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Undulator radiation from synchrotron light sources must be transported down a beam line from the
source to the sample. A partially coherent photon beam may be represented in phase space using a Wigner
function, and its transport may use some similar techniques that are familiar in particle beam transport. We
describe this process in the case that the beam line is composed of linear focusing and defocusing sections
as well as apertures. We present a compact representation of the beam line map involving linear
transformations and convolutions. We create a 1∶1 imaging system with a single slit on the image plane and
observe the radiation downstream to it. We propagate a Gaussian beam and undulator radiation down this
sample beam line, drawing parameters from current and future ultra low emittance light sources. We derive
an analytic expression for the partially coherent Gaussian case including passage through a single slit
aperture. We benchmark the Wigner function calculation against the analytical expression and a partially
coherent calculation in the synchrotron radiation workshop (SRW) code.
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I. INTRODUCTION

Synchrotron radiation sources, either storage ring or
FEL-based, require optical beam lines to transport the
radiation to the experimental sample. As performance of
these sources is being pushed to lower emittance and higher
coherence, new attention is being drawn to the beam line
performance and optics modeling [1].
Models of radiation transport through the beam line

elements exist in a hierarchy of levels of accuracy and
complexity. At the simplest level, one can use analytical
formulas to propagate beam sizes, divergences and coher-
ence lengths through an idealized beam line (see [2]). At
the next level is the geometric optics description using a
ray-tracing approach (e.g. SHADOW [3]). At a higher level
of complexity, one may use a physical optics approach
which requires wavefront propagation software (e.g. SRW
[4]). The wavefront propagation allows the inclusion of
diffraction effects in coherent optics, but is more computa-
tionally intensive than the ray-tracing approach.
To go beyond optics of coherent wavefronts, accurate

representation of radiation requires the model to include
partial coherencewhichmay be treated using considerations

of statistical optics [5,6]. For synchrotron radiation, this
partial coherence results from the finite electron beam size
causing randomness in the phase of the emitted radiation. In
the wavefront propagation method, this may be taken into
account by propagating multiple initial wavefronts, either
via a sampling of the phase space of initial electron beam [7]
or by a coherent mode decomposition [8–10].
Another approach to treating partially coherent radi-

ation involves the use of Wigner functions. The Wigner
function formalism for synchrotron radiation was pio-
neered by K.-J. Kim [11]. The Wigner function was
originally developed in quantum mechanics [12–14], as
an alternative phase-space representation to the density
operator. In an optical context, the Wigner function may
represent the types of systems described in statistical
optics, where multiple wavefronts are simultaneously
present with random phase relations between them. The
properties of Wigner functions and the relation between
the quantum mechanics and optics contexts are described
by Bazarov [15].
Although Wigner functions for fully and partially coher-

ent synchrotron radiation have been computed, they have
not been widely used in the propagation down beam lines.
In this paper, we demonstrate propagation of the fully and
partially coherent Wigner functions through a simplified
beam line. We compute beam line maps that take radiation
at the source to radiation at the sample. We limit ourselves
to linear maps, (so-called ABCD matrix, in the optics
literature [16,17]) under which the Wigner function trans-
forms in a straightforward manner. We will also consider
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physical apertures, focusing on the case of single slits, an
important element in most x-ray beam lines. We assume
separable radiation (no coupling between horizontal and
vertical propagation) such that we may work with 2D
Wigner functions [15,18]. The extension to higher dimen-
sionality is straightforward. Including nonlinear elements,
such as spherical aberrations in a lens, will be a topic of
future work.
As the size of the electron beam increases, the Wigner

function becomes dominated by the Gaussian electron beam
and the coherence decreases. To understand this transition,
we consider Gaussian initial Wigner functions. Gaussian
Wigner functions have been treated in detail already in the
literature and go by the name of “Gauss Schell models” [19].
After passing through an aperture, however, they are no
longer Gaussian. We are able to derive an analytic expres-
sion for the diffraction of a partially coherent Gaussian
through a single slit and the expected intensity distribution
on a subsequent screen.Wemay thus validate our algorithms
for linear transport and passage through an aperture. In
addition, we may compare the analytical Gaussian result to
the case of undulator radiation and gain understanding as to
when the Gaussian result may be adequate in simulation.
Finally, we validate our undulator radiation transport using
our simplified Wigner function map method to a partially
coherent SRW calculation.

II. X-RAY BEAM LINE MODELING

A synchrotron radiation beam line model represents the
optical system that transports x-rays from the electron beam
source all the way to the sample, passing through a series of
optical elements along the way. There are several methods
of approaching this modeling task: we survey physical
optics in the Appendix A, for example. We start with a
summary of the properties of the radiation Wigner function.
Next, we provide a brief discussion of linear geometric
optics including apertures. Finally, we show how to evolve
the Wigner function under the action of a matrix-aperture
beam line.
Consider an optical ray and attribute to it a wavelength λ

following a trajectory starting at position s ¼ 0 where the
radiation is created and ending at S ¼ L at the end of the
beam line. This trajectory will in general not be straight due
to reflections from mirrors and gratings and passing
through other optical elements. At each position s, along
the trajectory, we assign transverse phase space coordi-
nates, z⃗,

z⃗ ¼

0
BBB@

x

θx

y

θy

1
CCCA; ð1Þ

where x and y are transverse coordinates, θx and θy are
corresponding angles with θx ¼ dx

ds and θy ¼ dy
ds.

