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Impedance-driven (but not only) coherent beam instabilities are usually studied analytically with the
linearized Vlasov equation, ending up with an eigenvalue system to solve. The eigenvalues describe
the beam oscillation mode-frequency shifts, leading in particular to intensity thresholds defined by the
longitudinal mode coupling instability in the longitudinal plane and by the transverse mode coupling
instability in the transverse plane in the absence of chromaticity. This can be directly compared to
measurements in particular for the lowest modes and in the absence of tune spread. In the presence of
nonlinearities or when higher-order modes are involved, this becomes quite difficult, if not impossible, and
the coupling between the modes cannot be directly measured (or simulated) anymore. Another important
observable is the intrabunch motion, which can be also accessed analytically thanks to the eigenvectors.
To the author’s knowledge, until now, the intrabunch signal has only been explained theoretically for
independent longitudinal or transverse beam oscillation modes, i.e., when the bunch intensity is sufficiently
low compared to the mode coupling threshold. It was never explained theoretically in detail when two
(or more) modes are involved. For instance, no answers were already given to these questions: is (are) there
some fixed point(s) when the transverse mode coupling instability starts? If yes, where is it (are they)? And
what happens in the presence of mode decoupling? Any number of modes can be treated with the general
approach discussed in this paper, which is based on the GALACTIC Vlasov solver (which was previously
successfully benchmarked against the PyHEADTAIL macroparticle tracking code as concerns the beam
oscillation mode-frequency shifts). However, to be able to clearly see what happens when the bunch
intensity is increased, the simple case of two modes is discussed in detail. The purpose of this paper is to
describe the different regimes, below, at, above the transverse mode coupling instability and also after the
mode decoupling (as it happens sometimes), using a simple analytical model (where two modes are
considered together), which helps to really understand what happens at each step. Better characterizing an
instability is the first step before trying to find appropriate mitigation measures and push the performance of
a particle accelerator. The evolution of the intrabunch motion with intensity is a fundamental observable
with high-intensity high-brightness beams.

DOI: 10.1103/PhysRevAccelBeams.24.014401

I. INTRODUCTION

The intrabunch signal for independent longitudinal or
transverse beam oscillation modes, i.e., at sufficiently low
intensity, has been explained analytically for impedance-
driven coherent beam instabilities already several decades
ago by Laclare in [1], and it has been observed and
confirmed in many machines and macroparticle tracking
simulation codes. In this case, applying the Vlasov equa-
tion to first order, the motion of the beam is described by
a superposition of modes rather than a collection of

individual particles, and one ends up with an eigenvalue
system to solve (the interested reader could have all the
details for instance in [2] and references therein). The result
is an infinite number of modes of oscillation mq (as there
are 2 degrees of freedom, the longitudinal amplitude and
phase), withm the azimuthal mode number and q the radial
one. The latter is defined as q ¼ jmj þ 2k (with k an integer
between 0 and infinity): with this definition, the radial
mode number q represents the number of nodes of the
superimposed (turn after turn) intrabunch signals, which is
a usual observable in particle accelerators. The first radial
mode corresponds to k ¼ 0 and therefore q ¼ jmj: in this
case, and to simplify the notation, the modemjmj is usually
written with only one number, the azimuthal mode number
m. Examples of such intrabunch signals (superimposed turn
after turn) are shown in Fig. 1 (left) for the case of the first
two modes, 0 and −1. It can be seen, in particular, that these
signals exhibit a clear left/right (head/tail) symmetry and
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they are called standing-wave patterns. As can be seen
in Fig. 1 (right) and as discussed by Sacherer in [3], these
intrabunch signals can be well approximated by

S0ðt; nÞ ¼ cos

�
πt
τb

�
cosð2πnQÞ; ð1Þ

S−1ðt; nÞ ¼ sin

�
2πt
τb

�
cosð2πnQÞ; ð2Þ

where t is the time, n the turn number, τb the full (4-sigma)
bunch length and Q the transverse tune.
However, many pictures measured in particle acceler-

ators or simulated with macroparticle tracking codes are not
left/right symmetric, such as e.g., Fig. 2, which has been
obtained through single-bunch PyHEADTAIL [4] macropar-
ticle tracking simulations with the CERN super proton
synchrotron (SPS) transverse impedance model [5].
Therefore, how can we understand theoretically such a
picture and in particular the left/right asymmetry?
To try and understand this observed asymmetry, I

