the optimization method can be
improved by using, e.g., k-means clustering [4], ANN [15]
or Gaussian process models [16,17] to preselect the points
that need to be evaluated. Alternatively, an ANN surrogate
model can be trained to approximate the objective function
values and then used in the optimization [18]. Due to the
encouraging results shown in [18], available tools and
promising preliminary computations, the approach in this
paper is based on training and using an ANN surrogate
model.

First, a random feasible sample is created and evaluated
using TRACY. In particular, around 7.5 x 10* design points
[see Eq. (25)] are chosen uniformly at random from the
intervals in Eq. (26). Their feasibility (see Sec. III B) is
then checked according to Eq. (24) and 3 x 10* feasible
points are chosen. The run-time for this is negligible. These
feasible points are evaluated using TRACY and divided into
training (70%), validation (20%) and test set (10%). This
took 9 h 6 min on five nodes (220 cores). Since all of these
3 x 10* feasible points can be evaluated at the same time,
more nodes can efficiently be utilized. For comparison, in
Sec. III C the number of new individuals in a generation is
n =130, so only 132 processes, i.e., three nodes, are
used. In the case of the optimization from Sec. III C it
can be seen from n = 130 that in 829 generations around
108 x 10° points are evaluated. However, only some
of those evaluations include the expensive TRACY run.
The sample size 3 x 10* is chosen as a sizable fraction of
this number, while also taking into account that the goal
of this approach is to speed up the optimization from
Sec. HIC.
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Second, this random feasible sample is used to train the
ANN surrogate model. In particular, a feed-forward ANN
with Nj,ers hidden layers is used. The first hidden layer has
N peurons Neurons while the others have 2N . ons NEUrONS.
The activation function is ReLU and the loss function is the
mean squared error. The model is generated in PYTHON
using the KERAS[35] API on top of TENSORFLOwW [36],
with some functionality taken from MLLIB [37]. The TALOS
framework [38] is used to find good hyperparameters,

Niayers € {4.5.6}, Neurons € {32,64, 128},  (33)

and the batch size for the stochastic gradient descent
algorithm Adam [39],

Nowen € {128,256} (34)

Other parameters for Adam are the default ones [40] from
KERAS, including the learning rate 0.001. A comparison of
the six best combinations is shown in Table IV. On one core
this took 52 min.

The dependence of the training and validation loss on the
number of training epochs for the case with the smallest
validation loss (Table 1V), i.e., the hyperparameters,

Nlayers =35, Nieurons = 64 and - Nygep = 128, (35)

is shown in Fig. 2. A comparison of this ANN surrogate
model with the particle tracking results in TRACY is shown
in Fig. 3. The comparison is performed on the test set, i.e.,
random feasible design points that were not used for
training. In each subplot the x and y coordinates are the
values computed with the ANN surrogate model and
TRACY, respectively. The line y = x indicates perfect agree-
ment. In the case of F, and Fs the surrogate model
prediction is replaced by the closest value from the set
in Eq. (19) and, to facilitate the presentation of the results,
the average of these values is shown in the second row, first
column. Moreover, for ctfp and adts negative predic-
tions are set to zero.

TABLEIV. A comparison of hyperparameters (only the six best
combinations). The training is stopped if there is no improvement
in the validation loss for 100 epochs.

Epochs  Validation 10ss  Nyyers ~ Nieurons  Nbatch
1 454 0.002487 5 64 128
2 554 0.002494 4 64 128
3 330 0.002504 6 64 128
4 415 0.002521 6 64 256
5 513 0.002532 4 64 256
6 922 0.002550 5 32 128

0.10 A —— training loss
—— validation loss
0.08
0.06
0.04 A
0.02
0 : . . .
0 100 200 300 400

epochs

FIG. 2. The training loss (blue) and the validation loss (orange)
as a function of the number of training epochs. The design point
from Eq. (25) is considered and the functions that are approxi-
mated are the five objective functions from Eq. (27), as well as
ctfp and adts from Eq. (28) (seven in total). The size of
the random sample is 3 x 10* and the hyperparameters are:
Nlayers = 5, Nncurons =64 and Nbatch =128, with the ReLU
activation function. The training was stopped once there was
no improvement in the validation loss for 100 epochs.