1

A. Radiation Wigner functions

We represent the radiation along the trajectory by means
of a Wigner function Wðz⃗Þ. Many of the properties of
Wigner functions have been reviewed by Bazarov [15]. We
mention several of them so that our treatment here is self-
contained. First, the Wigner function is normalized:

Z
dz⃗Wðz⃗Þ ¼ 1: ð2Þ

We adopt this normalization for clarity of presentation and
close connection to the corresponding quantum mechanical
formalism. The Wigner function is related to the brightness
(or brilliance) function B by means of an overall factor of
the radiation flux ϕ:

Bðz⃗; sÞ ¼ ϕðsÞWðz⃗; sÞ: ð3Þ

Thus, as the radiation moves along the beam line, pro-
gressing in s and passes through absorbing elements (such
as apertures that we consider here), the flux ϕ will reduce,
but the normalization of Wðz⃗; sÞ will remain constant.
Now, suppose we know the Wigner function at s ¼ 0,

W0ðx; θx; y; θyÞ. We will assume that W0 is separable; that
is that W0 obeys2

W0ðx; θx; y; θyÞ ¼ Wxðx; θxÞWyðy; θyÞ: ð4Þ
In the examples we consider, the Wigner function

remains separable throughout the beam line, and thus we
may consider propagation of the components separately.
We thus refer to Wxðx; θxÞ orWyðy; θyÞ simply byWðx; θÞ.
Now, suppose that Wðx; θÞ represents fully coherent

radiation. Then, there exists an electric field EðxÞ such that

Wðx; θÞ ¼ 1

λ

Z
∞

−∞
E�

�
x −

ϕ

2

�
E

�
xþ ϕ

2

�
e−

2πi
λ ϕθdϕ: ð5Þ

We may write this equation in an operator form:

Wðx; θÞ ¼ W½EðxÞ�; ð6Þ

where we refer to W as the Wigner transform operator, or
Wðx; θÞ as the Wigner function associated with EðxÞ. In the

1Note that we will ignore the longitudinal phase space coor-
dinates in this work. A 6D phase space treatment would include
the longitudinal position and relative wavelength deviation. In
particular we ignore pulse length effects and assume a mono-
chromatic beam.

2Note that for the case of undulator radiation, this condition
only approximately holds. On resonance, the condition is
satisfied to within a few percent over a wide range of emittance
values. See Fig. 6 in [18].
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case of fully coherent radiation, the electric field may be
reconstructed from the Wigner function as follows [15]

E�ðxÞEð0Þ ¼ 1

λ

Z
∞

−∞
W

�
x
2
; θ

�
e
2πi
λ xθdθ: ð7Þ

Now, in the case where W is partially coherent, there
does not exist a single, well-defined wavefront associated
with the Wigner function. Rather, there exists a whole
sequence of fields EjðxÞ with j ¼ 1…∞. The Wigner
function is given as the (infinite) sum of the Wigner
transforms associated with the Ej:

Wðx; θÞ ¼
X
j

W½EjðxÞ�: ð8Þ

The decomposition of a given partially coherent Wigner
function into a set of underlying fields Ej is not generally
unique. In the case that the fields are orthogonal, and are
eigenvectors of the underlying transport operator, the fields
are referred to as modes (see Sec. 4.7 in [20]). The process
of finding an astute choice of such modes is known as
“coherent mode decomposition.” In constructing the par-
tially coherent Wigner function for synchrotron radiation,
one must integrate over the electron beam distribution [see
later Eqs. (42)–(44)]. Thus, although these wavefronts are
not orthogonal, we may also consider the decomposition
into single electron modes as a form of coherent mode
decomposition satisfying Eq. (8).
From the Wigner function, one may compute the

quantity, μ, known as the degree of coherence via the
following expression:

μ2 ¼ λ

Z
W2ðx; θÞdxdθ: ð9Þ

In the fully coherent case where W may be derived from
an electric field, we find μ ¼ 1. For the partially coherent
case, μ < 1.

B. Linear geometric optics

Along an x-ray beam line, there are optical elements
which the radiation will interact with. We include these in
our model by including a varying optical path difference,
that is, a phase and amplitude modulation, as a function of
the Cartesian coordinates ðx; y; sÞ. This optical path length
difference is often a function of the index of refraction
nðx; y; sÞ for transmission elements. In addition we will
include physical apertures, which allow radiation within a
certain transverse region to pass unimpeded, and absorb all
radiation outside of that region. The aperture elements may
be described by transfer functions tðx; yÞ which describe
the region where rays may pass, and where they are
absorbed. In fact, we may allow more general aperture

elements with values between 0 and 1 in which the intensity
of the ray may be reduced but not fully absorbed.
Now consider another ray, starting at a different initial

condition Z⃗0. The evolution of this ray down the beam line
may be described by the action of the following
Hamiltonian3

Hðx; θx; y; θy; sÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðx; y; sÞ − θ2x − θ2y

q
: ð10Þ

with θx and θy playing the role of momenta, and with
position along the trajectory s as independent variable.
nðx; y; sÞ is the local index of refraction that the radiation is
passing through. The result of this Hamiltonian formulation
for geometric optics is that the offset ray will follow
Hamilton’s equations:

_Zi ¼ Jij
∂H
∂Zj

; ð11Þ

with summation over the repeated index j implied and the
dot representing d

ds. For 4D phase space (in the case that we
ignore variation in the z and δ coordinates), the matrix J is
given by

J ¼

0
BBB@

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA: ð12Þ

If we allow arbitrary index of refraction nðx; yÞ in our
model beam line, then the equations of motion will be
nonlinear. For the purposes of this paper, we will restrict to
the approximation that the index of refraction varies
quadratically, leading to linear equations of motion for
the ray tracing. In particular, as our model for the index of
refraction nðx; y; sÞ, we will assume it to be constant along
the optical axis and then to fall off quadratically in the
transverse directions. Thus, we parametrize it as follows4:

nðx; y; sÞ ¼ n0ðsÞ − κxðsÞx2 − κyðsÞy2: ð13Þ

Expanding the Hamiltonian for small angles, to quadratic
order, we find

3This Hamiltonian may be derived from the formulas for scalar
diffraction theory under the paraxial approximation. One pub-
lished derivation starting from a Lagrangian, and converting to a
Hamiltonian is given in Ref. [21] by A. Dragt. A second
derivation by A. Dragt in which an “operator square root” is
taken is available in unpublished notes [22].

