PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 124801 (2020)

Review Article

Sample-efficient reinforcement learning for CERN accelerator control

Verena Kain Simon Hirlander, Brennan Goddard®,
Francesco Maria Velotti®, and Giovanni Zevi Della Porta
CERN, 1211 Geneva 23, Switzerland

Niky Bruchon
University of Trieste, Piazzale Europa, 1, 34127 Trieste TS, Italy

Gianluca Valentino
University of Malta, Msida, MSD 2080, Malta

® (Received 7 July 2020; accepted 9 November 2020; published 1 December 2020)

Numerical optimization algorithms are already established tools to increase and stabilize the
performance of particle accelerators. These algorithms have many advantages, are available out of the
box, and can be adapted to a wide range of optimization problems in accelerator operation. The next boost
in efficiency is expected to come from reinforcement learning algorithms that learn the optimal policy for a
certain control problem and hence, once trained, can do without the time-consuming exploration phase
needed for numerical optimizers. To investigate this approach, continuous model-free reinforcement
learning with up to 16 degrees of freedom was developed and successfully tested at various facilities at
CERN. The approach and algorithms used are discussed and the results obtained for trajectory steering at
the AWAKE electron line and LINAC4 are presented. The necessary next steps, such as uncertainty aware
model-based approaches, and the potential for future applications at particle accelerators are addressed.

DOI: 10.1103/PhysRevAccelBeams.23.124801

I. INTRODUCTION AND MOTIVATION

The CERN accelerator complex consists of various
normal conducting as well as super-conducting linear
and circular accelerators using conventional as well as
advanced acceleration techniques, see Fig. 1. Depending on
their size, each accelerator can have hundreds or thousands
of tuneable parameters. To deal with the resulting complex-
ity and allow for efficient operability, a modular control
system is generally in place, where low level hardware
parameters are combined into higher level accelerator
physics parameters. The physics-to-hardware translation
is stored in databases and software rules, such that
simulation results can easily be transferred to the accel-
erator control room [1]. For correction and tuning,
low-level feedback systems are available, together with
high-level physics algorithms to correct beam parameters
based on observables from instrumentation. With this
hierarchical approach large facilities like the LHC, which

* .
verena.kain @cern.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

2469-9888/20/23(12)/124801(12)

124801-1

comprises about 1700 magnet power supplies alone, can be
exploited efficiently.

There are still many processes at CERN’s accelerators,
however, that require additional control functionality. In the
lower energy accelerators, models are often not available
online or cannot be inverted to be used in algorithms.
Newly commissioned accelerators also require specific
tools for tuning and performance optimization. Some
systems have intrinsic drift which requires frequent retun-
ing. Sometimes instrumentation that could be used as input
for model-based correction is simply lacking. Examples
include trajectory or matching optimization in space-charge
dominated LINACs, optimization of electron cooling with-
out electron beam diagnostics, setting up of multiturn
injection in 6 phase-space dimensions without turn-by-turn
beam position measurement, optimization of phase-space
folding with octupoles for higher efficiency slow extraction
and optimization of longitudinal emittance blow-up with
intensity effects. In recent years numerical optimizers,
sometimes combined with machine learning techniques,
have led to many improvements and successful implemen-
tations in some of these areas, from automated alignment of
various devices with beam to optimising different param-
eters in FELs, see for example [2-7].

For a certain class of optimization problems, the methods
of reinforcement learning (RL) can further boost efficiency.
With RL the exploration time that numerical optimizers

Published by the American Physical Society

https://orcid.org/0000-0002-3135-2004
https://orcid.org/0000-0002-9902-2431
https://orcid.org/0000-0001-7815-6011
https://orcid.org/0000-0003-0495-6061
https://orcid.org/0000-0002-0059-1176
https://orcid.org/0000-0003-3864-7785
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.23.124801&domain=pdf&date_stamp=2020-12-01
https://doi.org/10.1103/PhysRevAccelBeams.23.124801
https://doi.org/10.1103/PhysRevAccelBeams.23.124801
https://doi.org/10.1103/PhysRevAccelBeams.23.124801
https://doi.org/10.1103/PhysRevAccelBeams.23.124801
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

VERENA KAIN et al.

PHYS. REV. ACCEL. BEAMS 23, 124801 (2020)

ALICE R North Area LHCb

HiRadMat

o6

ISOLDE

s ﬁ REX/HIE

—1 East Area

LEIR

FIG. 1. The CERN accelerator complex. Reinforcement learn-
ing agents were used on the accelerators highlighted with green
circles.

inevitably need at every deployment is reduced to a
minimum—to one iteration in the best case. RL algorithms
learn the model underlying the optimization problem, either
explicitly or implicitly, while solving the control problem.
Unlike optimizers, however, an additional input is required
in the form of an observation defining the so-called system
state. Numerical optimizers only need the objective func-
tion to be accessible and the algorithm finds the action a
that minimizes (or maximizes) the objective function f(a).

Adequate instrumentation to acquire meaningful state
information often limits the applicability of RL methods.
Another limitation arises from what is referred to as sample
efficiency—the number of iterations (i.e., interactions with
the accelerator) required until the problem is learned. For
these reasons, not all RL algorithms are suitable for the
control room, and not all problems are suitable for its use.

Nevertheless, given the performance advantages com-
pared to numerical optimizers, investigation of RL for
certain accelerator control problems is important and many
laboratories have studied RL algorithms already for various
control problems, albeit mostly in simulation only [8—11].
In 2019 most of the CERN accelerators were in shutdown
to be upgraded as part of the LHC Injector Upgrade project
[12]. The new linear accelerator LINAC4 and the proton-
driven plasma wakefield test facility AWAKE [13] were,
however, operated for part of the year. Both accelerators
were used for various tests of advanced algorithms such as
Scheinker’s ES algorithm, see for example [14]. Taking
advantage of recent rapid developments in deep machine
learning and RL algorithms, the authors successfully
implemented sample-efficient RL for CERN accelerator
parameter control and demonstrated its use online for
trajectory correction both at the AWAKE facility and at
LINACA4.

This paper is organized as follows. A brief introduction
is given to reinforcement learning, in the domain of
accelerator control. The main concepts and challenges
are described, with the necessary details of the specific
algorithms used. The deployment framework is explained,

including the interface standards chosen. In the experi-
mental section, the problem statements and results of the
tests on trajectory correction are given, both for the
AWAKE 18 MeV electron beamline and the 160 MeV
LINAC4. In the discussion, the results obtained are
examined in the context of the main problems encountered
and the experience obtained. The next steps and potential
for wider application are covered in the outlook.