V. OPTIMIZING WITH THE
SURROGATE MODEL

In this section, the MOGA implemented in the PYTHON
PYMOO [41] module is used for the optimization, with the
ANN surrogate model from Sec. IV used to predict the
necessary figures of merit [see Eqs. (27) and (28)].

This is compared to the optimization using OPT-PILOT as
described in Sec. III C, to preserve the solution quality
while speeding up the optimization. Additionally, as in
Sec. III C, the candidate solutions are again compared with
the manually obtained solution.

The crossover, mutation and constraint handling used
with PYMOO are therefore chosen to be as close as possible
to the ones used with OPT-PILOT.

A. Direct approach

As a first approach, an optimization with M = 10*
individuals in a generation is run for 1000 generations.
This took 60 min on one core. The points in generation
1000 are then reevaluated using TRACY (3 h 50 min on five
nodes) and the comparison is shown in Fig. 4, blue color. It
can be seen from the scale that the objective function values
of these design points are very good compared to the values
computed for random points (see Fig. 3). For example, in
the case of F, = DA, the test sample (Fig. 3) achieved
values up to around 0.8 and the optimized set of design
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F1=DA_g03 F2 = DAo F3 = DAo.o3
0.8
1.0 1.0
0.7
0.8 0.6 0.8
0.5
> 06 0.6
© 0.4
5
0.4 0.3 0.4
0.2
0.2
0.2 01
0.0 0.0 0.0
00 02 04 06 08 10 0.0 0.2 0.4 0.6 0.8 00 02 04 06 08 10
(Fs+Fs)/2 = (unstable_+unstable)/2 ctfp adts
20 0.4
0.8
15 0.3
0.6
9
© 0.2
5 o4 10
0.2 5 0.1
0.0 0 0.0
0.0 0.2 0.4 06 08 0 5 10 15 20 0.0 0.1 02 0.3 0.4
surrogate model surrogate model surrogate model
FIG. 3. The surrogate model quality on the test set, i.e., random design points that were not used for training. The surrogate model was

trained using a training set of size 2.1 x 10* and a validation set of size 6000. Its quality is tested on a test set of size 3000. In each
subplot the x and y coordinates are the values computed with the surrogate model and TRACY, respectively (a point on the line y = x
would be perfect agreement). Darker blue colors represent higher design point densities.

points (Fig. 4, blue) always has this value below 0.031.
However, the agreement between the surrogate model
predictions (x axis) and the values obtained with TRACY
(v axis) for the optimized set of design points (Fig. 4, blue)
is quite poor. In particular, for |, F, and F5 the surrogate
model prediction (Fig. 4, blue, x axis) is generally much
smaller than the value computed in TRACY (Fig. 4, blue,
y axis)—the points that seem good during the optimization
with the surrogate model turn out to be mediocre.
Therefore, despite the initial surrogate model quality seen
in Fig. 3 as evaluated on random feasible points, the
surrogate model quality evaluated on good design points,
such as those computed in generation 1000, is not adequate
for optimization. For example, none of the design points in
generation 1000 have F5 below 0.012 (Fig. 4, first row,
third column, blue color). Since the value of F; for the
manually obtained solution is 0.011 (see Table III), none of
these points outperform it.

In total, this approach took around 14 h 48 min. For
comparison, the optimization with OPT-PILOT that was
run for 48 h on three nodes computed 829 generations
(with M = 300 and n = 130), where 31 points satisfy the

constraints and have all objective functions better than the
design solution (see Sec. III C). The optimization with the
surrogate model is 3.2x faster, but the solution quality is
not as good—there are no points in the last generation that
satisfy the constraints in Eq. (28) and have all of the
objective function values better than those of the manually
obtained solution. The comparison is clearly presented in
Table V.

To improve the solution quality, the quality of the
surrogate model predictions has to be much better for
points with good objective function values. To achieve this,
in the next section the surrogate model will be retrained
during the optimization. This way, instead of using addi-
tional random feasible points to improve the surrogate
model predictions on points with good objective function
values, points found during the optimization will be used,
similarly to [18].

