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Microbunching instability (MBI) has been one of the most challenging issues in designs of high-
brightness beam transport lines for single-pass or recirculating accelerators. Although the intrabeam
scattering (IBS) has long been studied in lepton or hadron storage rings as a slow diffusion process or
in high-intensity proton linear accelerators as one mechanism for the beam halo, the effects of IBS on
single-pass or recirculating electron accelerators have drawn attention only in the recent two decades due to
emergence of linac-based or energy-recovery-linac-based fourth-generation light sources, which require
high-quality electron beams during the beam transport. In this paper we develop a theoretical formulation
of microbunching instability in the presence of IBS for single-pass or recirculation accelerators. To quantify
MBI with inclusion of IBS, we start from the Vlasov-Fokker-Planck (VFP) equation, combining both
collective interactions and incoherent IBS effects. The linearized VFP equation and the corresponding
friction and diffusion coefficients are derived. The evolutions of the resultant density and energy
modulations are formulated as a set of coupled integral equations. The theoretical formulation is then
applied to a recirculating beamline design. The results from the semianalytical calculation are compared

and show good agreement with massive particle tracking simulations.
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I. INTRODUCTION

In the last two decades, microbunching instability (MBI)
has been recognized as a challenging issue in high-
brightness electron beam transport and intensive studies
have been done in linear accelerators (linac) [1], storage-
ring accelerators [2], and recirculating or energy-recovery-
linac (ERL) accelerators [3]. For single-pass or few-passes
key transport line designs with applications to, e.g., bunch
compressor chicanes in the fourth-generation light sources
[4] or electron cooling facilities in the next-generation
electron-ion colliders [5,6], the typical normalized transverse
beam emittance can be 1 ym or lower, the uncorrelated
beam energy spread 10~* or smaller. Such a high-brightness
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electron beam can be susceptible to the collective effects due
to either the interaction between the beam and the environ-
ment or the beam itself, leading to beam quality degradation.
For the latter, the relevant collective effects of our interest
include the coherent synchrotron radiation (CSR) and the
longitudinal space charge (LSC). When an electron beam
traverses a series of bending magnets, CSR due to coherent
radiation emission inside the bends can induce a correlated
energy modulation along the bunch, and the subsequent
nonzero longitudinal dispersion or momentum compaction
Rs6 can have a significant effect on converting the energy
modulation to the density modulations downstream the
beamline [7—11]. LSC stems from upstream density ripples
on top of the bunch charge density, and can generate an
amount of energy modulation when the beam goes through
a long straight section of a beamline [12—14]. In a linac or
recirculating accelerator, a transport line is usually composed
of a series of straight and intervening bending (dispersive)
magnetic elements, meaning the consecutive density-energy
conversions. Once such a density-energy conversion forming
a positive feedback, it may lead to the enhancement of
modulation amplitudes. This has been known as the MBI.
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Particularly, a recirculation arc with multiple (usually several
to tens of) bending magnets can convert the upstream
accumulated energy modulations into density modulations,
resulting in deleterious phase space degradation. In this
aspect, MBI is usually undesirable in high-brightness beam
transport.

MBI, in another aspect, has however been recognized
as an important and necessary scheme that makes
short-wavelength high-intensity laser possible, e.g., VUV
or x-ray free-electron laser (XFEL) (see, for example,
Refs. [15-20] and references therein). Typical operating
modes for short-wavelength FELs include SASE (self-
amplification spontaneous emission) [16] and seeded
modes. In the SASE mode, the amplification process
originates from shot noise of the otherwise microbunched
electron beam. Through the process of FEL collective
instability, the electron beam will be microbunched/
modulated at the resonant wavelength and the output
characteristics of SASE FEL, upon saturation, will feature
the full transverse coherence, though its temporal or
spectral profile can be noisy [18-20]. The seeded mode
operation, acting as an amplifier, indeed requires an input
source. It has been known that utilizing higher harmonics
generation, e.g., high-gain harmonics generation (HGHG)
[17,21] or echo-enabled harmonic generation (EEHG)
[22,23] can be an option. Another option is the so-called
self-seeding [24-26]. In the self-seeding option the FEL
system starts with the first section of undulators based on
SASE mode and is followed by a crystal monochromator
or gratings to purify the output spectrum, serving as the
subsequent input signal. A second section of undulators
proceeds and amplifies the purified signal until saturation.
Compared with SASE, the output characteristics of a
seeded FEL are with much narrower spectral bandwidth
and better wavelength stability (see, for example,
Refs. [18-20] for more details). Recent theoretical [27]
and experimental [28,29] studies show that, when a micro-
bunched (prebunched) electron beam enters an undulator,
mixture of the modulation wavelength of the prebunched
beam and the FEL resonant wavelength will lead to the
so-called MBI-induced pedestal sideband instability in the
exponential-growth (linear) regime. Here we should note
that the physical mechanism is essentially different from
the traditional FEL sideband instability [30—32], where the
microbunched electron beam becomes trapped in the ponder-
omotive potential well and executes synchrotron motion in
the post-saturation regime. Therefore, from this aspect, FEL
has become an excellent example of positive reinforcement
of MBI, except for fewer undesirable side effects.