II. REINFORCEMENT LEARNING FOR
ACCELERATOR CONTROL

The optimization and control of particle accelerators is a
sequential decision making problem, which can be solved
using RL if meaningful state information is available. In the
RL paradigm, Fig. 2, a software agent interacts with an
environment, acquiring the state and deciding actions to
move from one state to another, in order to maximize a
cumulative reward [15]. The agent decides which action to
take given the current state by following a policy. The
environment can be formally described by a Markov
decision process, and the states exhibit the Markov prop-
erty. This means that the state transition probability to each
future state s’ only depends on the current state s and the
applied action a and not on any preceding states. (For orbit
correction—where the orbit reading is the state s, the orbit
s’ is defined by the current orbit s and the delta dipole
corrector settings a, also if it is corrected iteratively.)

The action value function or simply Q-function, denoted
Q”(s,a|0?), in deep RL is a measure of the overall
expected reward assuming the agent in state s performs
action a and then continues until the end of the episode
following policy z. It is defined as:

N
0" (s, al0?) = [Eazykri+k+1|5i =9, aj=a (1)
k=0

where N is the number of states from state s = s; till the
terminal state, y is a discount factor and r is the reward the

reward

s N

(RL AGENT policy\ ENVIRONMENT
ANN T(s,a)
action
CORRECTORS
parameter 0
_ J . J
observation

FIG. 2. The RL paradigm as applied to particle accelerator
control, showing the example of trajectory correction.

124801-2

SAMPLE-EFFICIENT REINFORCEMENT LEARNING ...

PHYS. REV. ACCEL. BEAMS 23, 124801 (2020)

agent receives after performing action a in state s during
iteration i. @9 are the network parameters.

The value or V-function, denoted V*(s]0"), is related to
the Q-function. It measures the overall expected reward
associated with state s, assuming the agent continues until
the end of the episode following policy z. It is defined as:

N
Vi(s|o") = [EﬂzykriJrkJrl‘si =S (2)
k=0

A. Classes of reinforcement learning algorithms

Reinforcement learning algorithms can be divided into
two main classes: model-free and model-based. Model-free
control assumes no a priori model of the environment and
can be further subdivided. Policy optimization methods
consist of policy gradient or actor-critic methods which are
more suitable for continuous action spaces. These methods
attempt to learn the policy directly, typically using gradient
descent. Q-learning methods seek to find the best action to
take given the current state, i.e., the action that maximizes
the Q-function, and are specifically suitable for discrete
action spaces. For these, an epsilon-greedy policy may be
used during training, which greedily takes the action
leading to the highest reward most of the time (exploitation)
and a random action the rest of the time (exploration).

In model-based methods, the control method uses a
predictive model of the environment dynamics to guide the
choice of next action. Establishing a reliable enough model
is clearly critical to success. Several subdivisions of this
class of RL algorithms exist, including analytic gradient
computation methods such as LQR [16], sampling-based
planning [17], and model-based data generation methods
such as Sutton’s original Dyna [18] and related algorithms
using model ensembles to capture the uncertainty of the
model and avoid model bias. An overview of the various
algorithms is provided in [19]. Model-based algorithms
tend to be more complex due to the additional stage of
model learning before and while training agents. Despite
the advantage of better sample-efficiency for model-based
RL, the authors only used model-free algorithms during
this first study with the goal to demonstrate that RL is
suitable for accelerator control problems.

For most real-world applications, where the state-space
is large, the Q-function or the policy need to be approxi-
mated using, e.g., neural networks. Advances in the use of
deep learning to train such models in the RL paradigm have
led to a range of algorithms such as deep Q-network (DQN)
[20], deep deterministic policy gradient (DDPG) [21], and
normalized advantage function (NAF) [22].

B. Sample-efficient RL agent using Q-learning

One of the key issues in all RL approaches is sample
efficiency—the number of iterations required to learn either
the optimum policy, Q- or value function. Within the class

of model-free algorithms, policy gradient algorithms are
generally less sample-efficient than Q-learning ones and
cannot take advantage of experience replay [15].

For accelerator applications a continuous action space
is usually required. This can be a serious limitation for
Q-learning, due to the need to perform the nontrivial
maximization of the Q-function with respect to continuous
a. It can however be overcome by assuming a specific
algebraic form of the Q-function, such that Q(a,s) is
straightforward to optimize with respect to the action. This
approach is applied in the normalized advantage function
(NAF) algorithm. It assumes a quadratic dependence of Q
on the action a (0 are the network parameters to be fitted):

0(s.al0?) = A(s.alo") + V(sl6"). (3)
Als,al6") = =3 (a = w(s16)TP(s, %) (a = w(s16%) (4

A(s,al0?) is the advantage function, V(s|6V) the value
function and P(s|0”) a state-dependent, positive-definite
square matrix; a* = u(s|6) corresponds to the action that
maximizes the Q function.

Assuming this specific representation of Q of course
limits the representational power of the algorithm, but
many accelerator optimization problems are convex and for
these cases a quadratic Q function can be a reasonable
assumption. Another sample-efficient algorithm without
the limited representational power that was tested recently
at CERN’s accelerators is the DDPG variant TD3 [23]. Its
performance is comparable to NAF for the same problems.
A comparison of NAF in terms of sample efficiency to
other algorithms such as DDPG can be found in [24].
Comparative plots of the reward evolution during training
for the AWAKE trajectory correction problem in simulation
for the NAF algorithm, the on-policy algorithm PPO as
well as TD3 are given in the Appendix A.

The results in this paper were all obtained with the very
sample-efficient NAF algorithm.

C. NAF network architecture

In practice the NAF agent is a neural network with an
architecture as sketched in Fig. 3. The input layer receives
s, the state, followed by two fully-connected dense hidden
layers, typically of 32 nodes for our cases. The outputs of

7]_,4

Lol

The NAF network architecture.

FIG. 3.

124801-3

VERENA KAIN et al.

PHYS. REV. ACCEL. BEAMS 23, 124801 (2020)

the network are u(s,al0"), P(s,al0"), V(s|6"). More
details are given in Appendix B 1.

The loss function used in the network training is the
temporal difference error L between the predicted Q value
and target y; when the agent takes an action moving to
state s;:

L = (y,- - Q(Siv ai|9Q)>2 <5)

where y; = r; + yV'(s;|09) with y the discount factor and V"’
the value function belonging to the target network Q’. (The
target network is a copy of the main network, but it is only
infrequently updated to slowly track the main network and
avoid value function divergence.)