proposed few years ago to Amorim to study numerically,
with the DELPHI Vlasov solver [6], the intrabunch motion in
the presence of two (or more) modes, which revealed
different regimes, well below the transverse mode coupling
instability (TMCI) intensity threshold [7,8], close to the
TMCI intensity threshold and above the TMCI intensity
threshold [9].
The TMCI instability is supposed to be well known,

as it was first described four decades ago, in 1980, by

Kohaupt [10] in terms of coupling of Sacherer’s head-tail
modes, extending to the transverse motion, the theory
proposed by Sacherer to explain the longitudinal micro-
wave instability. Furthermore, it has been the subject of
extensive experimental observations. However, only the
evolution of the modes with intensity was studied in detail
in the past (to identify in particular the intensity threshold
when the modes couple) but the evolution of the intrabunch
motion with intensity was never analyzed in detail in the
presence of two (or more) modes. This is striking for
instance if one looks at the two famous textbooks from
Chao [11] or Ng [12] (and references therein), where this
important observable is not discussed. Nothing could be
found also in the recent publications despite the fact that
TMCI instabilities can be observed in the presence of beam
coupling impedance but also in the presence of beam-
beam [13], electron cloud [14] and space charge [15]. The
intrabunch motion was discussed a bit more recently, in
particular by Burov, in the framework of the studies of the
effect of space charge on TMCI [16], with the presence of
convective instabilities under some assumptions [17].
However, none of the pictures produced in this paper
and their explanations could be found there. Furthermore,
only the case of an impedance-driven TMCI is treated here,
even if it should certainly apply also to other kinds of TMCI
instabilities, as what matters here is the coupling of trans-
verse modes (whatever the origin of these modes).
The evolution of the intrabunch motion with intensity is

another way of looking at the TMCI instability, which can
be characterized by a traveling-wave pattern along the

FIG. 1. Left: intrabunch signal deduced from the solutions of the eigenvalue problem at low intensity using the GALACTIC Vlasov
solver for the case of a bunch with a longitudinal “water-bag” distribution [1] interacting with a purely inductive impedance [2]; right:
approximation by sinusoidal modes given by Eqs. (1) and (2) [3]. Here, t is the time, τb is the full (4-sigma) bunch length and the head of
the bunch is on the left while the tail is on the right.
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bunch, as a result of the coupling of two standing-wave
patterns (head-tail modes). It is true that the general case
considering the interaction between two (or several) modes
is more involved than the low-intensity case as it now
depends on the bunch intensity. For instance, in the
example treated in [9] with only the two modes 0 and
−1, the intrabunch signal of Fig. 3 has been numerically
obtained when the two modes 0 and −1 start to couple. It
is worth noting that all the information should be already
available in all the Vlasov solvers: it is just that this
information was not exploited much until now as the
intrabunch motion was mainly used to characterize head-
tail instabilities, where all the modes can be treated
independently. Indeed, in this case the intrabunch motion

is usually the most used observable in accelerators and it
helps to characterize the instability before trying to find the
appropriate mitigation measures, as the later differ depend-
ing on the type of instability. For instance, in the case of a
head-tail instability one will often try to introduce a certain
amount of nonlinearities to provide some Landau damping
whereas in the case of a TMCI instability one will not do
this as the required tune spread is huge (of the order of the
synchrotron tune, which might lead to other issues).
The motivation for this study was the following: how can

we understand theoretically the observed asymmetries of
Figs. 2 and 3 and for instance the fixed point of Fig. 3 when
the two modes start to couple? The purpose of this paper is
to answer these questions (and more), to explain theoreti-
cally and in detail the evolution of the intrabunch signal
when both modes 0 and −1 are considered together, in an
example case where both modes couple at some bunch
intensity and then decouple at another one [18] (similarly to
the case discussed in [9]). Of course, in the general case
several modes might be needed to be able to quantitatively
describe the real situation but then it would only be a matter
of summing over more modes: the physics would have been
already fully understood (as can be observed in [9]).