4Note that we leave out a coupling term in the Hamiltonian
proportional to xy so that the separable condition is satisfied.
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Hðx; y; θx; θy; sÞ ≈ −n0ðsÞ þ
θ2x þ θ2y
2n0

þ κxðsÞx2 þ κyðsÞy2:

ð14Þ

As mentioned, this Hamiltonian will lead to linear equa-
tions of motion. The solution may thus be expressed in
matrix form as

Z⃗ðsÞ ¼ MðsÞZ⃗0: ð15Þ

One may solve these equations and produce a linear map
for a given beam line section. All the optical elements
(excluding the apertures which we deal with separately are
thus captured in the transfer matrixMðsÞ varying along the
beam line. Because the ray tracing dynamics are derived
from a Hamiltonian, we are assured that the resulting
transfer matrix is symplectic. That is:

MðsÞTJMðsÞ ¼ J; ð16Þ

for all s along the beam line. The matrix J is given
in Eq. (12).
Although we have formulated this section in terms of a

Hamiltonian theory to bring out some of the formal
properties of the propagation, the transfer matrix may also
be computed for realistic beam lines using ray tracing
software. See [23] for an example of this calculation for a
KB mirror system.
In the next section, we describe the evolution of the

Wigner function under the matrix M. This covers both the
fully coherent and partially coherent case. In the fully
coherent case, a different formalism is possible for the
propagation: that of the linear canonical transform (LCT).
We outline this in Appendix A.

C. Partially coherent propagation withWigner function

The evolution equation for the Wigner function is given
as follows [13]

∂Wðx; θx; y; θy; sÞ
∂s ¼ ½W;H�⋆; ð17Þ

where the Moyal bracket is defined for arbitrary phase
space functions f and g as

½f; g�⋆ ¼ 1

iƛ
ðf⋆g − g⋆fÞ; ð18Þ

and the Moyal star is given by

⋆ ¼ e
iƛ
2
ð∂⃖x∂⃗θ−∂⃖θ ∂⃗xÞ; ð19Þ

with the arrows representing action of the derivative, either
to the left or right, depending on arrow orientation.

Fortunately, in the case of a quadratic Hamiltonian,
evolution of the Wigner function is much simpler and more
intuitive. The Moyal bracket reduces to the Poisson bracket
giving classical evolution (again using the quantum/
classical mechanics analogy). One finds that the motion
in phase space is a linear transformation. These consid-
erations allow us to formulate our approach. In particular,
consider a beam line where the geometric optics is defined
by a transfer matrix M acting on the phase space vector z⃗:

z⃗f ¼ Mz⃗i: ð20Þ

The Wigner function evolves along this beam line accord-
ing to

Wfðz⃗Þ ¼ WiðMz⃗Þ: ð21Þ

We may describe this transformation with the operator,
UM, defined as

UMðWðz⃗ÞÞ ¼ WðMz⃗Þ: ð22Þ

By performing a change of variables, one may show that
the degree of coherence μ is conserved under linear
transport UM. That is,

μðWðz⃗ÞÞ ¼ μðWðMz⃗ÞÞ: ð23Þ

The degree of coherence is not conserved after passing
through an aperture, which we now describe.
We would now like to consider the way in which Wigner

functions are impacted by physical apertures. As described
by Bazarov, for the electric field, the effect of the aperture is
given by

Es0 ðx⃗Þ ¼ Esðx⃗Þtðx⃗Þ; ð24Þ

where tðx⃗Þ is the transmission function of the aperture.
In terms of the Wigner function, the action of the

aperture is given by the partial convolution (in the angular
variable) of the aperture Wigner function:

Ws0 ¼ Ws�θWt ≡AtWs: ð25Þ

The aperture Wigner function Wt is given by applying
the Wigner transform to the aperture transmission function.
That is, we apply Eq. (5) where the aperture transmission
function tðxÞ plays the role of the electric field.
Since an aperture results in absorption of radiation, the

normalization of the Wigner function would change after
passing through. As given in Eq. (3), the Wigner function is
related to the brightness by a factor of the total flux. For
simplicity, we will ignore the changing value of flux along
the beam line and consider Wigner function to be con-
sistently normalized throughout. Thus we normalize the

NASH, GOLDRING, EDELEN, WEBB, and CELESTRE PHYS. REV. ACCEL. BEAMS 24, 010702 (2021)

010702-4



transmission function according to Eq. (B2) and thusWðtjÞ
will be normalized according to Eq. (B7). Because of the
different normalization, the Wigner transform of a trans-
mission function could be considered as a sort of filter that
acts on the incoming radiation Wigner distribution function
(WDF). Thus, part of the work of propagation of WDFs
through beam lines including apertures involves the cal-
culation of the Wigner filter functions. We will give an
example of this function for the single slit aperture in a later
section. A substantial part of the understanding about
diffraction effects can be gleaned by examination of these
Wigner filter functions.

D. Matrix-aperture beam lines

Consider the beam line schematic as shown in Fig. 1
consisting of an undulator source with an electron beam
and subsequent sections which may be described by
matrices, Mj, and apertures with transmission function,
tjðxÞ. An electron beam with distribution feðz⃗Þ passes
through an undulator producing synchrotron radiation. Let
E0ðx⃗Þ be the electric field produced by a single electron as it
appears at the center of the undulator. We may now
construct the multi-electron Wigner function for the undu-
lator radiation as will be described in Sec. IVA [see
Eq. (44)].
We consider an axial ray coming from the center of the

undulator and proceeding along the beam line until the final
observation plane located at position sn. We note that the
optical axis described by this axial ray is not necessarily a
straight line. In particular, mirrors will cause angular
deviations from the central trajectory and at each point,
the transverse coordinates are relative to the direction of the
central ray. Along the beam line, there are apertures located
at positions s1 through sn−1 which are represented by
transmission functions t1 through tn−1. For the purpose of
our simplified beam line, nonlinear aberrations will be
ignored and we will assume that the transport between
apertures j − 1 and j may be represented by the matrixMj.
Following Eq. (22), we find an operator for this beam

line section given by UMj
that simply transports the phase

space by applying the matrixMj. We have thus defined the

operator for propagation through sections of linear trans-
port, UMj

, that may include mirrors, lenses, and other
elements when remaining close to the optical axis.
Likewise, the apertures may also be represented by oper-
ators, Atj , as given by Eq. (25). The operator for the entire
simplified beam line may then be given by

OBL ¼ UMn
Atn−1UMn−1

…At2UM2
At1UM1

: ð26Þ

Then the fully coherent and partially coherent simula-
tions can be simply written as