To improve training stability, prioritized experience
sampling [25] was implemented in addition. The imple-
mentation of the algorithm as used in the control room is
available as PER-NAF [26]. Benchmark results for priori-
tized experience replay and other details are provided in
Appendix B.

D. Operational deployment

The CERN accelerator control system offers a PYTHON
package (PYJAPC [27]) to communicate directly with the
hardware systems or with the high-level control system for
parameters like deflection angle or tune.

For the problem description (environment), the generic
OpenAl Gym framework [28] was chosen, to enforce
standardization and allow easy switching between different
control problems or agents. The OpenAl Gym environment
python class provides an interface between RL agent and
optimization problem and is used by many available RL
algorithm implementations. Gym environments contain all
the control problem specific code—the interaction with the
machine or simulation for setting the action, reading or
calculating observation data as well as calculating or
measuring reward. PER-NAF was implemented to be
compatible with OpenAl Gym.

As the various functions (e.g., advantage function, value
function) are approximated through neural networks, the
observations, actions and the reward need to be normalized
to match the practical range for the accelerator settings,
avoid issues with vanishing gradients and allow the net-
work training to converge. Wrappers extending the OpenAl
Gym environment class help with this task.

The training of an RL agent is done in episodes. The
maximum length of the episode is a parameter of the
environment and corresponds to the maximum number of
interactions (steps) the agent may take to iteratively solve
the problem, and therefore reach the maximum cumulative
reward Y r or return. It is a key hyperparameter for
efficient training. For our cases, 50 iterations was a good
maximum episode length.

For each iteration during an episode, the agent expects a
state transition from state s; to state s; ;. For the accelerator

context, this means the change of setting corresponding to
a; needs to be added to the existing setting that defined s;.
The implementation of this logic needs to be provided in
the method step(a;) of the environment as illustrated in the
pseudo-code below (k; refers to the scaled action):

Algorithm 1.
iteration I

add a; to current setting in method step(a;) for

rescale a; to Ak;;

get current setting k;;

set new setting k; | = k; + Ak;;
collect reward r;,; and observe s;,;

Instead of using epsilon-greedy exploration, exploration
with PER-NAF is managed by adding Gaussian noise to the
proposed action at each iteration and reducing the noise level
by 1/episode number in the course of the training. For
implementation details of the action noise see Appendix B 3.

The training is significantly accelerated by defining a
target cumulative reward. If reached, the problem is
considered to be sufficiently solved and the episodes are
finalized. After finalising an episode the reset() method of
the environment is called, which randomly configures
another starting situation for the agent to solve and a
new episode starts. This target needs to be set high enough
for useful training to occur, but low enough for the agent to
be able to reach it with sufficient exploration. Careful
choice of reward target proved to be one of the critical
factors in effective performance. (Increasing the target
throughout the training was tried as well, but did not
improve the results for our environments significantly).

Other reasons for the episodes to be finalized in our case
were violating hardware constraints, causing the beam to be
lost or going beyond machine protection watchdog limits.

III. PROOF-OF-PRINCIPLE APPLICATION OF RL
AGENT TO AWAKE TRAJECTORY CORRECTION

The AWAKE electron source and line are particularly
interesting for proof-of-concept tests for various algorithms
due to the high repetition rate, various types of beam
instrumentation and insignificant damage potential in case
of losing the beam at accelerator components. The first RL
agents were trained for trajectory correction on the
AWAKE electron line with the goal that the trained agents
correct the line with a similar efficiency as the response
matrix based SVD algorithm that is usually used in the
control room, i.e., correction to a similar RMS as SVD
within ideally 1 iteration. Figure 4 shows an example of a
correction using the SVD implementation as available in
the control room.

The AWAKE electrons are generated in a 5 MV RF gun,
accelerated to 18 MeV and then transported through a beam
line of 12 m to the AWAKE plasma cell. A vertical step of
1 m and a 60° bend bring the electron beam parallel to the
proton beam shortly before the plasma cell. The trajectory

124801-4

SAMPLE-EFFICIENT REINFORCEMENT LEARNING ...

PHYS. REV. ACCEL. BEAMS 23, 124801 (2020)

—— distorted rms = 3.96 mm
iteration 1 rms = 2.12 mm

8

6 —— iteration 2 rms = 1.66 mm
4

2 /

0

Z

[mm]

0 2 4 6 8 10
no. BPM

FIG. 4. Results of an SVD correction in the horizontal plane for
the AWAKE electron line. The initial distorted trajectory was
obtained with the reset() method of the OpenAl Gym environ-
ment. It took 2 iterations to correct below 2 mm RMS, which is
the target cumulative reward of the Gym environment. It cannot
correct for BPM 5, as it is at a location of peak dispersion. Its
reading depends on the energy distribution coming out of the
source, which can vary from day to day. Also, the RL algorithms
cannot correct for it if it has only dipole correctors as actions. The
target cumulative reward defined for the AWAKE OpenAl Gym
environment needs to take this into account.

is controlled with 11 horizontal and 11 vertical steering
dipoles according to the measurements of 11 beam position
monitors (BPMs). The BPM electronic read out is at 10 Hz
and acquisition through the CERN middleware at 1 Hz.

For reference, numerical optimizers had been tested as
well. For example the algorithm ES took about 30 iterations
to converge for the AWAKE trajectory correction problem
[14]. Figure 5 shows the example results with the numerical
optimization algorithm COBYLA [29] on simulation. It
took more than 35 iterations with the used setup, but it
would have reached the threshold (red line in Fig. 5) as
defined in the OpenAl Gym environment after about 20
iterations.

- RMS [cm]

0 5 10 15 20 25 30 35
no. iterations

FIG. 5. Results of numerical optimization with the COBYLA
algorithm on the simulated OpenAl Gym environment for
AWAKE steering. With the hyperparameters used for launching
the algorithm, it took 37 iterations to converge at an RMS of
0.5 mm. It would however have reached the OpenAl Gym
environment threshold (indicated in red) already after 21 iter-
ations. The threshold in the OpenAl Gym environment was set to
1.6 mm RMS. The results on the y-axis are shown in the same
units as for the plots on the RL results below.

A. Simulated and online OpenAI Gym AWAKE
environments for trajectory steering

The electron transfer line with all of its equipment is
modeled in MAD-X [30]. The transfer functions from field to
current for the various magnets are available in the control
system and the line is operated in normalized strength (i.e.,
angle for the steering dipoles). Typical trajectory corrections
are in the order of 1 mrad per corrector. The MAD-X model
allows to calculate the response matrix as expected change in
BPM readings for a given change in corrector settings. The
calculated response matrix was used to prepare a simulated
OpenAl Gym environment with the purpose to test various
RL algorithms offline and define the hyperparameters for the
chosen algorithm for optimum sample efficiency.

