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A destabilizing effect of the detuning impedance has been recently observed in simulations of the
CERN Proton Synchrotron (PS) at the injection energy: while without the detuning impedance the
instability is faster in the vertical plane as expected (due to the elliptical shape of the vacuum chamber),
with detuning impedance the instability appears to be faster in the horizontal plane. In order to understand
the detuning impedance destabilizing effect, we study the collective behavior for the simpler case of a
coasting beam with PS-like parameters and a simplified impedance model. The analysis, carried out from
both numerical and theoretical points of view, highlights a new destabilizing mechanism related to the
coupling of slow and fast waves.
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I. INTRODUCTION

The CERN Proton Synchrotron (PS) provides high
intensity proton bunches within the injector chain to the
Large Hadron Collider (LHC). The machine and beam
parameters have been recently pushed in order to meet the
challenging goals of the LHC injectors upgrade (LIU)
project [1,2] started in 2010. For the future operation at
higher intensities and beam brightness required by the LIU
project, it is of fundamental importance to detect and cure
the observed machine instabilities along the LHC beam
production cycles. Headtail horizontal instabilities have
been observed, measured and systematically characterized
versus chromaticity at the injection kinetic energy of
1.4 GeV with a bunched beam in [3]. The analysis of
the instability based on Sacherer’s theory [4] was found to
be in good agreement with measurements concerning the
headtail mode number [3]. One of the possible explanations
for the horizontal plane to be more unstable than the
vertical one (which is not expected for a flat vacuum
chamber, as, in first approximation, the one of the PS) was a
different chromaticity between the two planes. The mode
pattern and behavior with chromaticity was also studied
with a macroparticle code [5]: HEADTAIL [6] simulations
were performed scaling the PS resistive wall wakefield
to reduce the simulation time and without accounting
for the effect of the direct space charge and detuning

impedance. The simulation results confirmed the measure-
ments [3]. Recently, the instability was simulated with the
PyHEADTAIL code [7] by using the PS impedance model
developed in [8,9] and it revealed a destabilising effect of
the detuning impedance for some chromaticities in the
horizontal plane, otherwise more stable than the vertical
plane in the presence of only driving impedance [10].
In order to understand the instability mechanism and to

investigate why the horizontal plane is destabilised by the
detuning impedance, a series of studies was recently
performed at CERN. The effect of the detuning impedance
was investigated with a two-particle model [11], with
systematic bunched beam PyHEADTAIL simulations [12],
with the eDELPHI Vlasov solver [13], and with the
circulant matrix formalism [14,15].
In this context, we analyze the effect of the detuning

impedance on a coasting beam with PS parameters and a
simple impedance model of two resistive parallel plates. On
one hand, this approach offers the advantage of a simpler
collective effects treatment to investigate if a destabilising
effect of the detuning impedance can already be observed in
the case of a coasting-beam (with the simplified impedance
model) and for zero chromaticity. On the other hand, it does
not aim to directly explain the PS instability, even if it
shows that indeed a destabilizing effect is present also in
this case.
The theoretical background for the study of coasting

beam collective effects is described in Sec. II. Simulations
accounting for the driving impedance only will be com-
pared with the classical theory developed in [16–18]. In
Sec. III the theory is extended in order to include the
detuning impedance (not accounted for in the classical
treatment [16–18]). These modifications are essential
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ingredients to be able to reproduce simulations performed
in presence of both driving and detuning impedances. In
Sec. IV the theory is further extended to account possible
couplings between fast and slow coasting beam betatron
waves: the fast-slow mode coupling instability is described
and benchmarked with PyHEADTAIL simulations. Section V
summarizes the results described in the previous sections.

II. TRANSVERSE COASTING BEAM INSTABILITY
SIMULATIONS WITH DRIVING IMPEDANCE

In this section we introduce the theory and the simu-
lations of coasting beam transverse instabilities following
the approach of [17]. This will be the starting point for the
following developments presented in Sec. III to correctly
account for the additional effect of the detuning impedance.
Let us consider a coasting proton beam of charge qN

with q the elementary charge and N the number of charges
in the beam. The line density distribution ρðsÞ is supposed
to be constant and equal to ρðsÞ ¼ qN=C where C is the
accelerator circumference. We consider a transverse per-
turbation dðs; tÞ as a function of space s and time twith the
form of

dðs; tÞ ¼ ΔejðΩt−ns=RÞ; ð1Þ

where R ¼ C=2π is the average radius of the machine, n an
arbitrary integer number and Ω is the angular frequency of
the perturbation. Equation (1) describes a wave of n periods
within the accelerator circumference, oscillating with the
collective frequency Ω.
The dipole moment of the coasting beam is given by