In typical situations a high-brightness electron beam
would go through the above two stages; undesirable is
mostly the first stage. A compromised device, the laser
heater [33-35], has been introduced to impose a small
amount of energy spread (strictly speaking, energy modu-
lation) to the electron beam in order to enhance phase space

smearing (or Landau damping) to suppress the MBI
before it potentially breaks up the high-brightness electron
beam, while to retain the slice energy spread within the
design goal before the electron beam enters the undulator.
Nowadays the laser heating technique has been incorpo-
rated for almost all linac-based short-wavelength FEL
projects. However, introduction of laser heaters in
recirculating accelerators may not be practical, and in
the meanwhile the induced trickle heating issues [35,36]
downstream the beamline, sensitive to the beam optics, are
needed to resolve. Therefore, a careful analysis of MBI is
practical and essential to realize in depth both the high-
brightness beam transport and the ultimate performance of
MBI-driven FEL mechanism.

There have been intensive studies on MBI in single-
pass or recirculating accelerators, in analytical or semi-
analytical [7-9,13,14,37,38], numerical [10,11,39-41], and
experimental [35,36,42] frameworks. This work extends
the existing theoretical formulation [13] by including the
effect of intrabeam scattering (IBS) in the semianalytical
way, as will be exploited below. Since we do not directly
solve the phase space distribution function using numerical
mesh, the numerical noise issue will not be a limiting factor
and the numerical computation will be much faster than
the particle tracking simulation. This allows us to perform
systematic studies or machine optimization more effectively.

In most situations, IBS has long been studied in lepton
or hadron storage rings as a slow diffusion process (see,
for example, Ref. [43] and references therein), in low-
emittance damping rings for future linear colliders (see, for
example, Ref. [44]), or in high-intensity proton linear
accelerators as one mechanism for the beam halo (see,
for example, Refs. [45,46]). The effects of IBS on single-
pass or few-passes recirculating electron accelerators have
drawn attention only in the recent two decades due to
emergence of linac-based or ERL-based fourth-generation
light sources, which require excellent high quality electron
beams, not only from beam generation but also during the
beam transport, i.e., less tolerance of beam quality degra-
dation, for even smaller beam emittance, extremely low
energy spread, and higher bunch charges. The IBS is the
multiple small-angle Coulomb scattering of charged par-
ticles, involves the momentum transfer between the trans-
verse and longitudinal directions, and is responsible for
changes or rearrangement of distribution core, eventually
leading to an equilibrium state, or diffusing slowly and
growing indefinitely [47]. In contrast, Touschek scattering,
which relates the single large-angle scattering and momen-
tum transfer from the transverse to longitudinal direction,
and is responsible for creation of distribution tails or
particle loss [47]. Here we do not consider Touschek
effect, because for the moment we are only interested in
microbunching, which typically occurs in the core of the
beam. It is known that the IBS is an accumulation effect,
where the instantaneous growth rate is proportional to the
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beam charge density or bunch current, and inversely
proportional to the beam energy, transverse emittance
and energy spread, i.e., 75 x N/y*eYel o, 05, where N
is the number of particles per bunch, y the Lorentz
relativistic factor, efc\f y the normalized transverse emittance,
o, the bunch length, and o the relative energy spread [see
Egs. (1)—(4) in Sec. II]. In a storage ring configuration, e.g.,
a damping ring, the beam energy ~GeV, number of
particles 10'° or more (corresponding to a peak bunch
current 50-100 A), normalized transverse emittance ~um,
and energy spread ~10~*—~1073, can be typical parameters
[48]. In the middle or low-energy single-pass electron
accelerators, typical parameters are: the beam energy
~100 MeV, bunch population of 108 ~ 10° (corresponding
to a comparable or higher peak bunch current), normalized
transverse horizontal emittance ~ym or smaller, energy
spread ~107—107*. It can be seen that the IBS growth
rate for the latter is two or three orders of magnitude larger
than that of the former. If a beam with a proper energy chirp
passes through a bunch compressor section, the local bunch
current can have large enhancement, e.g., a factor of 10 to
100 enhancement, and the IBS effect may become more
evident. Although the electron beam in a single-pass or
recirculating accelerator may only travel at a distance of
~100 m to ~km, the aforementioned enhancement may
lead to a small but visible effect on MBI. Therefore, an
analysis of MBI in the presence of IBS shall have potential
practical interest.