II. GENERAL APPROACH WITH THE
GALACTIC VLASOV SOLVER

The GALACTIC Vlasov solver has been explained in detail
in [2] for the case of a single bunch interacting with any
impedance. In particular, the following two equations need
to be solved

σðlÞ ¼
X∞

i;j¼−∞
aijσijðlÞ; ð3Þ

ΔQ
Qs

akl ¼ Haij; ð4Þ

where the (general, high-intensity) eigenvector σ is decom-
posed on the low-intensity eigenvectors σij, with the
coefficients aij, which can be identified by finding the
eigenvectors of the eigenvalue system of Eq. (4), l is an
integer, ΔQ the (complex) betatron tune shift, Qs the
synchrotron tune and H is the matrix to be diagonalized
(which includes in particular the bunch intensity and the
impedance: the interested reader can find all the details
in [2]) but most of the times, one only looks at the evolution
of the modes and the instability growth rate with the bunch
intensity (given by the real and imaginary parts of the tune
shifts) [2] and not at the intrabunch signal when several
modes are involved. To the author’s knowledge, the intra-
bunch signal was never explained theoretically in detail
when two (or more) modes are involved, and for instance
the position of the fixed point of Fig. 3 was not explained
yet. From Eqs. (3) and (4), it can be seen that once the

FIG. 2. Simulated (with the PyHEADTAIL macroparticle tracking
code, using a Gaussian longitudinal profile) transverse single-
bunch instability with the CERN SPS transverse impedance
model and a chromaticity close to zero (Q0 ¼ 3). The amplitude
of the instability is plotted vs time with respect to the center of the
bucket over 2000 consecutive turns. This figure is courtesy of
Beck [5].

FIG. 3. Simulated (with the DELPHI Vlasov solver, using a
Gaussian longitudinal profile) transverse intrabunch signal
(superimposed turn after turn), as observed from a pickup
monitor, for the case of a bunch interacting with an impedance
and for the chromaticity Q0 ¼ 0, when the two modes 0 and −1
start to couple. This figure is courtesy of Amorim [9].
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coefficients aij are obtained, the intrabunch signal can be
plotted following [1], using the eigenvector σ [as discussed
before in the case of low-intensity independent head-tail
modes, see Fig. 1 (left)]. Any number of modes can be
treated with this approach, but to be able to clearly see what
happens when the bunch intensity is increased, the simple
case of two modes is discussed in the next section.

III. SIMPLE MODEL CONSIDERING BOTH
MODES 0 AND − 1 TOGETHER

It is worth mentioning first that the GALACTIC Vlasov
solver, used in this paper, was benchmarked against the
PyHEADTAIL macroparticle tracking code, and an excellent
agreement was reached, as can be seen from Figs. 15 and
16 of Ref. [2]. Furthermore, it is also worth observing from
these figures that they correspond to the case of a first mode
coupling instability between modes 0 and −1 and then a
mode decoupling (before another mode coupling takes
place between higher-order modes). This case is therefore
very close to the situation, which is considered in this
paper, and which is based on the simplified model used in
the past to study the destabilizing effect of the LHC trans-
verse damper (or any resistive bunch-by-bunch transverse
damper) for zero chromaticity (deduced from studies with
the GALACTIC Vlasov solver) but without damper [19,20].
One considers thus the case of a bunch (with a longitudinal
“water-bag” distribution [1]) interacting with a broadband
resonator impedance with a quality factor of 1 and a
resonance frequency fr such that frτb ¼ 0.8. This case
was first treated exactly in [19], as can be observed from
Fig. 2 of Ref. [19]. Then, trying to understand the detailed
physical mechanism behind the destabilizing effect of a
resistive transverse damper, it was observed that the physics
could be fully understood by considering only the two
modes 0 and −1 (over the relevant intensity range), as can
be seen by comparing Figs. 2 and 3 of Ref. [19]. In this case
the matrix, which needs to be diagonalized, can be
approximated by [as can be seen from Eq. (7) of Ref. [19] ]

H ¼
� −1 −0.23jx
−0.55jx −0.92x

�
ð5Þ

with j the imaginary unit and x a normalized parameter
proportional to the bunch intensity [19]. Note that this
matrix was obtained from numerical computations with the
GALACTIC Vlasov solver, and that it can take several forms:
this explains why the off-diagonal terms are complex here,
instead of being real, but this leads to the same results as it
is the product between the two which matters. The related
eigenvalues are depicted in Fig. 4, while the eigenvectors
are represented in Fig. 5. As can be seen from Fig. 4, the
two modes 0 and −1 couple at x ¼ 0.61, which defines the
TMCI intensity threshold. Below this value, the bunch is
stable, while above it the bunch is unstable (as can be also
observed from the red curve exhibiting a nonzero value).