Dðs; tÞ ¼ dðs; tÞρðsÞ ¼ qNΔ
C

ejðΩt−ns=RÞ: ð2Þ

Given a beam circulating with velocity v ¼ βcwith β the
relativistic factor and c the speed of light, a particle in s0 at
t ¼ 0 will move according to Dðs0 þ vt; tÞ.
Let us now consider a particle performing betatron

oscillations, for example, in the vertical plane y, and
perturbed by the wakefields produced by the perturbation.
The equation of motion can be written as [17]

ÿðs; tÞ þ ω2
βyðs; tÞ ¼

hFyiðs; tÞ
γm0

; ð3Þ

where ωβ ¼ Qyω0 is the vertical betatron angular fre-
quency with Qy the machine vertical tune and ω0 the
revolution angular frequency, γ is the relativistic Lorentz
factor, m0 the rest mass of the particle, hFyiðs; tÞ is the
average force acting on the particle motion, and _y means
derivation of y with respect to t.
In the frame of wakefields, the force induced by a source

particle on a following test particle at distance z > 0, can be
expressed as

Fy ¼ −
q2

C
Wyðȳ; yÞ; ð4Þ

where ȳ and y respectively indicate the displacement of the
source and test charges. The Taylor expansion around the
center of the beam vacuum chamber gives

Fy ¼ −
q2

C

�∂Wy

∂ȳ
����
y¼0

ȳþ ∂Wy

∂y
����
ȳ¼0

y

�
; ð5Þ

where we neglected the constant term for simplicity. We
define Wdriv

y ¼ ∂Wy=∂ȳjy¼0 the driving wake function and
Wdet

y ¼ ∂Wy=∂yjȳ¼0 the detuning wake function [19] in
units of V/(C m). We introduce as well the driving and
detuning impedances as the Fourier transform of their
corresponding wake functions:

Zdriv=det
y ðωÞ ¼ −j

Z þ∞

0

Wdriv=det
y ðzÞejωz=vdz=v: ð6Þ

Considering, for the moment, the absence of detuning
wake, and the perturbation defined in Eq. (2), the total force
acting on a charge at a fixed point in the accelerator can be
rewritten as

hFdriv
y iðs;tÞ¼−

q
C

Z
∞

t
Wdriv

y ðvt0−vtÞDðs; t0Þvdt0

¼−
q2NΔ
C2

e−jns=R
Z

∞

t
Wdriv

y ðvt0−vtÞejΩt0vdt0

¼−
q2NvΔ
C2

e−jns=RejΩt
Z

∞

0

Wdriv
y ðzÞejΩz=vdz=v:

ð7Þ

Using the impedance definition of Eq. (6) we have

hFdriv
y iðs; tÞ ¼ −

qv
C

Dðs; tÞjZdriv
y ðΩÞ: ð8Þ

This force acts on a charge at a fixed location into
an accelerator. A particle that passes in s ¼ s0 at t ¼ 0 will
be affected by a force at the time t equal to hFdriv

y iðs; tÞ
where s ¼ s0 þ Rω0t ¼ s0 þ vt. Equation (3) can then be
written as

ÿðs; tÞ þ ω2
βyðs; tÞ ¼ −

qv
γm0C

Dðs0 þ vt; tÞjZdriv
y ðΩÞ: ð9Þ

Assuming yðs; tÞ ¼ AejððΩ−nω0Þt−ns0=RÞÞ as trial particular
solution of the differential equation, we can find the
constant A substituting the expression into Eq. (9) and
getting

yðs; tÞ ¼ −
q2vN
γm0C2

ΔjZdriv
y ðΩÞ ejðΩt−ns=RÞ

ω2
β − ðΩ − nω0Þ2

: ð10Þ
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To be self-consistent with the initial assumption of coherent
steady-state oscillations of Eq. (2), yðs; tÞ is also equal to

yðs; tÞ ¼ ΔejðΩt−ns=RÞ: ð11Þ

From Eqs. (11) and (10), we get the dispersion relation

1 ¼ −
q2vN
γm0C2

jZdriv
y ðΩÞ 1

ω2
β − ðΩ − nω0Þ2

: ð12Þ

Let us now solve for Ω. We rewrite Eq. (12) as

ω2
β − ðΩ − nω0Þ2 ¼ −

q2vN
γm0C2

jZdriv
y ðΩÞ; ð13Þ

from which, definingΩ ¼ nω0 − ωβ þ ΔΩn, and assuming
ΔΩn ≪ nω0 − ωβ, we have

ΔΩdriv
n ¼ −

q2vN
2γm0C2ωβ

jZdriv
y ½ðn −QyÞω0�: ð14Þ

The rise time, in number of turns, associated to each line is
defined as τn ¼ −1=ImðΔΩdriv