Wse;n ¼ OBLW0
se ð27Þ

Wme;n ¼ OBLW0
me: ð28Þ

III. EXAMPLES—GAUSSIAN RADIATION BEAM

We consider Gaussian radiation (GR) and undulator
radiation (UR) propagating through a simple matrix-aper-
ture beam line doing a 1∶1 imaging of the source with a
horizontal slit at the image plane and observing the
radiation downstream to it. A schematic for this beam line
is depicted in Fig. 2 and the corresponding source and beam
line parameters are provided in Table I.
We first illustrate many of the useful properties of

radiation Wigner function distribution (WFD) propagation
with the example of Gaussian radiation. The one-to-one
imaging section preserves the coherence properties5 and
thus the first element to consider is the single slit aperture.
Propagation through the aperture and subsequent propa-
gation through free space allows us to observe the impact of
decreasing coherence on the WFD and corresponding
intensity pattern. As the divergence becomes sufficiently
large, the oscillations in θ in the aperture Wigner filter are
washed out, and coherent diffraction effects are seen to be
destroyed. The GR case has the advantage of exploiting the
analytical expressions previously derived for benchmarking
our numerical WFD transport methods.

FIG. 1. Matrix aperture beam line schematic.

5This assumes that there is no beam cropping and that the
imaging system can resolve the radiation source.
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We then explore the more complex case of UR propa-
gating through this beam line. Changing the electron beam
emittance allows us to control the degree of partial
coherence. At small electron beam emittances, the WFD
is dominated by the single electron WFD, but as the
electron beam emittance increases, this structure becomes
less relevant and the WFD asymptotically reduces to the
GR case. In order to confirm the accuracy of our calcu-
lations, we have set up the same beam line model in SRW.
Due to the separability of the horizontal and vertical
components, we are able to demonstrate a direct compari-
son between SRW and our own partially coherent WFD
based propagation results. Our Wigner function based
methods are done in two phase space dimensions and rely
on the separability of the radiation to be able to compare to
SRW. A more detailed analysis of the computational
complexity of the different methods is discussed in Sec. V.
We first consider a Gaussian beam propagating through

the simple matrix aperture beam line where we can
compare our numerical results to the analytical expression
given by Eq. (40).

A. Analytic calculation for Gaussian radiation
with single slit aperture

In this section, we derive an analytic expression for the
propagation of a GaussianWigner function through a single
slit aperture of width a. We are able to find an analytic
expression for the radiation immediately after the slit as well
as the radiation after having drifted some distance beyond.
The aperture is described by the transmission function

tðxÞ ¼ rect

�
x
a

�
; ð29Þ

with

rectðxÞ ¼

8>><
>>:

1; jxj < 1
2

1
2

jxj ¼ 1
2

0; jxj > 1
2

: ð30Þ

We derive an expression for the corresponding Wigner
filter function in Appendix D6:

Wssðx; θÞ ¼ rect

�
x
a

�
2 sin ½2πθλ ð−2jxj þ aÞ�

θ
ð31Þ

≡ rect

�
x
a

�
2 sinðθQÞ

θ
ð32Þ

Q ¼ 2π
a − 2jxj

λ
: ð33Þ

Plots of the single slit aperture transmission function and
corresponding WFD are displayed in Fig. 3.
Let us consider a partially coherent Gaussian Wigner

function given by

Wðx; θÞ ¼ 1

2πσxσθ
e
− x2

2σ2x
− θ2

2σ2
θ : ð34Þ

Let us write the relationship between the position and
angular spreads as

FIG. 2. Simple matrix-aperture beam line example.

TABLE I. Numerical simulation parameters.

Undulator radiation

Length, Lu 2.31 m
Period, λu 0.033 m
Max. field, B 0.7 T
Deflection parameter, k 2.157
First resonant energy, E1 3.115 keV
Wavelength, λ1 3.98 Å
Electron beam (APS-U)
Energy, E 6.0 GeV
Current, I 200 mA
Horizontal emittance, ϵx 42.2 pm
Horizontal RMS size, σx 14.44 μm
Horizontal RMS divergence, σx0 2.92 μrad
Vertical emittance, ϵy 4.20 pm
Vertical RMS size, σy 2.82 μm
Vertical RMS divergence, σy0 1.49 μrad
Beam line parameters
Distance to lens, L1 30.0 m
Lens focal length, f 15.0 m
Aperture width, a 16.7 μm
Final drift length, Ld 0.1 m

6This expression can also be found in Ref. [24].
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σxσθ ¼ m2
λ

4π
: ð35Þ

where m2 is the beam quality factor known in the laser
optics literature.7 In the case that m2 ¼ 1, the Wigner
function represents a coherent wavefront.8 For m2 > 1, this
Wigner function represents partially coherent radiation.
To propagate the Wigner function through the slit, we

perform a convolution of the Gaussian with Eq. (31) in the
θ variable. That is,

Ws0
1
¼ Ws1�θWss ð36Þ

¼ rect

�
x
a

�
2

2πσxσθ
e
− x2

2σ2xIðθ; QÞ; ð37Þ

with

Iðθ; QÞ ¼
Z

∞

−∞
e
−ðθ−τÞ2

2σ2
θ
sinðτQÞ

τ
dτ: ð38Þ

This integral may be performed (see Appendix D for
details) with the result

Iðθ; QÞ ¼ πe−
θ̂2

2 Im

�
ierf

�
Q̂þ iθ̂ffiffiffi

2
p

��
; ð39Þ

where Im represents taking the imaginary part of the
argument and Q̂ ¼ Qσθ and θ̂ ¼ θ=σθ. Writing it all out
explicitly to see the x and θ dependence, and adding the
drift following the aperture, we have:

Ws0
1
ðx; θÞ ¼ 1

σxσθ
rect

�
x − Ldθ

a

�
e
−ðx−LdθÞ2

2σ2x
− θ2

2σ2
θ

× Im

�
ierf

�ða − 2jx − LdθjÞ σθλ þ i θ
σθffiffiffi

2
p

��
;