To most profit from the simulated environment, obser-
vations (the BPM readings in difference from a reference
trajectory) for the RL agent and actions from the agent (the
corrector delta settings) need to have the same units and
normalization as in the OpenAl Gym environment con-
nected to the real equipment. Also, the actions in the
environment connected to the real hardware were applied as
angle through the high level settings database instead of
current directly on the power supplies to ensure compat-
ibility with the simulated environment.

The online environment connected to the AWAKE
equipment also had to deal with measurement artefacts.
In case the beam is lost in the line, the subsequent BPMs
return zero as reading, which is however within the possible
observation space. Exact zero readings were therefore
overwritten by a trajectory reading corresponding to the
aperture of the line at the particular BPM location (i.e.,
17 mm). Due to shot-by-shot momentum variations from
the electron source, the observations were averaged over 5
acquisitions. The reward was defined as the negative RMS
value of the difference trajectory between measured and
reference one. The reward was normalized to be typically
between -1 and 0, but certainly to not go beyond 0. This is
to ensure that the agent learns to use the fewest iterations to
solve the problem.

B. Experiment results from AWAKE RL tests

The first successful online training of a NAF agent on
trajectory steering in the horizontal plane was obtained on
November 22, 2019. The training for 11 degrees of freedom
(DOF) took roughly 30 minutes, corresponding to about
350 iterations. At each start of an episode the correctors
were reset to the initial setting before the training. A
random A setting was then sampled from a Gaussian
distribution with ¢ = 300 urad for each corrector and
added to the initial setting, leading to maximum 7 mm
RMS (a factor 2-3 above the normal trajectory distortions
caused by drifts and different initial conditions). The
maximum step a corrector could do per iteration was set
£300 prad. The main training parameters are summarized
in Table 1.

124801-5

VERENA KAIN et al.

PHYS. REV. ACCEL. BEAMS 23, 124801 (2020)

TABLE I. AWAKE horizontal steering NAF agent training
parameters.

DOF 11

Reward target [cm] -0.2

Max episode length 50

Max Ao, [prad] 300

Min allowed reward [cm] -1.2

The objective of the training was twofold: to maximize
the reward from each initial condition, and to maximize the
reward in the shortest possible time. Figure 6 shows the
evolution of the 200 episode online training. The upper plot
gives the length of the episodes in number of iterations as
training evolves, while the lower plot shows the initial
reward (i.e., negative RMS) at the beginning of the episode
(green line) as well as the final reward achieved (blue line)
at the end of each episode. For a successful termination of
the episode, the final reward had to be above the target
(dashed red line).

At the beginning of the training, the agent could not
correct the line to an RMS below 2 mm, despite many
iterations. It even further deteriorated the trajectory. After
about 15 episodes it had learned to successfully correct the
trajectory within 1-2 iterations to mostly even below 1 mm
RMS starting from any initial condition. Figure 7 shows the
evolution of the value function V(s) and the loss function
for the network training as a function of iterations. The
value function started to stabilize after about 90 iterations
(equivalent to the 15 episodes when successful correction
was observed), continued to improve for another 100
iterations and finally converged to —0.05 corresponding
to 0.5 mm RMS after correction in case of only one
iteration required. After the online training where explora-
tion noise is still present (albeit decaying very rapidly with
increasing episode number), the agent was tested in an
operational configuration. No noise is added to the actions

N
o

N
o

no. iterations

0.0
E-0.5
L
2 10
< initial
-15 ---- target
0 25 50 75 100 125 150 175 200
no. episode

FIG. 6. Online training of NAF agent of AWAKE electron line
trajectory steering in the horizontal plane. In the upper plot the
number of iterations per episode is given. The lower plot shows
the initial and final negative RMS value for each episode. The
target negative RMS value is indicated in red.

0.6
10° 03
0.4
" 03 _
2 107t @
k<] >
0.2
0.1
1072
0.0
-0.1
0 50 100 150 200 250 300 350

no. iteration

FIG. 7. Evolution of loss and value function during training on
November 22, 2019.

predicted by the trained agent in this case. The agent was
presented with randomly sampled observations (by invok-
ing the reset() method of the environment) and it had to
correct the line accordingly. Figure 8 shows the validation
run with 24 episodes. The plot is arranged as for the
training results above, with the upper plot showing the
number of iterations per episodes and the lower one,
the initial and final negative RMS per episode. The trained
agent required 1 or 2 iterations to correct the trajectory to
better than the target (it requires more than 1 iteration from
time to time as its maximum step per iteration is limited to
300 urad). A longer validation run was carried out begin-
ning of June 2020 with an agent that had only been trained
for 35 episodes. The results of this validation can be found
in Fig. 9.

2.0
o [\
c
o
S15
5
c
1.0
0 5 10 15 20 25
£ -0.2
A
L _g4f — final
< initial
_0.6{ —~ target
0 5 10 15 20 25
no. episode
FIG. 8. Short validation run after training with 200 episodes on

November 22, 2019. The agent corrects the trajectory to better
than 2 mm RMS target within 1-2 iterations. (The initial
trajectories were established by randomly applying corrector
settings, which can lead to initial trajectories already above the
target. In the test setup no check on initial RMS was used before
calling the agent and it would therefore correct trajectories
already above target generalizing from the training earlier, with
few trajectories in this region as episodes would be finalized at
that stage. All results are above target, but trajectories with
initially very good RMS were sometimes slightly deteriorated
because of this test setup artefact. The test setup was improved for
the next validations.)

124801-6

SAMPLE-EFFICIENT REINFORCEMENT LEARNING .

PHYS. REV. ACCEL. BEAMS 23, 124801 (2020)

3

no. iterations

0 5 10 15 20 25 30 35 40

NN A A AT

: ~ ~
— final

_0a| — initial

---- target

0 5 10 15 20 25 30 35 40
no. episode

- RMS [cm]
S
N

FIG. 9. Validation right after short training of 35 episodes on
June 8, 2020. Despite the short training, the agent corrects the
trajectory to better than the 2 mm RMS target within 1-3
iterations.