When x ¼ 4.8, the two modes decouple and the bunch is
stable again.
Below the TMCI intensity threshold, and considering

the approximated sinusoidal modes of Eqs. (1) and (2) as
discussed before (see Fig. 1), the intrabunch signal Sðt; nÞ
is given by (exchanging the coefficients for each mode)

Sðt; nÞ ∝ a0S0ðt; nÞ − a−1S−1ðt; nÞ; ð6Þ

with a0 and a−1 given by the (dashed) blue curve in Fig. 5,
which depend on the bunch intensity. At very low bunch
intensity, the signals of Fig. 1 are recovered (see Fig. 6) and
the two modes are independent and not perturbed by the
other one. As the bunch intensity increases, the mode 0 is
more and more perturbed by the mode −1 and vice versa
(see Fig. 7).
At the TMCI intensity threshold, Sðt; nÞ is given by

Sðt; nÞ ∝ a½S0ðt; nÞ − S−1ðt; nÞ�; ð7Þ

FIG. 5. Eigenvectors of the matrix of Eq. (5) with x a
normalized parameter proportional to the bunch intensity [19]:
imaginary part in blue (dashed line) and real part in red (full line).

FIG. 4. Eigenvalues of the matrix of Eq. (5) with x a normalized
parameter proportional to the bunch intensity [19]: real part in
blue (dashed line) and imaginary part in red (full line).
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FIG. 6. Left: eigenvalues with the black dot describing the corresponding bunch intensity (x ¼ 0.1), following mode 0 (top) and mode
−1 (bottom); right: intrabunch signal for the mode 0 (top) and mode −1 (bottom).

FIG. 7. Similar pictures as in Fig. 6 but for a larger bunch intensity: x ¼ 0.5.

FIG. 8. Similar pictures as in Fig. 6 but for a larger bunch intensity: x ¼ 0.61.
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with a0 ¼ a−1 ¼ a (see Fig. 5). The signal is zero at both
bunch extremities but there is also a fixed point inside the
bunch when

cos
�
πt
τb

�
− sin

�
2πt
τb

�
¼ 0; ð8Þ

i.e., when t ¼ τb=6: the signal is asymmetric and shifted
towards the head (see Fig. 8).
Above the TMCI intensity threshold, Sðt; nÞ is given by

Sðt; nÞ ∝ ðaþ jbÞS0ðt; nÞ − ða − jbÞS−1ðt; nÞ; ð9Þ

which can be written

Sðt; nÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
�
cos

�
πt
τb

�
− sin

�
2πt
τb

��
2

þ b2
�
cos

�
πt
τb

�
þ sin

�
2πt
τb

��
2

s
cosð2πnQþ ϕðtÞÞ; ð10Þ

with a and b deduced from Fig. 5 (a being the imaginary
part and b the real one) and

ϕðtÞ ¼ arctan
b½cosðπtτbÞ þ sinð2πtτb

Þ�
a½cosðπtτbÞ − sinð2πtτb

Þ� : ð11Þ

Due to the latter term (which is coming from the fact that
the eigenvectors from Fig. 5 have now both a real and an
imaginary part), a traveling wave along the bunch is
created: the coupling between two standing waves is a
traveling wave, which is another way to see that the
bunch is in the TMCI regime. The TMCI is head dominated
close to the intensity threshold and the signal moves from
the head to the tail when the bunch intensity is increased
(see Figs. 9 and 10).

Once the modes decouple (for x ¼ 4.8, see Fig. 4 or
Fig. 5), the signal is the symmetric of the one when the two
modes couple (for x ¼ 0.61). The signal is zero at both
bunch extremities but there is also a fixed point inside the
bunch when

cos

�
πt
τb

�
þ sin

�
2πt
τb

�
¼ 0; ð12Þ

i.e., when t ¼ −τb=6: the signal is asymmetric and shifted
towards the tail (see Fig. 11).
Finally, above the mode decoupling intensity threshold,

the bunch is stable again (as the instability growth rate is
zero, see Fig. 12), but an important amplification is
revealed from head to tail, as recently discussed in the
context of convective instabilities with space charge [17].

FIG. 9. Similar pictures as in Fig. 6 but for a larger bunch intensity: x ¼ 1.0.