ð40Þ

where Ld is the drift length following the single slit
aperture.
From Eq. (9), and using the Gaussian Eq. (34), we find

the expression for degree of coherence, μ, before passing
through the slit to be

μ ¼ 1

m
: ð41Þ

Figure 4 shows the WFDs resulting from the convolution
of GR with the aperture Wigner filter function displayed in
Fig. 3(b). This calculation was performed on a discrete grid
of size nx ¼ 4000 by nθ ¼ 4000. Because the analytic
expressions are available in the GR case, we are free to
increase the resolution to a very fine level without incurring
excessively large runtimes and memory demand. These
results demonstrate the diminishing coherence effects for a
fixed beam size and increasing divergences corresponding
to increasing m values.
Figure 5 shows the intuitive strength of the WFD method

by illustrating the mechanism of diffraction in which the
oscillations in θ give rise to interference effects following
the drift. Before the drift, the oscillations of the Wigner
functions in θ will cancel when performing a projection, but
following the drift, they result in a large dip at the center of
the intensity distribution which can be seen in Fig. 5(b).
In Fig. 5(b), results are shown for increasing values of m2,
showing how this interference effect disappears with
decreasing coherence. In order to demonstrate the validity
of our numerical computations, Figure 6 compares the
spatial projections of the drifted GR WFD at m2 ¼ 3
calculated numerically and analytically. Because the

FIG. 3. Single slit aperture (a) transmission function and (b) corresponding Wigner filter function.

7The beam quality factor is typically represented by a capitalM.
We have used a lower-case m here so as not to confuse this
quantity with the transfer matrix, M.

8We note that for non-Gaussian wavefronts, in the coherent
case, the product σxσθ exceeds λ

4π. For undulator radiation, one
has approximately λ

2π. See e.g. [25–28].
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numerical result must be redeposited onto the initial grid,
one tends to truncate the calculation within a smaller range.
The WFD was computed numerically by first constructing
a discrete Gaussian along with discrete representation of
the single slit aperture WFD. These two functions were
then convolved in θ to compute the result following the
aperture. Finally, this WFD was drifted for 10 cm by
application of the drift transfer matrix and redeposition

upon the original grid using the method as first reported
in [29].
Figure 7 displays the dependence of degree of coherence

on increasing m value both before and after the single slit
aperture. We show agreement between numerical and
analytical [Eq. (41)] calculations for this quantity before
the aperture. We note that following propagation through
the aperture, the degree of coherence has increased which is

FIG. 4. WFD plots for Gaussian beam after passing through single slit aperture. Beam size, σx, has been fixed and divergence varies
according to the parameter m2 in Eq. (35). The radiation wavelength λ ¼ 3.98 Å. (a) m2 ¼ 3, σθ ¼ 5.90 μrad (b) m2 ¼ 5, σθ ¼
9.83 μrad (c) m2 ¼ 10, σθ ¼ 19.66 μrad (d) m2 ¼ 15, σθ ¼ 29.49 μrad (e) projection on spatial axis for cases (a)–(d).

FIG. 5. (a) WFD from Figure 4 for m2 ¼ 3 after drifting 10 cm. (b) Spatial projections of drifted WFDs for m2 ¼ 3, 5, 10 and 15.
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to be expected since a more coherent subset of the radiation
has been selected by the aperture. In addition, we confirm
that the degree of coherence is invariant under the final free
space propagation which is predicted by Eq. (23).

IV. EXAMPLES—UNDULATOR RADIATION

A. Partially coherent undulator radiation

As an example of transporting a partially coherent
Wigner function, we will consider the case of undulator
radiation resulting from a beam of electrons in a synchro-
tron light source.
A single electron with initial phase space coordinates z⃗0

passing through the undulator will produce a coherent
wavefront EuðxÞ. The electron will be drawn from a
distribution of electrons, feðz⃗0Þ, that are circulating in
the electron storage ring. This distribution generally takes
on a Gaussian form resulting from an equilibrium between
the damping and diffusion effects from synchrotron

radiation [30,31]. Due to differences in the longitudinal
coordinates of the emitting electrons, the radiated wave-
fronts will add incoherently and produce partially coherent
radiation.
We assume that the radiation will satisfy

Wðz⃗; z⃗0Þ ¼ WðEðx⃗; z⃗0ÞÞ ¼ W0ðz⃗ − z⃗0Þ; ð42Þ

where

W0ðz⃗Þ ¼ WðEðx⃗; z⃗0 ¼ 0⃗ÞÞ: ð43Þ

Under these conditions, the multielectron Wigner function
Wme may be related to the single electron Wigner function
via convolution with the electron beam distribution:

Wmeðz⃗Þ ¼ Wseðz⃗Þ � feðz⃗Þ: ð44Þ

Next we note that the convolution of the single electron
Wigner function with the electron beam distribution may be
postponed until the first aperture by applying the following
identity:

UM1
Wseðz⃗Þ � feðz⃗Þ ¼ WseðM1z⃗Þ � feðz⃗Þ; ð45Þ

where the transfer matrix, M1, represents the propagation
from the source to the first aperture. Recall the discussion in
Sec. II D for the definition of the operator UM1

. This
identity is known as the “emittance convolution theorem”
attributed to K.-J. Kim (see e.g. discussion in [32] and
references therein). This theorem allows us to propagate a
single coherent wavefront until the first aperture where we
then need to construct the partially coherent Wigner
function via convolution with the electron beam phase
space distribution that has been propagated to the same
position via the transfer matrix of the first section M1. The
fact that apertures are represented by only a partial
convolution prevents us from extending this identity and
applying the convolution beyond the first aperture.
As an example of UR, we consider the undulator and

electron beam with parameters defined in Table I. The
software package synchrotron radiation workshop (SRW)
[33]9 is used for the initial wavefront calculation that will
be used to construct the corresponding WFD. We compute
the radiation at the first optical element and progress it
through the lens and drift such that we achieve the one-to-
one focusing yielding the radiation as it would appear at the
center of the undulator. Figure 8(a) and (b) display the real
and imaginary parts of the electric field and in (c) and
(d) we have projected these fields onto the horizontal axis
and normalized them according to Eq. (B2). Note that since
our planar undulator has a vertical magnetic field, we have

FIG. 6. Comparison of analytically and numerically calculated
spatial projections of drifted WFDs for m ¼ 3.