An important question is also how long a training
remains valid and how often an RL agent would have to
be re-trained. Obviously this depends on the specific
problem and how much state information is hidden. In
our case the expectation was that if the agent is trained
once, it will not need any re-training unless the lattice of the
line is changed. To verify this expectation, a NAF agent
trained on June 10, 2020, was successfully re-validated
on September 22, 2020, without any additional training.
The validation results are shown in Fig. 10.

Another important application of RL will result from
training RL agents on simulation and then exploit the agent
with or without additional short training on the accelerator.
The obvious advantage of this approach, if possible, is that
in this case the algorithm does not have to be restricted
to be a very sample-efficient one, as accelerator time for
training is either zero or limited. To test this principle
of offline training, another NAF agent was trained—
this time on the simulated AWAKE trajectory correction
environment. This agent was then used on the accelerator in
operational configuration as trajectory correction algorithm.

N
o

=
5

no. iterations

g
o

E

€
) -
2 — final
= —— initial
—-0.4 ---- target
0 5 10 15 20 25 30 35
no. episode

FIG. 10. Validation on accelerator on September 22, 2020, of
agent that was trained more than three months earlier (June 10,
2020). The agent corrects the trajectory to better than 2 mm RMS
within 1-2 iterations. No retraining was required.

= N
o] o

no. iterations

=
o

0 10 20 30 40

AT\

E-02
2 AN
‘é — final
T 04 initial
---- target
0 10 20 30 40
no. episode
FIG. 11. Validation on accelerator of agent that was trained on

simulation. The agent corrects the trajectory to better than 2 mm
RMS within 1-2 iterations.

As expected, the results—maximum 2 iterations for correc-
tion to well below 2 mm RMS for each episode—were as
good as with the online trained agent. Figure 11 shows the
results.

IV. RL AGENT FOR LINAC4 TRAJECTORY
CORRECTION

Training the AWAKE RL agent for trajectory correction
was a test case for algorithm development, since classical
optics model-based steering algorithms are available for the
AWAKE 18 MeV beamline. The CERN LINACS, on the
other hand, do not have online models, since the approach
for defining models in the control system developed for
transfer lines and the synchrotrons does not fit LINACSs
without adaptation. Beam parameters are usually tuned
manually, guided by offline calculations and experience.
RL and numerical optimization could be obvious and
inexpensive solutions to many typical LINAC tuning
problems. The CERN accelerator complex comprises
two LINACs. LINACS3 is used for a variety of ions and
the 160 MeV LINAC4 will provide H™ to the upgraded
CERN proton chain through charge exchange injection into
the PS Booster [31]. LINAC4 had its final commissioning
run at the end of 2019, where some time was also allocated
to test various advanced algorithms for different control
problems. Figure 12 shows an example of numerical
opimization with the algorithm COBYLA for trajectory
correction in LINAC4. Also, an RL agent using the NAF
algorithm was trained for trajectory steering in the LINAC
exploiting the experience with AWAKE.

LINAC4 accelerates H™ from 3 MeV after source and
RFQ to 160 MeV. The medium energy beam transport
(MEBT) after the RFQ is followed by a conventional drift
tube linac (DTL) of about 20 m that accelerates the ions to
50 MeV, then to 100 MeV in 23 m by a cell-coupled drift
tube LINAC (CCDTL) and finally to 160 MeV by a
m-mode structure (PIMS). The total length of the LINAC
up to the start of the transfer line to the PSB is roughly
75 m. The pulse repetition rate is 0.83 Hz. The trajectory in

124801-7

VERENA KAIN et al.

PHYS. REV. ACCEL. BEAMS 23, 124801 (2020)

objective

1.4 actors

L4D.RCH.021
L4D.RCH.031
L4C.RCH.011
L4C.RCH.031
L4C.RCH.051
L4C.RCH.071
. . . . L4P.RCH.011

actors L4P.RCH.031
2 L4P.RCH.051
L4P.RCH.071
L4P.RCH.091
L4P.RCH.111
L4T.RCH.011
L4T.RCH.0113
L4T.RCH.012
L4T.RCH.013

1.24

rms (mm)

1.0

N

A
= N
-le \

actors (arb. units)
o

0 20 40 60
no. iteration

FIG. 12. Optimization with COBYLA of the LINAC4 trajec-
tory correction problem in the horizontal plane. The algorithm
converged after around 70 iterations.

the MEBT is fine tuned for optimizing chopping efficiency
and should not be modified during general trajectory
optimization. In addition there are no BPMs available in
the MEBT as observable for an RL agent.

A. Online OpenAl Gym LINAC4 environment

The LINAC4 Gym environment comprised state infor-
mation from 17 BPMs and actions possible on 16 correc-
tors, through DTL, CCDTL, PIMS and start of the transfer
line in the horizontal plane (the allocated accelerator
development time was not sufficient to also train for the
vertical plane). No simulated environment was available for
this case and the tuning of the hyperparameters had to be
carried out online. The hyperparameters obtained earlier
with AWAKE were not directly re-usable as the allowed
trajectory excursion range was much reduced due to
machine protection reasons (e.g., the maximum allowed
RMS had to be set to 3 mm, which affected the normali-
zation of the returned reward). The LINAC4 trajectory
steering OpenAl Gym environment had to respect the
machine protection constraints and finalize episodes in
case of violation, reset to safe settings as well as to deal
with various hardware limitations (e.g., the power supplies
the steering dipoles cannot regulate for |I| < 0.1 A).

B. Experimental results from LINAC4 RL tests

LINAC4 had 8 weeks of final commissioning run in
2019. On November 27, half a day was allocated to training
and testing the NAF agent. A big fraction of this time
was used in fine tuning hyperparameters such that the
agent would not immediately run into rather tight machine
protection limits during the exploration phase. A successful
training could be achieved, with the agent training param-
eters given in Table II. The training is shown in Fig. 13

TABLE 1II. LINAC4 horizontal steering NAF agent training
parameters.

DOF 16

Reward target [mm] -1

Max episode length 15

Max A.,,. [A] 0.5

Min allowed reward [mm] -3

and the convergence of the value function V(s) and loss
function in Fig. 14. The total number of episodes was set to
90 (taking in total about 300 iterations).

After about 25 episodes (or the equivalent of about 125
iterations), the agent had learned to correct the trajectory to
below 1 mm RMS within a maximum of 3 iterations each
time. The value function converged to -0.85 corresponding
to 0.85 mm RMS in case of correction in one iteration.
No other tests could be performed at that stage due to lack
of time. It would obviously be of interest to deploy the

-
v

v

no. iterations
=
o

0 20 40 60 80
-1 A S e
B
E-2
g final
< _3 initial
---- target
0 20 40 60 80
no. episode
FIG. 13. Online training of NAF agent on LINAC4 trajectory

steering in horizontal plane. The maximum allowable RMS was
limited to 3 mm due to machine protection reasons. The target for
the training was set to reach 1 mm RMS.