B. Retraining the surrogate model

The second approach, intended to leverage the fast
computation time of the ANN surrogate model optimization
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F1=DA_oo03 F2 = DAp F3 = DAo.o3
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! 0.175 0.0008
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surrogate model

surrogate model

surrogate model

FIG. 4. Blue color: the quality of the predictions of the surrogate model from Fig. 3 on the design points in generation 1000 (computed
with the approach from Sec. V A). For all points the value of adts is computed as zero using TRACY and predicted to be zero using the
surrogate model. Orange color: the quality of the predictions of the third surrogate model from the approach in Sec. V B on the design
points in generation 1000. In each subplot the x and y coordinates are the values computed with the surrogate model and TRACY,
respectively (a point on the line y = x would be perfect agreement). Darker colors represent higher design point densities. Since the plot
in the first row, first column contains some overlap, the blue part underneath is shown in the top right corner. There is virtually no overlap
in the second and third column of the first row. In the second row it can be concluded that the blue regions are located below the orange
ones whenever the blue color is virtually absent from the plot—this is the case in the first and third column of the second row. The benefit
of the approach from Sec. V B can clearly be seen. First, the orange regions overlap better with the line y = x which means that the
surrogate model predictions at the end of the optimization are more accurate. Second, the orange points mostly have smaller y coordinate

values which means that they have better objective function values as computed with TRACY.

and the solution quality of the OPT-PILOT optimization, is the
following. Instead of training the surrogate model
once and then using it for a MOGA optimization with
“nof generations,” the surrogate model is retrained “nof
retrainings” times during the optimization, where
“nof retrainings” € {1, “nof generations” —1}.  (36)
In particular, the surrogate model is retrained after
generations  my, ..., Mepof rerainings™ AS I Sec. VA,
“nof generations” = 1000 is used. To facilitate parallel
computation and keep the total run-time for training the
surrogate models low, the number of retrainings, denoted
“nof retrainings” in Eq. (36), is kept low. Therefore, the
values of “nof retrainings” that are considered are, in order,
1,2,.... To keep the total number of TRACY evaluations

below 3 x 10%, the surrogate model is first trained on 10*
random feasible points and retrained in generation m;
(i € {1,...,“nof retrainings”}) with the random feasible
points used previously and 5000 points from generation m;.
This way the combined size of the samples is below 3 x 10*
for “nof retrainings” € {1,2,3} and exactly 3 x 10* for
“nof retrainings” = 4. First, m; = 50 was chosen due to a
more rapid change of the objective function values in
the beginning of the optimization. For example, in gener-
ation 50 all of the points had F, = DA < 0.07, and the
values achieved in 1000 generations are generally compa-
rable to the value of the manually obtained solution,
F, =0.004 (Table III). Second, m, = 500 was chosen
based on the quality of the retrained surrogate model on a
few of the subsequent generations which are multiples of
100. As will be shown in the rest of this section, the results
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TABLE V. Solution quality and run-time for different optimization methods. “SM” is an abbreviation for “surrogate model.”
OPT-PILOT denotes the massively parallel MOGA implementation combined with TRACY, in particular the optimization from
Sec. IIIC. “SM (3 x 10*)” and “SM + retrain (2 x 10*)” refer to the approaches described in Secs. VA and V B, respectively.
“SM + retrain (10*)” and “SM + retrain (5000)” are described in Sec. V C for N = 5000 and N = 2500, respectively. The number in
the parentheses is the combined size of the used samples. “SM + retrain (2 x 10*)” therefore corresponds to N = 10*. “nof pts better”
refers to the number of design points in the last generation that satisfy the constraints in Eq. (28) and have all objectives better than the
manually obtained solution. To determine the quality of a generation, “nof pts better”” should be used together with the information in
Table V1. For example, “nof pts better” is higher for N = 5000 than for N = 10*, but better individual values for F and F, are achieved
when N = 10* (see Table VI, point -4 and point -5). The quality of both approaches is comparable to the quality of the approach
from Sec. I C, denoted OPT-PILOT. “reeval all” refers to the case where all 10* individuals in the last generation are reevaluated using
TRACY, which accounts for around 3 h 50 min of the total run-time. “reeval 10%” refers to the case where only 1000 of the 10*
individuals in the last generation are reevaluated. The speedup is computed with respect to the OPT-PILOT approach in the first column.