FIG. 7. Degree of coherence with varying m values before and
after the aperture.

9The SRW source code is maintained by Oleg Chubar and is
avaialble at https://github.com/ochubar/srw
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selected the dominant polarization component which is
horizontal.
The UR WFD is constructed from the electric field

projections and is displayed in Fig. 9(a). Figure 9(b)
displays the electron beam distribution corresponding to
the APS Upgrade parameters given in Table I. The
convolution of the single electron UR WFD and the
electron beam distribution results in the multi-electron
WFD given in Fig. 9(c). In this case, we can see that
we are near the diffraction limit as the electron beam size is
of the same order as the UR single electron radiation beam
size. The finite emittance result shows properties of both
the underlying UR WFD and the Gaussian electron beam
distribution.10 This WFD is then propagated through the
example beam line and the results from both our WFD
transport method and SRW are detailed in the following
section.

B. Comparison with multielectron SRW simulation

We now report the results from transporting the UR
through the single slit aperture and subsequent drift. The

multi-electron WFD is computed by convolution with the
electron beam and propagation through the single slit
aperture is performed by means of convolution in θ with
the apertureWFD. The free space drift is performed as done
in the Gaussian case with the same linear transport
algorithm used in the preceeding section. We note that
this transport algorithm may be applied to any WFD.
This numerical result was benchmarked against a par-

tially coherent SRW calculation wherein the same example
beam line was used. The multi-electron SRW calculation
requires running the coherent calculation many times for
different macro-electrons. In this case of 42pm emittance,
we found we could achieve convergence with 5000 macro-
particles. Larger emittance, such as 4 nm requires larger
numbers of macro-electrons: up to 50,000. The results
shown here for 42pm used the more conservative value of
50,000 macro-electrons, though this was not strictly
required.
These results are shown in Fig. 10. Figure 10(a) displays

the final numerically computed WFD. We note similarity to
the Gaussian case being dominated by the structure of the
single slit aperture Wigner filter function. In Fig. 10(b), the
spatial projections of the final WFD have been calculated
and used to benchmark our numerical method against the
computationally intensive multielectron SRW calculation.
The partial coherence reflects the effect of the electron
beam distribution which, as mentioned, has been drawn
from the APS Upgrade beam parameters. We note that the

FIG. 8. Undulator radiation at first harmonic energy of 3.115 keV. (a) Real part of electric field. (b) Imaginary part of electric field.
(c) Horizontal projection of real electric field. (d) Horizontal projection of imaginary electric field.

10We note that this result is dependent on the undulator
radiation energy used of 3.115 keV. Higher energy radiation
will take up a smaller phase space footprint, and the electron
beam contribution will be correspondingly larger. It is thus easier
to reach the diffraction limit of high coherence for lower energy
radiation, for a fixed electron beam size and divergence.
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42.2 pm emmittance electron beam, if representing directly
a GaussianWFD, would correspond to anm2 value of 1.33.
Recall Eq. (35). Figure 11 provides a comparison between
the propagated Gaussian and undulator radiation for the
cases of fully and partially coherent radiation. For the
Gaussian radiation, the second moments have been taken
from adding in quadrature the undulator σx and σθ with
those of the electron beam. We note that for the fully
coherent case (single electron), there is not perfect agree-
ment between the two calculations, with the Gaussian case

having a larger central dip from diffraction. In the case of
the 42 pm emittance, however, the Gaussian result quite
adequately reproduces the more complex undulator radi-
ation calculation.11

FIG. 9. Undulator radiation multielectron WFD for varying emittance ϵ: (a) zero emittance (fully coherent) (b) 4 pm (c) 40 pm (d) 4 nm.

FIG. 10. (a) Fully coherent URWFD following propagation through single slit aperture and 10 cm drift. (b) Comparison between WFD
method and SRW calculation for fully coherent, single electron (se), and partially coherent, multielectron (me), UR spatial projections.

11For purposes of speed comparison of the two methods for
partially coherent propagation, one should also use the method of
coherent mode decomposition [8].
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V. COMMENTS ON COMPUTATIONAL
COMPLEXITY

In this paper, we have proposed direct computation of the
partially coherent synchrotron radiation Wigner function,
followed by evolution through a simplified (matrix-
aperture) beam line represented by linear transport sections
divided by physical apertures. Exact statements about
computational complexity are challenging, but we try to
lay out a few of the relevant issues in comparing to alternate
approaches to such computations.
Let us assume that a model is set up in a wave optics

modeling code, using SRW as our example. A Gaussian
electron beam with known parameters is determined from
the given electron storage ring finding equilibrium due to
synchrotron radiation and other physical effects such as
intrabeam scattering. Alternatively, in the context of an
online model, beam measurements can determine the
electron beam Gaussian parameters. Next, given the mag-
netic field of the undulator insertion device, the coherent
wavefront may be computed using the integral method
contained in the SRW code. So far the method of this paper
and the standard SRW method are equivalent.
Let us assume that the electric field is computed on a grid

of size Nx × Ny. First, consider the coherent SRW com-
putations [34]. A drift space propagation involves a Fresnel
transform in the near field and a Fraunhofer transform in
the far field. This represents either 2 or 1 FFTs, respectively
[35], and so we take the computation complexity to be
OðNxNy logðNxÞ logðNyÞÞ. A thin lens element is propa-
gated via multiplication by a quadratic phase factor, a
so-called “chirp multiplication”. This is an OðNxNyÞ
operation. In the general context of the matrix-aperture
beam lines considered in this paper, we may decompose the
linear transport sections into a sequence of thin lenses and
drifts (see eg. Ref. [36]). Likewise, an aperture propagation

is also just a multiplication in terms of the electric field, and
is thus also OðNxNyÞ.
The method used for partial coherence in SRW involves

sampling of the electron beam distribution and performing
a coherent propagation for each macroparticle. Thus, for
Nm macroparticles, this factor is to be multiplied to
determine the overall algorithmic complexity.
In contrast, the method we propose here involves a single