107t

loss
V(s

0 50 100 150 200 250 300
no. iteration

FIG. 14. Online training of NAF agent on LINAC4 trajectory
steering in horizontal plane: convergence of loss function and
value function V. The latter converges to —0.85 corresponding to
an RMS better than 1 mm in case of correction in one iteration.

124801-8

SAMPLE-EFFICIENT REINFORCEMENT LEARNING ...

PHYS. REV. ACCEL. BEAMS 23, 124801 (2020)

trained agent as part of the standard LINAC4 control room
tools for the 2020 run and to test long term stability.

V. DISCUSSION AND OUTLOOK

The experience with the AWAKE and LINAC4 RL agent
deployment has proved that the question of sample effi-
ciency for the model-free RL approach can be addressed for
real accelerator control problems. The training with algo-
rithms such as NAF (and TD3) is sample-efficient enough
to allow for deployment in the control room. It requires
more iterations than a numerical optimization algorithm,
but after training it outperforms numerical optimizers. The
resulting product is a control algorithm like SVD. Whereas
the linear control problem of trajectory correction can be
solved with SVD or other standard methods, single-step
correction for nonlinear problems are not available with these
standard algorithms. RL does not require a linear response
and can thus provide controllers for also these cases.

The standardization of the environment description using
OpenAl Gym proved a big advantage, allowing rapid
switching between simulated and online training, and
between agents. Correct normalization and un-normaliza-
tion of all actions, state observations and rewards was of
course crucial. For the training, care needed to be taken in
constructing the reward function and episode termination
criteria. The key hyperparameters were found to be the
maximum number of iterations per episode, and the reward
target for early episode termination. Note that these hyper-
parameters belong to the environment description and not
to algorithms themselves. The same environment hyper-
parameters can be used with different RL algorithms e.g.,
NAF and TD3. Tuning of these hyperparameters took some
time, and valuable experience was gained from having a
simulated AWAKE environment, although such a simulated
environment cannot be counted on for many application
domains and indeed was not available for the LINAC4
tests. Also, the algorithms come with hyperparameters, but
the default parameters gave mostly already very good
results.

Model-free RL algorithms have the advantage of limited
complexity and insignificant computer power require-
ments. The most sample-efficient algorithms (i.e., NAF,
TD3) are straightforward to tune and can solve accelerator
control problems, as shown in this paper. For accelerators
with a lower repetition rate (e.g., repetition period of
> 1 minute), the number of iterations needs to be even
further reduced to allow for stable training conditions or
even allow for the training at all, given that accelerator time
is expensive and normally overbooked. Model-based RL is
a promising alternative to overcome the sample efficiency
limitation, depending on the algorithm, however, at the
expense of requiring significant computing resources.
Another advantage of these algorithms is that an explicit
model of the control problem response is a byproduct of the
training of the agent.

The beam time reserved for advanced algorithms in 2020
at AWAKE will be used to deploy various model-based RL
algorithms as well as model predictive control such as the
iLQR [16] algorithm on a model obtained through super-
vised learning.

Another general challenge for RL agents next to the
question of sample efficiency, addressed in this paper, is the
availability of meaningful state observation. The RL agent
for the automatching [32] of AWAKE source initial con-
ditions to the transfer line lattice uses computer vision
machine learning algorithms for the interpretation of OTR
screen measurements, to implicitly encode the state.

In addition to studying new algorithms, infrastructure
and frameworks will have to be deployed in the control
system to easily make use of advanced algorithms and
machine learning. This is also part of the goal for the 2020
AWAKE tests, where we aim to provide a generic opti-
mization framework for the control room, including
centrally stored neural networks as well as registering
environments and algorithms for common use.

VI. CONCLUSIONS

Modern particle accelerators are complex, with often very
dense user schedules, and need to be exploited efficiently.
Deterministic operation and automation are the cornerstones
for a new operations paradigm. Numerical optimizers are
already used on a regular basis in the control room, for
applications inaccessible to classical correction algorithms.
With the recent progress in the field of deep reinforcement
learning, parameter tuning in the control room can be learned
by algorithms to further boost efficiency and extend the
application domain. Not only are these algorithms readily
available, but they are also straightforward to tune.

In this paper the sample-efficient RL algorithm NAF was
successfully trained on real-world accelerator tuning prob-
lems with the trajectory steering agents at the CERN
AWAKE electron line and the H™ accelerator LINAC4.
We have also shown the potential of transfer learning for an
RL agent, by training it on simulation and applying it on the
real accelerator successfully with no retraining needed.

The main challenge is the implementation of the domain
specific optimization problem with the adequate definition
of reward in the chosen OpenAl Gym environments.
Several guidelines are compiled in this paper to help with
that task.

Only model-free RL algorithms were tested as part of
this initial study. Model-free algorithms have insignificant
requirements on computing infrastructure, but model-based
ones have additional interesting advantages, particularly
further increased sample efficiency. They will be part of the
next test series.

Last but not least, as machine learning in all its forms
will inevitably be part of operating particle accelerators,
this work has shown that controls infrastructure will have to
provide for storing and retrieving neural networks centrally

124801-9

VERENA KAIN et al.

PHYS. REV. ACCEL. BEAMS 23, 124801 (2020)

along with algorithms and the equivalent to OpenAl Gym
environments.

APPENDIX A: COMPARISON: Q LEARNING
VERSUS ON-POLICY REINFORCEMENT
LEARNING

The NAF algorithm was compared with the state-of-the-
art on policy algorithm PPO [33], see Fig. 15. As expected
from literature, Q learning is more sample-efficient than on-
policy learning—Dby at least one order of magnitude for this
specific problem. A comparison between the TD3 algo-
rithm and the implementation of NAF with prioritized
experience replay is given in Fig. 16.

-0.2
g
‘c
=1
o 04
s
B
©
E
& 06
£
=1
v
~0.8 1
— ppo
—=- naf
0 1000 2000 3000 4000 5000
no. episode
FIG. 15. A comparison between the on-policy state-of-the-art

algorithm PPO and the NAF algorithm for the AWAKE trajectory
correction problem. The cumulative reward was averaged over
five different random seeds.

| | | | |
. © o o ©
w s w N =

|
o
o

cum reward (arb. units.)

|
o
N

|
o
©

1 — td3
—~—- per-naf

|
°©
©

160 2(')0 360 4(')0 560
no. episode
FIG. 16. A comparison between the state-of-the-art TD3

algorithm and PER-NAF on the AWAKE simulated environment.
The overall performance is comparable.