Some preliminary analytical estimate [48] and massive
start-to-end particle tracking simulation (e.g., Ref. [49],
though IBS is not included throughout the whole beamline)
in the Linac Coherent Light Source (LCLS) were presented
with inclusion of IBS, and the results from both do not
expect the IBS to significantly affect FEL operation.
However, a recent experiment performed at FERMI linac
[50], together with an analytical estimate and preliminary
particle tracking simulations, indicates that the contribution
of IBS can be significant for operating configurations of
VUV and soft x-ray FEL. Including the IBS effect into the
overall performance evaluation would help realize acces-
sible, practical potential performance.

Here we note that in Refs. [48,50,51] the analytical
estimate only takes into account the longitudinal phase
space smearing (or energy Landau damping) with IBS-
induced slice energy spread increase, and the analysis is
restricted to a simplified linac-drift transport, followed by a
bunch compressor chicane (parametrized by the compres-
sion factor C and momentum compaction Rsq). While the
transverse phase space smearing due to the initial intrinsic
beam emittance is considered following Ref. [8,9], to our
knowledge such effect of beam emittance growth arising
from IBS is not included in the existing microbunching
analysis. As we will explore in this paper, the inclusion
of both IBS-induced emittance growths and energy spread
increase iS necessary to obtain consistent and correct

scaling relations. Moreover, the above mentioned analytical
estimates ignore the dynamical friction and diffusion effects
associated with IBS. Although the analysis gives the final
microbunching gain, it does not reveal how the gain evolves
along the beamline. This will limit the applicability to the
recirculating accelerators, where the behavior of micro-
bunching development in the multi-bend transport line
can be complicated. The emphasis of Ref. [50] is put on
the estimate of the slice energy spread, which plays an
essential role in ultimate linac-driven FEL performance, and
their comparison with experimental measurements. Overall,
there is still lack of a dedicated theoretical formulation
of microbunching instability for single-pass or recirculating
accelerators to include the six-dimensional (6-D) beam
dynamics with inclusion of collective effects and the
incoherent IBS effect in a general beam transport line.
This serves as a motivation of this work. Together with
our developed theoretical formulation, we adopt an existing
IBS model, based on the completely integrated modified
Piwinski approximation (CIMP) [52]. Use of CIMP greatly
reduces the computing time for many calculations involving
IBS, while retains variation of lattice parameters in single-
pass or recirculating beamlines. We apply our developed
theoretical formulation to a recirculating beamline design.
The results from the semianalytical calculation are compared
and show good agreement with massive particle tracking
simulations using ELEGANT [53,54].