propagation, and thus, if the Wigner function propagation
were comparable to the coherent propagation, there would
be a gain by a factor of Nm in the computational speed.
However, there are additional considerations with our
algorithm. First, the grid size is increased due to the
functions being defined on phase space. In particular, for
4D, the grid size is now N2

x × N2
y. The Wigner function

transport algorithm involves first a matrix multiplication for
each grid point and then the redeposition onto the original
grid. This method is described in Ref. [37]. The matrix
multiplication gives a complexity of the number of grid
points N2

x × N2
y. The deposition involves solving of a linear

equation of the form Ly ¼ Ax where the matrices, L and A
are known, along with the vector of weights x.
Thus, the algorithmic complexity comes from redepos-

iting theWigner space coordinates to the grid, which is akin
to charge deposition in electrostatic particle-in-cell algo-
rithms, and from the sparse matrix multiplication. Charge
deposition to a grid of Nx × Ny cells is not a memory-local
operation. The matrices this algorithm produces are N4

x ×
N4

y in size, and one of the matrices is sparse. Because this is
a matrix-vector multiplication, the algorithmic complexity
comes from two matrix-vector products of complexity
OðN4

x × N4
yÞ. Our implementation is a brute force appro-

ach, although more sophisticated methods could bring the
computation time down much further.

VI. CONCLUSION

We have described a new, unified method for trans-
porting coherent and partially coherent radiation through a
beam line of linear optical elements and apertures. This
approach relies on transporting the Wigner distribution of
the radiation wavefront in a manner akin to single-particle
tracking in particle accelerators. In contrast with physical
optics modeling, the formalism is the same for fully
coherent and partially coherent radiation, and has the same
computational time and complexity. The matrices in the
matrix-aperture beam line we have defined may be com-
puted with ray tracing, in the general case, or analytically
for simplified beam line models. We thus show how ray
tracing may be unified with wave optics, at least within this
linear approximation.
We have demonstrated this approach by transporting

both a Gaussian wave front and an undulator radiation
wavefront through drift space and a single slit aperture. In
the case of the Gaussian wave front, we find excellent

FIG. 11. Spatial projections of Gaussian and undulator radia-
tion propagated through single slit aperture and 10 cm drift via
WFD method. In the legend, se denotes single electron (fully
coherent) and me denotes multi-electron (partially coherent). For
the latter, the photon beam has been convolved with the APS-U
electron beam given in Table I.
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agreement between an analytical result, the Wigner dis-
tribution approach, and a the well-established SRW physi-
cal optics code. For the undulator radiation, we have
excellent agreement between the Wigner distribution
approach and multi-electron SRW calculations. Finally,
we have seen that for large enough emittance, the Gaussian
results approximate the undulator radiation to a good
degree of accuracy.
Future work will extend this technique to nonlinear

optical elements, which will allow us to account for optical
aberrations. We have briefly described the formalism for
nonlinear optical elements in Appendix C. Extension to the
nonlinear case will raise new issues, for future exploration.
See e.g. [38] for some understanding of the potential
resulting complications.
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APPENDIX A: COHERENT WAVE OPTICS

Here we describe, for completeness, the approach used
for propagating a radiation wavefront through a beam line
using physical optics techniques. The propagation of this
wavefront through an optical beam line is the goal of
physical optics software such as SRW and XRT [40,41]. In
these codes, there exist a variety of numerical implemen-
tations of propagators to transport the wavefront through
free space, lenses, mirrors, gratings, and other optical
elements.
We begin with a complex electric field E0ðx; y; s ¼ 0Þ at

the entrance of the beam line. Optical transport beam lines
in synchrotron radiation facilities can often be represented
with the scalar paraxial optics approximation [42,43]. For
example, the near-field Fresnel integral for free-space
propagation can be written as a convolution:

Eðx; y; sÞ ¼ E0ðx; yÞ � hðx; y; sÞ; ðA1Þ

with

hðx; y; sÞ ¼ eiks

iλs
ei

k
2zðx2þy2Þ: ðA2Þ

A thin lens may be traversed via

Eðx; y; s0Þ ¼ e−i
k
2fðx2þy2ÞEðx; y; sÞ; ðA3Þ

with k ¼ 2π
λ , n is the index of refraction, and f is the focal

length [44].
The combination of drifts, lenses, and focusing mirrors

together can be combined to create a symplectic transport
matrix M for the geometric ray optics as given in Eq. (15).
Knowing MðsÞ, one may propagate the wavefront through
the linear beam line down the channel via linear canonical
transformation (LCT) [39]. Explicitly for 4D phase space,
the transfer matrix is written in the form

M ¼
�
A B

C D

�
: ðA4Þ

The transformed electric field Efðx⃗Þ is given by

Efðx⃗Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðiBÞp Z
eiπu⃗

TMu⃗Eiðx⃗Þdx⃗i; ðA5Þ

with

u⃗ ¼ ð x⃗f x⃗i Þ; ðA6Þ

and

M ¼
�
DB−1 −B−1

−B−1 B−1A

�
; ðA7Þ

where the subscripts f and i represent initial and final.
We point out here, that in addition to use of analytical

expressions for beam line elements to determine the
Hamiltonian, and thus find the transfer matrix MðsÞ, one
may also use a ray tracing code, set up the beam line, and
by tracking a series of rays offset from the central trajectory,
derive the transport matrix numerically along the beam line.
The effect of the apertures, represented by the

transfer functions tjðx; yÞ on the wavefront simply by
multiplication:

Eðx; y; s0Þ ¼ tjðx; yÞEðx; y; sÞ: ðA8Þ

APPENDIX B: NORMALIZATION OF
WAVEFRONTS AND WIGNER FUNCTIONS

In this paper, we will assume electric fields which satisfy
the separability condition

Eðx; y; sÞ ¼ E0Exðx; sÞEyðy; sÞ; ðB1Þ

where E0 is a constant with units of electric field.
We normalize the separate electric field components in

1-D such that

Z
∞

−∞
E�ðxÞEðxÞdx ¼ 1; ðB2Þ
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Z
∞