APPENDIX B: PER-NAF DETAILS

1. Network and training parameter details

The NAF network architecture as described in this paper
was used with activation function tanh(). The weights were
initialized to be within (—0.05, 0.05) at the beginning of the
training and the learning rate a was set to 1 x 1073 with a
batch size of 50. For the Q-learning, a discount factor of
y = 0.999 was applied and 7 for the soft target update was
set to 7 = 0.001.

2. The prioritization of the samples

The data distribution for off-policy algorithms like
Q-learning is crucial and current research proposes several
strategies [34,35]. New data is gathered online following
the current policy, while off-line data from the replay buffer
is used to improve the policy. In our implementation, the
data selected to minimize the loss function, or temporal
difference error, during the training is weighted according
to their previous temporal difference error. Data with a
larger error is used more often for the weight update than
other data [25]. Two parameters, « and f are important to
control the priority and the weighting of the samples. The
probability P; to select a sample i from the replay buffer is

_
P

where /; is the temporal difference error of sample i. The
sample is used with the weight w;

IARAY
Yi=\w~p

For the NAF agents in this paper a and were chosen to
be 0.5.

Figure 17 shows a comparison of the obtained cumu-
lative reward for different seeds during a training with the
simulated Gym environment of AWAKE. The blue and red
curves were obtained with prioritization (blue # = 0.5 and
red f = 0.9), the green curve without. The variance of the
results is smaller in case of using prioritization and the
training faster such that higher cumulative rewards are
reached earlier.

P, (B1)

(B2)

3. The exploration policy

For exploration during the training in the experiments
discussed in this paper, Gaussian random noise was added
to the proposed actions with a standard deviation ¢ = 1
decaying with 1/(0.1 x n+ 1), where n is the episode
number. In Fig. 18 this exploration strategy, which is
labeled as inverse strategy in the plot, is compared to a
strategy with a standard deviation reduced linearly over 100
episodes, labeled as linear strategy. The upper plot shows
the reduction of the standard deviation for the Gaussian

124801-10

SAMPLE-EFFICIENT REINFORCEMENT LEARNING ...

PHYS. REV. ACCEL. BEAMS 23, 124801 (2020)

cum reward (arb. units.)

FIG. 17. The training with prioritization of the samples for
two different values of f compared to the baseline without

| — beta=0.5

“0-19 __. peta=0.9

------- baseline
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7

100 150 200 250 300 350
no. episode

prioritization.

noise level (arb.u.)

cum. reward (arb. u.)

FIG.

1.0 1
0.8
0.6 1
0.4 4
0.2

0.0

—— Inverse strategy
—==- Linear strategy

—0.2 1
~0.4
~0.6
—0.8

—1.0 A

0 50 100 150 200 250
no. episode

18. Two exploration strategies: the inverse strategy results

in a more stable training.

random noise as function of episode and the lower plot the
cumulative reward per episode obtained for training with
five different seeds. The inverse strategy results in a more
stable training.

(1]

(2]

D. Jacquet, R. Gorbonosov, and G. Kruk, LSA—The High
Level Application Software of the LHC and its Perfor-
mance during the first 3 years of Operation, [4th
International Conference on Accelerator & Large Exper-
imental Physics Control Systems,
San Francisco, CA, USA, 611 Oct 2013, pp. thppc058,
https://cds.cern.ch/record/1608599.

A. Edelen, N. Neveu, M. Frey, Y. Huber, C. Mayes, and A.
Adelmann, Machine learning for orders of magnitude
speedup in multiobjective optimization of particle accel-
erator systems, Phys. Rev. Accel. Beams 23, 044601
(2020).

(3]

(5]
(6]

(8]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

124801-11

G. Azzopardi, A. Muscat, G. Valentino, S. Redaelli, and B.
Salvachua, Operational results of LHC collimator alignment
using machine learning, in Proc. IPAC’19, Melbourne,
Australia (JACoW, Geneva, 2019), pp. 1208-1211.

S. Hirlaender, M. Fraser, B. Goddard, V. Kain, J. Prieto, L.
Stoel, M. Szakaly, and F. Velotti, Automatisation of the
SPS ElectroStatic Septa Alignment, in /0th Int. Particle
Accelerator Conf.(IPAC’19) (JACoW, Geneva, 2019),
p- 4001-4004.

J. Duris et al., Bayesian Optimization of a Free-Electron
Laser, Phys. Rev. Lett. 124, 124801 (2020).

A. Hanuka et al., Online tuning and light source control
using a physics-informed Gaussian process Adi, https:/
arxiv.org/abs/1911.01538.

M. Mclntire et al., Sparse Gaussian processes for Bayesian
optimization, https://www-cs.stanford.edu/~ermon/papers/
sparse-gp-uai.pdf.

N. Bruchon, G. Fenu, G. Gaio, M. Lonza, F. A. Pellegrino,
and E. Salvato, Toward the Application of Reinforcement
Learning to the Intensity Control of a Seeded Free-Electron
Laser, 2019 23rd International Conference on Mecha-
tronics Technology (ICMT), SALERNO, lItaly, 2019,
pp. 1-6, https://doi.org/10.1109/ICMECT.2019.8932150.
N. Bruchon, G. Fenu, G. Gaio, M. Lonza, F. H. O’Shea,
F. A. Pellegrino, and E. Salvato, Basic reinforcement
learning techniques to control the intensity of a seeded
free-electron laser, Electronics 9, 781 (2020).

T. Boltz et al., Feedback design for control of the micro-
bunching instability based on reinforcement learning, in
10th Int. Particle Accelerator Conf.(IPAC’19), https://
doi.org/10.18429/JACoW-IPAC2019-MOPGWO17.

A. Edelen et al., Using a neural network control policy for
rapid switching between beam parameters in an FEL, in
38th International Free Electron Laser Conference,
https://doi.org/10.18429/JACoW-FEL2017-WEPO31.

E. Shaposhnikova et al., LHC injectors upgrade (LIU)
project at CERN, in 7th International Particle Accelerator
Conference, Busan, Korea, 8—13 May 2016, pp. MO-
POY059, https://doi.org/10.18429/JACoW-IPAC2016-MO-
POY059.