n Þ=T0 and we define the
normalized frequency shift as ReðΔΩdriv

n Þ=ω0.
Having chosen n as an integer number, the solutions

with n −Qy > 0 will sample ReðZdriv
y Þ > 0 and the waves

are therefore unstable (so called slow waves) with
positive rise time, while solutions with n −Qy < 0 will
sample ReðZdriv

y Þ < 0 and the waves are stable (so called
fast waves) with negative rise time.
The PyHEADTAIL code was originally conceived to

simulate the collective effects of bunched beams only
[6]. We have introduced some modifications to adapt the
code to simulate coasting beams: the longitudinal charge
density covers the full machine circumference, a simple
drift replaces the rf focusing, the wake interaction is
computed with the inverse Fourier transform of the product
between the impedance and the charge transverse dipole
distribution.
In order to benchmark the new PyHEADTAIL code with the

complex mode shift of Eq. (14) we assumed a uniform
longitudinal charge distribution with neither momentum
spread nor chromaticity.
In the frame of this study, we consider the resistive wall

impedance of a flat beam pipe with PS-like parameters: two
parallel plates of stainless steel (electrical resistivity of
7.2 × 10−7 Ωm) with 27.5 mm half gap, infinitely thick and
628.32 m long. The impedance is computed with the
ImpedanceWake2D code [20,21].
Figure 1 shows the computed driving and detuning

impedances: as expected the vertical detuning impedance
is half the driving one in the same plane, while the
horizontal detuning impedance is opposite in sign to the
driving one in the same plane; the driving horizontal is half

the vertical one [22]. More accurate models for the PS
transverse impedance are available [9,23–25] but beyond
the scope of this work. It is important to notice the inductive
bypass effect toward low frequencies [26,27], at which the
effect of the image charges dominates the imaginary part of
the impedances.
For the simulation, we assume equal working points in

the horizontal and vertical planes Qx;y ¼ 6.4 but no
coupling between the two planes. The beam is approxi-
mated by 50000 macroparticles, sliced with 128 bins and
tracked for 2000 turns with variable intensity ranging from
1 × 1013 to 1 × 1014 charges. Figure 2 shows the amplitude
spectrum of the vertical plane as a function of the number of
turns: since the coasting beam spectrum samples the
impedance in the classical thick wall regime, i.e., a

FIG. 1. Vertical driving and detuning impedances (respectively
in blue and black), and horizontal driving and detuning imped-
ances (in red and magenta) for a flat pipe made of two parallel
plates of stainless steel (electrical resistivity of 7.2 × 10−7 Ωm,
27.5 mm half gap, infinite thickness, 628.32 m long).

FIG. 2. Amplitude spectrogram of the instability simulated with
PyHEADTAIL accounting for the driving impedance only at the
intensity of 1 × 1013 charges. The most unstable line corresponds
to the slow wave n ¼ 7, for which ðn −QyÞ ¼ 0.6.
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monotonically decreasing real part versus frequency, the
lowest frequency slow wave corresponding to n−Qy ¼ 0.6
is the most unstable.
Figure 3 shows the rise time of the instability (at the top)

and the normalized frequency shift of the most unstable
mode (at the bottom), compared to Eq. (14). The agreement
is excellent and it can be seen that, as expected, for all the
intensities the vertical plane is more unstable than the
horizontal one. It is important to notice that the resolution
on the normalized frequency shift has been improved over
the classical FFT algorithm by using a harmonic analysis
method based on iterative frequency interpolation [28].

III. TRANSVERSE COASTING BEAM
INSTABILITY SIMULATIONS WITH BOTH
DRIVING AND DETUNING IMPEDANCES

We now include the effect of the detuning impedance,
first analytically following a treatment similar to the one
discussed in Sec. II, then with macroparticles simulations.
From Eq. (5), the infinitesimal source charge ρðs; t0Þvdt0

induces a detuning wakefield on the test particle yðs; tÞ
given by

dFdet
y ðs; tÞ ¼ −

q
C
yðs; tÞWdet

y ðvt0 − vtÞρðs; t0Þvdt0: ð15Þ

Integrating over time we get the total force as

hFdet
y iðs; tÞ ¼ −

q
C
yðs; tÞ

Z
∞

t
Wdet

y ðvt0 − vtÞρðs; t0Þvdt0:

ð16Þ

Differently from the driving force, which is produced
only by the perturbation, the detuning force depends on the
unperturbed longitudinal distribution ρðs; tÞ. When this is
constant, the detuning force simplifies into

hFdet
y iðs; tÞ ¼ −

q2N
C2

yðs; tÞ
Z

∞

t
Wdet

y ðvt0 − vtÞvdt0

¼ −
q2N
C2

yðs; tÞ
Z

∞

0

Wdet
y ðzÞdz: ð17Þ

From the definition of impedance of Eq. (6) we haveZ
∞

0

Wdet
y ðzÞ dz ¼ jvZdet

y ð0Þ: ð18Þ

In turn the force can be expressed as

hFdet
y iðs; tÞ ¼ −

q2vN
C2

yðs; tÞjZdet
y ð0Þ: ð19Þ

In presence of detuning impedance only, Eq. (3) is
written as follows

ÿðs; tÞ þ ω2
βyðs; tÞ ¼ −

q2vN
γm0C2

jZdet
y ð0Þyðs; tÞ: ð20Þ

Gathering the coefficients of yðs; tÞ, the effect of the
detuning impedance is to add an additional tune shift to the
bare machine working point. The new working point is
defined as ω0

β ¼ ωβ − ΔΩdet
n . Solving Eq. (20) for this

new frequency and neglecting second order terms in ΔΩdet
n ,

we have

ΔΩdet
n ¼ −

q2vN
2γm0C2ωβ

jZdet
y ð0Þ: ð21Þ

It is interesting to notice that in the specific case of the
resistive wall impedance, the thick-wall regime has 1=

ffiffiffiffi
ω

p
frequency dependence [29], i.e., with a singularity at DC,
that disappears only if the inductive bypass effect is taken
into account [26,27]. In other words, it is necessary to have
the full/correct detuning impedance description up to DC
(this is not the case for the driving impedance as the lowest
needed frequency is the one of the lowest unstable mode).

IV. THE FAST-SLOW WAVES COUPLING

Let us now consider the effect of both driving and
detuning impedances. Comparing respectively Eqs. (9),

FIG. 3. PyHEADTAIL simulations (with dots) compared to theory
[16] for driving impedance only (with full lines) for the horizontal
(blue) and the vertical (red) planes. The rise time of the most
unstable mode is shown at the top while the normalized frequency
shift is shown at the bottom.
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(11) and (14) for the driving force, and Eqs. (20), (21) for
the detuning force, we can write

ÿðs; tÞ þ ω2
βyðs; tÞ ¼ 2ωβðΔΩdriv

n þ ΔΩdet
n Þyðs; tÞ: ð22Þ

In Sec. III we described the effect of the detuning
impedance on transverse coasting beam instabilities
and the way to correctly account for it from the
analytical point of view. As the detuning impedance
introduces a large frequency shift due to the sampling
at DC, we investigate the possibility of fast-slow
waves coupling, so far not investigated in the available
literature.
Let us consider two nearby waves, namely a slow wave

y1ðs; tÞ corresponding to n ¼ n1 and a fast wave y2ðs; tÞ
corresponding to n ¼ n2. Dropping the dependence on s
and t, the coupled system can be written as

(
ÿ1 þ ω2

βy1 ¼ 2ωβΔΩtot
n1y1 þ 2ωβΔΩtot

n2y2

ÿ2 þ ω2
βy2 ¼ 2ωβΔΩtot

n2y2 þ 2ωβΔΩtot
n1y1

ð23Þ

where ΔΩtot
n1;n2 ¼ ΔΩdriv

n1;n2 þ ΔΩdet
n1;n2 . The nontrivial solu-

tion of the system represents the solution for the coupled
waves. Looking for the solutions in the form of y1;2 ¼
ejðΩ−n1;2ω0Þt we get the matrix system

�
m11 m12

m21 m22

��
y1
y2

�
¼

�
0

0

�
; ð24Þ

with

m11 ¼ ðωβ þ n1ω0 −ΩÞðωβ − n1ω0 þ ΩÞ − 2ωβΔΩtot
n1 ;

m12 ¼ −2ωβΔΩtot
n2 ;

m21 ¼ −2ωβΔΩtot
n1 ;

m22 ¼ ðωβ þ n2ω0 −ΩÞðωβ − n2ω0 þ ΩÞ − 2ωβΔΩtot
n2 :