−∞
E�ðθÞEðθÞdθ ¼ 1: ðB3Þ

Following Bazarov [15], we have normalized the electric
field in the same way as wave functions are normalized in
quantum mechanics. The second moments of the field
distribution in coordinate and angular representations may
now be calculated as

hx2i ¼
Z

∞

−∞
x2E�ðxÞEðxÞdx; ðB4Þ

hθ2i ¼
Z

∞

−∞
θ2E�ðθÞEðθÞdθ: ðB5Þ

We now introduce the Wigner function defined from the
electric field, EðxÞ, as follows

Wðx; θÞ ¼ 1

λ

Z
∞

−∞
E�

�
x −

ϕ

2

�
E

�
xþ ϕ

2

�
e
−2πi
λ ϕθdϕ; ðB6Þ

where Wðx; θÞ will be normalized as

Z
∞

−∞

Z
∞

−∞
Wðx; θÞdxdθ ¼ 1: ðB7Þ

The Wigner function can be thought of as a probability
distribution in phase space except for the fact that it may
become negative. The second moments are given simply as

hx2i ¼
Z

∞

−∞

Z
∞

−∞
x2Wðx; θÞdxdθ; ðB8Þ

hθ2i ¼
Z

∞

−∞

Z
∞

−∞
θ2Wðx; θÞdxdθ; ðB9Þ

hxθi ¼
Z

∞

−∞

Z
∞

−∞
xθWðx; θÞdxdθ: ðB10Þ

APPENDIX C: TRANSPORT OF WIGNER
FUNCTION UNDER NONLINEAR MAPS

For propagation of the Wigner function, Bazarov

(Property 5) uses the Hamiltonian H ¼ p̂2

2m þ VðxÞ for
the quantum mechanics case of a particle in a potential.
We have used a different Hamiltonian for the optics case.
The problem of general transport of the Wigner function
remains. The evolution equation for the Wigner function
under a general Hamiltonian is given as follows [13]

∂Wðx; θx; y; θy; sÞ
∂s ¼ ½W;H��; ðC1Þ

where the Moyal bracket is defined for arbitrary phase
space functions f and g as

½f; g�� ¼
1

iƛ
ðf � g − g � fÞ; ðC2Þ

and the Moyal star is given by

� ¼ e
iƛ
2
ð∂⃖x∂⃗θ−∂⃖θ ∂⃗xÞ; ðC3Þ

with the arrows representing action of the derivative, either
to the left or right, depending on arrow orientation.

APPENDIX D: DERIVATION OF SINGLE SLIT
APERTURE WIGNER FILTER

Here we derive the Wigner function for a single slit
aperture. The transfer function is given by

tðxÞ ¼ rectðxÞ≡ ΠðxÞ; ðD1Þ

where we have used the symbol Π for the rect function for
ease of notation. Applying the definition of the Wigner
function, we find

Wðx; θÞ ¼ 1

λ

Z
∞

∞
Π
�
x − ϕ

2

a

�
Π
�
xþ ϕ

2

a

�
cos

�
2πi
λ

ϕθ

�
dϕ;

ðD2Þ

where we have taken the real part of the complex
exponential since the result must be real. Consideration
of the geometry of the integration region and the product of
the rect functions allows us to write this integral as follows:

Wðx; θÞ ¼ ΠðyÞ 2a
λ

Z
1
2
−jyj

jyj−1
2

cos

�
2π

λ
ð2aψθÞ

�
dψ ; ðD3Þ

where we have defined y ¼ x
a. We now do the integration of

the cos function over the finite domain, and after some
simplification, we arrive at

Wðx; θÞ ¼ Π
�
x
a

�
1

π
sin

�
2πθ

λ
ða − 2jxjÞ

�
: ðD4Þ

APPENDIX E: ANALYTICAL CALCULATION OF
A GAUSSIAN WIGNER DISTRIBUTION

THROUGH A SINGLE SLIT

The passage of a Gaussian Wigner distribution through a
slit can be evaluated in terms of the integral

Iðx; θÞ ¼
Z

∞

−∞
dτ

sin τq
τ

exp

�
−
ðθ − τÞ2
2σ2θ

�
: ðE1Þ

It is convenient to normalize all the variables to σθ, so that
θ̂ ¼ θ=σθ, τ̂ ¼ τ=σθ, and q̂ ¼ σθq, so that the integral
becomes:
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Iðx; θÞ ¼
Z

∞

−∞
dτ̂

sin τ̂ q̂
τ̂

exp

�
−
1

2
ðθ̂ − τ̂Þ2

�
: ðE2Þ

This integral can be rewritten as the imaginary part of an
indefinite integral with respect to q,

Iðx; θÞ ¼ Im

�
i
Z

dq̂
Z

∞

−∞
dτ̂eiτ̂ q̂ exp

�
−
1

2
ðθ̂ − τ̂Þ2

��
:

ðE3Þ

Expanding the Gaussian argument brings a Gaussian θ
envelope out front:

Iðx; θÞ ¼ e−
θ̂2

2 Im
�
i
Z

dq̂
Z

∞

−∞
dτ̂

× exp

�
−
1

2
ðτ̂2 þ 2iτ̂ðq̂þ iθ̂ÞÞ

��
: ðE4Þ

The argument can be simplified by completing the square,
noting that

τ̂2 þ 2ðθ̂ þ iq̂Þτ̂ ¼ ðτ̂ þ θ̂ þ iq̂Þ2 − ðθ̂ þ iq̂Þ2; ðE5Þ

which then gives the integral as

Iðx;θÞ¼e−
θ̂2

2 Im

×

�
i
Z

dq̂e
1
2
ðθ̂þiq̂Þ2

Z
∞

−∞
dτ̂exp

n
−
1

2
ðτ̂2þ iq̂þ θ̂Þ

o
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}ffiffiffiffi

2π
p

�
;

ðE6Þ

and the integral becomes

Iðx; θÞ ¼
ffiffiffiffiffiffi
2π

p
e−

θ̂2

2 Im

�
i
Z

dq̂e
1
2
ðθ̂þiq̂Þ2

�
; ðE7Þ

and which is then given by

Iðx; θÞ ¼
ffiffiffi
π

2

r
Im

�
ierf

�
q̂þ iθ̂ffiffiffi

2
p

��
: ðE8Þ
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