OPT-PILOT  SM (3 x 10*)  SM + retrain (2 x 10*)  SM + retrain (10*)  SM + retrain (5000)

nof pts better 31 0 148 368 87
Run-time (reeval all) 48 h 14 h 48 min 12 h 15 min 8 h 31 min 6 h 33 min
Core hours (reeval all) 6336 2847 2325 1593 1210
Speedup (reeval all) 1.0 3.2 3.9 5.6 7.3
Run-time (reeval 10%) 11 h 21 min 8 h 52 min 5h 5 min 3 h 10 min
Core hours (reeval 10%) 2089 1578 838 465
Speedup (reeval 10%) 4.2 54 94 15.1

quality in generation 1000 is in this case comparable to the
one in Sec. Il C, so “nof retrainings” is set to two.

The quality of the predictions of the third surrogate
model on the 10* design points from generation 1000 is
shown in Fig. 4, orange color. The total run-time, including
reevaluating the entire last generation using TRACY, is now
around 12 h 15 min, which is a speedup of 3.9x compared
to the approach from Sec. III C. However, not all points in
the last generation need to be reevaluated—if only 1000 of
these points (i.e., 10%) are reevaluated, the total run-time is
8 h 52 min, which is a speedup of 5.4x (see Table V). The
1000 points to be reevaluated can be chosen based on the
values of the predictions.

There are 148 design points in the last generation that
satisfy the constraints in Eq. (28) and have all of the
objective function values better than those of the manually
obtained solution, which is significantly more than the 31
points found in Sec. III C (see Tables II and V).

As in Table III, out of these 148 design points, the ones
with the lowest value of F;, F, and F3 are shown in
Table VI and referred to as point-4, point-5 and
point-6, respectively. The quality of these points is
clearly comparable with point-1 and point-2 from
Table III. For example, the lowest value of F'; = DA_j 3
achieved with the new approach is better than the lowest
values of F'| achieved in Sec. III C. Namely, F| = 0.020 for
point-4 (new approach) which is lower, i.e., better, than
F; =0.021 for point-1 (approach from Sec. IIC).
On the other hand, the lowest value of F3; = DA
achieved with the new approach is not as good as the
lowest values of F; achieved in Sec. IIIC. Namely,
F3 = 0.004 for point-6 (new approach) which is higher

than F; = 0.002 for point -2 (approach from Sec. I1I C).
The lowest achieved value of F, = DA is the same for
both approaches, namely F, =0.001 (point-5 and
point-2). Furthermore, there are design points whose
quality is comparable to that of point -3 in Table III, e.g.,
a design point with

(FI’ F2, F3, F4, Fs) - (0026, 0001, 0004, O, O), (37)

ctfp=0and ctfp =0.

TABLE VI. The points with the smallest value of F; (point-4,
7,10), F, (point-5,8,11) and F3 (point-6,9,11), out of
all the points (first row in Table V) that satisfy the constraints in
Eq. (28) and have all objectives better than the manually obtained
solution (first row in Table III). All the digits of the objective
function values computed with 500 turns in TRACY are used for the
comparison, and the bold numbers denote the minimal value of the
respective objective before rounding. The last column denotes the
size of the initial sample. The case with N = 10* is described in
Sec. V B. The cases with N = 5000 and N = 2500 are described in
Sec. VC.

ObjeCtiVe Fl F2 F3 F4 F5 N

point-4 0.020 0.004  0.011 0 0 10*
point-5 0.029 0.001 0.008 0 0 10*
point-6 0.028  0.002  0.004 0 0 10*
point-7 0.024 0.003  0.008 0 0 5000
point-8 0.030  0.002  0.006 0 0 5000
point-9 0.029 0.002 0.004 0 0 5000
point-10 0.025 0.003 0.011 0 0 2500
point-11  0.032  0.001 0.005 0 0 2500
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C. Using a smaller sample for training

In Sec. VA a large sample of 3 x 10* random feasible
design points was used to illustrate that, regardless of the
surrogate model quality on random points, the quality
on points with good objective functions is very poor. In
Sec. VB the combined size of the samples was 2 x 10*
instead of 3 x 10%. In this section the size of the samples is
further reduced.