FIG. 10. Similar pictures as in Fig. 6 but for a larger bunch intensity: x ¼ 4.0.
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IV. SIMPLE MODEL CONSIDERING TWO
HIGHER-ORDER MODES TOGETHER

A similar approach can be used to study the mode
coupling between two higher-order modes, such as e.g.,
between modes −2 and −3 and pictures like in Fig. 13 can
be obtained, revealing a huge amplification from head to
tail with zero growth rate. In this case, the matrix to be
diagonalized is given by

H ¼
� −3 −0.23jx
−0.55jx −2 − 0.92x

�
: ð13Þ

It is worth mentioning that the eigenvectors of Eq. (13)
are the same as those of Eq. (5) (as the modes have
only been shifted down by −2) and that the three fixed
points of the intrabunch signal can also be computed and
are solutions of

FIG. 12. Similar pictures as in Fig. 6 but for a larger bunch intensity: x ¼ 5.9.

FIG. 13. Example of picture obtained in the presence of mode coupling (and mode decoupling) between modes −2 and −3.

FIG. 11. Similar pictures as in Fig. 6 but for a larger bunch intensity: x ¼ 4.8.
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cos

�
3πt
τb

�
þ sin

�
4πt
τb

�
¼ 0: ð14Þ

Another example is shown in Fig. 14 for the case of
mode coupling between modes −9 and −10, for which the
matrix to be diagonalized is given by

H ¼
� −10 −0.23jx
−0.55jx −9 − 0.92x

�
: ð15Þ

Here again the eigenvectors of Eq. (15) are the same as
those of Eq. (5) (as the modes have only been shifted down
by −9).

V. CONCLUSIONS

The intrabunch motion, and its main features below, at,
above the TMCI intensity threshold and also after the mode
decoupling (when it exists), can be explained with a simple
analytical model (considering two modes together),
revealing clearly what happens when the bunch intensity
is increased. The pictures of intrabunch signals obtained
with this approach are very similar to the ones obtained with
the DELPHI Vlasov solver [9] (compare for instance Fig. 8
obtained with the theory discussed in this paper and Fig. 3
obtained numerically from the DELPHI Vlasov solver).
Furthermore, it was interesting to observe that in some
cases a huge amplification factor can be observed from head

to tail with zero growth rate, as recently discussed in the
context of convective instabilities with space charge [17]. A
similar approach can be adopted (using the corresponding
eigenvectors) with a transverse damper and/or a nonzero
chromaticity and similar results are obtained [18].
This simplified model should help us to better under-

stand the observations in the different particle accelerators
and in simulations, as e.g., in Fig. 2, which clearly reveals a
TMCI close to the intensity threshold as the signal is head
dominated. Better characterizing an instability is the first
step before trying to find the appropriate mitigation
measures to push the performance of a particle accelerator.
Based on the present analysis, it is proposed to use more
this fundamental observable of the evolution of the intra-
bunch motion with intensity.
In the future, it is planned to compare the theoretical

intrabunch motion (and its evolution with intensity) pre-
dicted in this paper to the one simulated with the
PyHEADTAIL macroparticle tracking code for a case similar
to the one discussed here, i.e., with mode coupling
(between modes 0 and −1) and mode decoupling (see
Figs. 15 and 16 of Ref. [2], where an excellent agreement
was obtained between the PyHEADTAIL macroparticle
tracking code and the GALACTIC Vlasov solver discussed
in this paper, as concerns the mode-frequency shifts).
Furthermore, can something like this explain some past

measurements in the CERN proton synchrotron (PS) and
proton synchrotron booster (PSB) (in the presence of strong

FIG. 14. Example of picture obtained in the presence of mode coupling (and mode decoupling) between modes −9 and −10.

FIG. 15. Example of pictures measured in the past in the CERN PS (left) and PSB (right) in the presence of strong space charge: the
head of the bunch is on the left and the tail of the bunch is on the right. This figure is courtesy of Koukovini Platia for the PSB
measurements.
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space charge), as depicted in Fig. 15? Can something like
this also explain some (parts of) simulations in the presence
of electron cloud, as depicted in Fig. 16? This will be
investigated in detail in the future, as these pictures look
very similar to the ones produced in this paper and recent
studies revealed that the effect of space charge or electron
cloud can also lead to TMCI instabilities [15,14], as it was
already shown in the past with beam-beam [13].
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electron cloud. This figure is courtesy of Sabato.
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