Looking for the nontrivial solutions of the system, for
example using [30], we obtain the coupled complex
frequency shift of the fast-slow waves.
Figures 4 and 5 show, respectively for the horizontal

and vertical plane, the normalized frequency shift and the
rise time of the instability accounting for the coupling
between adjacent fast and slow waves. As can be seen,
the prediction from the coupled waves approach of (24)
is approximated by the uncoupled one of Eq. (14) only
for intensities below 1 × 1013 charges. At 6 × 1013 the
horizontal plane shows coupling between fast and slow
waves, with consequent shorter instability rise time. In
the vertical plane, the fast and slow waves are repelling
each other, and the difference in complex frequency shift
is negligible.
Figure 6 shows the comparison between Eq. (24) and

PyHEADTAIL simulations performed with both driving and
detuning impedances. The agreement is excellent and
shows the importance of considering the coupling of fast
and slow waves in order to correctly predict the rise time
and frequency shift of the instability. This mechanism is
conceptually analogous to the one of a transverse mode
coupling instability (TMCI) occurring when bunched
beam modes couple with each other [18]. Similarly,
coupling occurs between fast and slow waves in coast-
ing beams.

FIG. 4. At the top, the rise time of the most unstable mode
(m.u.m.) in the horizontal plane is shown respectively with (red
line) and without (dashed blue line) coupling of fast and slow
waves. At the bottom, the frequency normalized to the revolution
frequency of the m.u.m. with and without coupling is shown
together with the normalized frequency shift of the fast (dashed
gray line) and slow (full gray line) waves corresponding
respectively to n ¼ 6 and n ¼ 7.

FIG. 5. Same as Fig. 4 for the vertical plane.
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V. CONCLUSIONS

In this paper we described the effect of the driving and
detuning impedanceon transverse coastingbeam instabilities.
The PyHEADTAIL code has been extended to include the

study of coasting beam collective effects in presence of
wakefields. The code was successfully benchmarked with
the already developed theory of instabilities induced by the
driving impedance.
The effect of the detuning impedance was studied both

analytically and numerically: the impedance is sampled at
DC for a perfect coasting beam, and can therefore induce
significantly larger frequency shift compared to the driving
impedance only. This result is presently being investigated
following also the Vlasov’s formalism and will allow future
studies on the effect of a finite momentum spread and
chromaticity.
This study revealed the possibility of a new instability

mechanism: the coupling between adjacent fast and slow
waves. The mechanism has been successfully reproduced
with PyHEADTAIL numerical simulations.
This work supports, from a different point of view, the

necessity of having a correct description of the inductive
bypass impedance of a machine (i.e., a correct description
of the impedance down to DC).

ACKNOWLEDGMENTS

This work was partially supported by the European
Commission under the HORIZON 2020 Integrating

Activity project ARIES, Grant agreement No. 730871,
by the Conseil Européen pour la Recherche Nucléaire PS-
LIU project, and by INFN National committee V trough the
ARYA project.

[1] R. Garoby et al., Status and plans for the upgrade of the
LHC injectors, Report No. CERN-ATS-2013-059, 2013,
p. 3, https://cds.cern.ch/record/1566636.

[2] H. Damerau et al., LHC Injectors Upgrade, Technical
Design Report, Tech. Report No. CERN-ACC-2014-0337,
2014, http://cds.cern.ch/record/1976692.

[3] R. Cappi, R. Garoby, and E. Métral, Collective effects
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Métral, and B. Salvant, Transverse beam coupling imped-
ance of the CERN Proton Synchrotron, Phys. Rev. Accel.
Beams 19, 041001 (2016).

[10] M.Migliorati et al., Short update of the PS instability studies
at injection, HSC meeting, CERN, Geneva, Switzerland,
Jun. 2019, https://indico.cern.ch/event/824835/.

[11] G. Rumolo, Two-particle model including quadrupolar wake
fields, in 8th Low Emittance Rings Workshop, INFN-LNF,
Frascati, Italy, 2020, https://agenda.infn.it/event/20813/.

[12] N. Chitnis et al., Study of the effect of detuning impedance
on the transverse beam dynamics, HSC meeting, CERN,
Geneva, Switzerland, Aug. 2020, https://indico.cern.ch/
event/947183/.

[13] G. Iadarola, L. Mether, N. Mounet, and L. Sabato,
Linearized method for the study of transverse instabilities
driven by electron clouds, Phys. Rev. Accel. Beams 23,
081002 (2020).
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[15] E. Métral, X. Buffat, and G. Rumolo, Transverse
mode-coupling instability in the presence of detuning
impedance, Report No. CERN-ACC-NOTE-2020-0019,

FIG. 6. PyHEADTAIL simulations (with dots) compared to theory
accounting for coupling between fast and slow waves (with full
lines) for the horizontal (blue) and the vertical (red) planes. The
rise time, at the top, and the normalized frequency shift, at the
bottom, are shown.
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