E. Adli, A. Ahuja, O. Apsimon, R. Apsimon, A.-M.
Bachmann, D. Barrientos, F. Batsch, J. Bauche, V.B.
Olsen, M. Bernardini et al., Acceleration of electrons in
the plasma wakefield of a proton bunch, Nature (London)
561, 363 (2018).

A. Scheinker, S. Hirlaender, F. M. Velotti, S. Gessner, G. Z.
Della Porta, V. Kain, B. Goddard, and R. Ramjiawan,
Online multi-objective particle accelerator optimization of
the AWAKE electron beam line for simultaneous emittance
and orbit control, AIP Adv. 10, 055320 (2020).

R. Sutton and A. Barto, Introduction to Reinforcement
Learning (MIT Press, Cambridge, MA, USA, 2018).

H. Kwakernaak and R. Sivan, Linear Optimal Control
Systems (Wiley-Interscience, New York, 1972).
A.Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, Neural
network dynamics for model-based deep reinforcement
learning with model-free fine-tuning, arXiv:1708.02596.
R. Sutton, Dyna, an integrated architecture for learning,
planning, and reacting, AAAI Spring Symposium 2, 151
(1991).

https://cds.cern.ch/record/1608599
https://cds.cern.ch/record/1608599
https://cds.cern.ch/record/1608599
https://doi.org/10.1103/PhysRevAccelBeams.23.044601
https://doi.org/10.1103/PhysRevAccelBeams.23.044601
https://doi.org/10.1103/PhysRevLett.124.124801
https://arxiv.org/abs/1911.01538
https://arxiv.org/abs/1911.01538
https://arxiv.org/abs/1911.01538
https://arxiv.org/abs/1911.01538
https://www-cs.stanford.edu/%7Eermon/papers/sparse-gp-uai.pdf
https://www-cs.stanford.edu/%7Eermon/papers/sparse-gp-uai.pdf
https://www-cs.stanford.edu/%7Eermon/papers/sparse-gp-uai.pdf
https://www-cs.stanford.edu/%7Eermon/papers/sparse-gp-uai.pdf
https://www-cs.stanford.edu/%7Eermon/papers/sparse-gp-uai.pdf
https://doi.org/10.1109/ICMECT.2019.8932150
https://doi.org/10.3390/electronics9050781
https://doi.org/10.18429/JACoW-IPAC2019-MOPGW017
https://doi.org/10.18429/JACoW-IPAC2019-MOPGW017
https://doi.org/10.18429/JACoW-FEL2017-WEP031
https://doi.org/10.18429/JACoW-IPAC2016-MOPOY059
https://doi.org/10.18429/JACoW-IPAC2016-MOPOY059
https://doi.org/10.1038/s41586-018-0485-4
https://doi.org/10.1038/s41586-018-0485-4
https://doi.org/10.1063/5.0003423
https://arXiv.org/abs/1708.02596

VERENA KAIN et al.

PHYS. REV. ACCEL. BEAMS 23, 124801 (2020)

[19]
(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

T. Wang et al., Benchmarking model-based reinforcement
learning, https://arxiv.org/abs/1907.02057v1.

V. Mnih et al, Human-level control through deep
reinforcement learning, Nature (London) 518, 529 (2015).
T. Lillicrap et al., Continuous control with deep reinforce-
ment learning, in Proc. ICLR 2016, https://arxiv.org/abs/
1509.02971.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, Continuous
deep Q-learning with model-based acceleration, in Proc.
33rd International Conference on Machine Learning,
New York, NY, USA, 2016 [arXiv:1603.00748].

S. Fujimoto, H. van Hoof, and D. Meger, Addressing
function approximation error in actor-critic methods,
arXiv:1802.09477.

Y. Gal, R. McAllister, and C.E. Rasmussen, Improving
PILCO with Bayesian neural network dynamics models,
in Data-Efficient Machine Learning workshop, ICML 4, 34
(2016).

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, Priori-
tized experience replay, arXiv:1511.05952.

S. Hirlaender, PER-NAF available at https:/github.com/
MathPhysSim/PER-NAF/ and https:/pypi.org/project/
pernaf/.

PYJAPC available at https://pypi.org/project/pyjapc/.

(28]
[29]

(30]

(31]

(32]

(33]

(34]

(35]

124801-12

http://gym.openai.com.

M.J.D. Powell, A direct search optimization method that
models the objective and constraint functions by linear
interpolation, in Advances in Optimization and Numerical
Analysis, edited by S. Gomez and J.-P. Hennart (Kluwer
Academic, Dordrecht, 1994), pp. 51-67.

MAD-X documentation and source code available at
https://mad.web.cern.ch/mad/.

G. Bellodi, Linac4 commissioning status and challenges to
nominal operation, 61st ICFA Advanced Beam Dynamics
Workshop on High-Intensity and High-Brightness Hadron
Beams, Daejeon, Korea, 17-22 Jun 2018, pp. MOA1PLO3,
https://doi.org/10.18429/JACoW-HB2018-MOA1PL03.

F. Velotti, B. Goddard et al., Automatic AWAKE electron
beamline setup using unsupervised machine learning (to be
published).

J. Schulmann et al., Proximal policy optimization algo-
rithms, https://arxiv.org/pdf/1707.06347.pdf.

A. Kumar, A. Gupta, and S. Levine, DisCor: Corrective
feedback in reinforcement learning via distribution cor-
rection, arXiv:2003.07305.

A. Kumar, J. Fu, G. Tucker, and S. Levine, Stabilizing off-
policy Q-learning via bootstrapping error reduction, arXiv:
1906.00949.

https://arxiv.org/abs/1907.02057v1
https://arxiv.org/abs/1907.02057v1
https://arxiv.org/abs/1907.02057v1
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arXiv.org/abs/1603.00748
https://arXiv.org/abs/1802.09477
https://arXiv.org/abs/1511.05952
https://github.com/MathPhysSim/PER-NAF/
https://github.com/MathPhysSim/PER-NAF/
https://github.com/MathPhysSim/PER-NAF/
https://pypi.org/project/pernaf/
https://pypi.org/project/pernaf/
https://pypi.org/project/pyjapc/
https://pypi.org/project/pyjapc/
http://gym.openai.com
http://gym.openai.com
http://gym.openai.com
https://mad.web.cern.ch/mad/
https://mad.web.cern.ch/mad/
https://mad.web.cern.ch/mad/
https://mad.web.cern.ch/mad/
https://doi.org/10.18429/JACoW-HB2018-MOA1PL03
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arXiv.org/abs/2003.07305
https://arXiv.org/abs/1906.00949
https://arXiv.org/abs/1906.00949