The approach is the same as the one from Sec. V B. An
initial sample of size N is used to train the first surrogate
model. The second surrogate model is trained in generation
m; = 50 using these N points together with N/2 of the

rsin@

rcos@

points found in generation m,. The third surrogate model is
trained in generation m, = 500 using also N/2 of the
points found in generation m,. While in Sec. VB N = 10*
was used, this is now lowered to N = 5000 and N = 2500.

As shown in Table V, the number of points that satisfy
the constraints in Eq. (28) and have all of the objective
function values better than those of the manually obtained
solution is now 368 for N = 5000 and 87 for N = 2500.
The run-time including the reevaluation of the entire last
generation is 8 h 31 min (speedup 5.6x) and 6 h 33 min
(speedup 7.3x), respectively. If only 1000 of the points in
the last generation (i.e., 10%) are reevaluated using TRACY,
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(b) point-3 from Table III.
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(d) point-11 from Table VI.

FIG. 5. Transverse DAs in Floquet space (rcos @, rsin @) from Eq. (1) of the solution candidates for 6 = —0.03 (green), § = 0.03
(blue) and 6 = 0 (bold black line), computed using TRACY as described in Sec. Il A. The particles are tracked for 500 turns. The linear
aperture, computed from the lattice model by ignoring sextupolar and higher-order fields, is shown in gray. For a clearer presentation of
the results, only half of the off-momentum apertures is shown. This is sufficient due to machine-plane symmetry. Each subplot
corresponds to one candidate solution: the manually obtained solution (referred to as the “design solution,” top left), point -3 from
Table III (top right), the design point from Eq. (37) (bottom left) and point -11 from Table VI (bottom right). The relative relationships
of the DA area sizes are consistent with the computed objective function values.
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the speedups in the cases N = 5000 and N = 2500 are
9.4x and 15.1x, respectively. A detailed comparison is
shown in Table V.

Furthermore, in addition to counting “nof pts better”
(Table V), out of these design points the points with the
lowest values of F';, F, and F5 are shown in Table VI. Both
approaches from this section found numerous points with
very good objective function values in a significantly

shorter time—most notably the 3 h 10 min for the fastest
case (instead of 48 h needed for OPT-PILOT).

VI. CANDIDATE SOLUTIONS

In this section some of the candidate solutions obtained
in Secs. Il and V are compared and further analyzed. In
particular, out of the points found in Sec. III C with the

FIG. 6. The columns show the transverse DAs at 6 = —0.03, 6 =

DA, 6 = —0.03 DA, 6=0 DA, 6 =0.03
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0 and 6 = 0.03, recomputed in OpA for the manually obtained

solution (referred to as the “design solution,” first row), point -3 from Table III (second row), the design point from Eq. (37) (third
row) and point-11 from Table VI (fourth row). The particles are tracked for 500 turns on a grid in the transverse plane. The blue
silhouette shows the linear aperture limits computed by OpA, assuming elliptical vacuum chamber parts [42]. The results are consistent

with the TRACY computation in Fig. 5.
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massively parallel implementation of a MOGA, point-3
(see Table III) is chosen. Out of the points found with the
new method in Sec. VB (N = 10%), the point shown in
Eq. (37) is chosen. Out of the points found with the new
method in Sec. V C, using the smallest considered com-
bined sample size (N = 2500), point-11 (see Table VI)
is chosen. All of these points are compared with the
manually obtained solution, referred to as the “design
solution.”

For each of these solution candidates, the transverse
DAs at three different energies (6 € {—0.03,0,0.03}) are
shown in Fig. 5. In each subplot the bold black line shows
the boundary of the on-momentum DA, computed with
500 turns in TRACY as described in Sec. Il A. As indicated
by the smaller values of the objective function F, = DA,
all three candidate solutions have a larger on-momentum
DA than the design solution. The green and blue areas
show the off-momentum DA for 6 = —0.03 and 6 = 0.03,
respectively. These transverse DAs correspond to the
objective functions F; =DA_jg3 and F3 = DA3,
respectively. In the case of 6 = 0.03 it can clearly be seen
that the computed transverse DA for all three new
candidate solutions is larger than that of the design
solution, as indicated by the smaller values of Fs. In
the case of 6 = —0.03 the area of the transverse DA for
point-11 is of a similar size to that of the design
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> s >
o W o
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4:' ......
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Vx Vx
(a) Design solution. (b) point-3 from Table III.
FIG. 7.

solution. This agrees with the fact that for both of these
design points F; = 0.032 (see Tables Il and VI). The
other two new candidate solutions have lower values of F';
(F; = 0.025 in Table IIT and F; = 0.026 in Eq. (37) and
the computed areas of the transverse DA at 6 = —0.03 for
these two design points are larger than that of the design
solution, which is again the desired behavior.

Additionally, the transverse DAs at the three considered
energies are computed with opA [42] (Fig. 6). In OPA,
for each energy, the transverse DA is sampled on a two-
dimensional grid of points. This results in a better approxi-
mation of the DA (cf. Sec. II A), at the expense of
computation time. For the considered candidate solutions,
the opa-computed transverse DAs are larger than that of the
manually obtained solution. This is in agreement with the
relative relationships of the TRACY-computed transverse
DAs (Fig. 5).

The chromatic tune footprint (Sec. I B 1) and amplitude-
dependent tune footprint (Sec. II B 2) for the three new
solution candidates and the design solution are shown in
Fig. 7. In each subplot, the outer triangle (red) is the
one formed by three first- and second-order resonances
around the on-momentum tune [see Eq. (12)]. The inner
triangle (blue) includes the margin from Sec. II B 1. For all
of the candidate solutions, Fys = unstabler =0 [see
Eq. (18)] and the second constraint in Eq. (28) is satisfied,
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(c) The point from Eq. (37). (d) point-11 from Table VI.

Chromatic tune footprint in the range § € [—0.05, 0.05] (top row) and amplitude-dependent tune footprint (bottom row) for the

solution candidates: the manually obtained solution (referred to as the “design solution,” first column), point -3 from Table III (second
column), the design point from Eq. (37) (third column) and point-11 from Table VI (fourth column). The first- and second-order
resonances are shown as red and the blue triangle area includes the additional margin around the resonance lines. One of the goals of the
optimization was to prevent the tune resonances from being crossed by constraining the tune footprints inside the triangle with margins
(blue triangle). It can be seen that the definition of unstable., ctfp and adts in Sec. II B, as well as their treatment in the
optimization problem formulation in Sec. II D successfully constrained the tune footprints.
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ie.,, ctfp+adts =0 [see Egs. (17) and (23)], so all
footprints are located inside the inner triangle.

VII. CONCLUSIONS

In this paper a multiobjective genetic algorithm is used to
find a good dynamic aperture and energy acceptance for the
Swiss Light Source upgrade. To speed up this expensive
computation, artificial neural network surrogate models are
used in the optimization. It is shown that a straightforward
use of the surrogate model is not good enough for this
problem, so the surrogate model is retrained during the
optimization. Compared to a massively parallel implemen-
tation of a multiobjective genetic algorithm, this new
optimization method results in an order of magnitude
speedup. At the same time, the solution quality is pre-
served. In particular, tens of the design points in the last
generation are better than the design solution in all of the
considered objective functions.

The new, faster method makes it possible to include more
design parameters in the optimization problem, such as the
octupole strengths, which could further improve the sol-
ution quality. Furthermore, it allows for the inclusion of a
more accurate and more expensive model, e.g., a model
which includes nonlinear synchrotron oscillation. In this
work the focus is on the lattice for the Swiss Light Source
upgrade, but an analogous procedure could easily be used
for a different lattice or a different machine.
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