Overall, the contributions of this work may be summa-
rized as follows. First, the 6-D phase space microbunched
dynamics is formulated based on the Vlasov-Fokker-
Planck (VFP) framework. The corresponding friction
and diffusion coefficients are derived following a similar
procedure to Ref. [55]. The effect of IBS is attributed by
the zeroth-order dynamics, assuming the (unperturbed)
Gaussian phase space distribution, and also contributes
to enhancement of the phase space smearing. The afore-
mentioned collective effects and the IBS friction and
diffusion effects are then connected with the first-order
dynamics. The resultant linear coupled integral equations
are expressed in terms of the density and energy modu-
lations. Second, the developed semianalytical formulation
is applied to a practical recirculating beamline. The results
from the semi-analytical calculation are benchmarked,
compared and show good agreement with massive particle
tracking simulations using ELEGANT. We believe that the
developed formulation shall be generally applicable for
linear analysis of 6-D phase space dynamics for single-pass
high-brightness beams in the presence of both collective
and incoherent effects. Since the semianalytical calculation
is much faster than the particle tracking simulations,
together with the developed formulation, we hope that it
may be applied to investigate the interplay among the beam
collective effects, the incoherent scattering effects, and
those dependences on lattice parameters with a linear
transport line optics design in a systematic way.
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In the remainder of this paper, the IBS formulas based on
CIMP are briefly introduced in Sec. II. Since the detailed
derivation of the full IBS theory is complicated and not of
our focus, we only quote the main results and highlight the
model assumptions behind this IBS model. In Sec. III we
formulate the 6-D phase space dynamics of an electron
beam with IBS based on the VFP framework. For sim-
plicity, to include the Coulomb scattering, the VFP equa-
tion is first formulated in the beam rest frame (Sec. IIT A),
and the friction and diffusion coefficients are derived
(Sec. I B). Then the VFP equation is Lorentz transformed
back to the lab frame to study the phase space dynamics in
the presence of collective effects (Sec. III C). Since the
onset of MBI is of our primary interest, the VFP equation is
linearized and a set of coupled integral equations is semi-
analytically derived in terms of the density and energy
modulations (Sec. III D). In Sec. III E we briefly introduce
the numerical procedures for solving the integral equations.
Having done these preparations, we illustrate in Sec. IV a
recirculating IBS (RIBS) ring as an example [51], which
was proposed to enhance the IBS effect as an alternative
option to laser heating. The semianalytical calculations
are benchmarked against particle tracking simulations
using ELEGANT. The results and the model assumptions
are compared and discussed in Sec. IV C and Sec. IV D,
respectively. Finally we summarize the results and discuss
possible future work in Sec. V.

II. INTRABEAM SCATTERING:
COMPLETELY INTEGRATED MODIFIED
PIWINSKI FORMALISM

A. Model assumptions

The main effect of IBS is to change in the six-
dimensional (6-D) beam emittances. In the longitudinal
direction, it is usually expressed in terms of the change of
the uncorrelated energy spread (or slice energy spread).
There are in general two theoretical frameworks to calcu-
late IBS growth rates: Piwinski [56] and Bjorken and
Mtingwa [57]. Based on collisional momentum kinematics,
the former uses the classical Rutherford differential cross
section between two test particles, then averages over
scattering angles and all beam particles, calculates the
mean change of the invariants, and eventually obtains the
well-known Piwinski formulas, including the rise times
of the transverse emittances and the longitudinal energy
spread. The latter formalism, by Bjorken and Mtingwa,
employs the time-evolution operator which relates the
transition from an initial quantum state to the final quantum
state of a physical scattering process, combines Feynman
diagram technique to calculate the scattering amplitude,
and eventually gives the Bjorken-Mtingwa formulas. Other
methods to evaluate IBS growth rates can be based on
direct numerical solutions of the Vlasov-Fokker-Planck
(VFP) equation using Monte Carlo algorithm (see, for

example, Ref. [58]) and so on. The full numerical simu-
lation methods can be computationally expensive; all these
methods however should lead to consistent results within
certain common assumptions.

Here we use the completely integrated modified Piwinski
formalism (CIMP) based on Kubo et al. [52], which is
found to greatly reduce the computing time for IBS
calculations and thus more easily and quickly to apply,
while retains variation of lattice parameters in single-pass
or recirculating beamlines. Several relevant model assump-
tions are summarized below: (1) the beam particles are
nonrelativistic in the beam frame, while ultrarelativistic in
the lab frame; (2) the 6-D beam phase space distribution is
Gaussian, which is a practical approximation but not
always valid, because an interplay of friction and diffusion
may not allow for the beam distribution to remain Gaussian
during the transport; (3) the transport line is assumed
uncoupled. (4) Since the synchrotron motion is usually
neglected in a single-pass accelerator, the following for-
mulas for the longitudinal motion assume a coasting beam,
resulting in an additional factor of 2 ahead of the longi-
tudinal IBS growth rate [see Ref. [59] or Eq. (1) below].
(5) The average over circumference or path length in CIMP
formulas will be removed for the single-pass accelerator
and the Coulomb log factor takes into account the variation
of optics functions along the beamline, i.e., the instanta-
neous IBS growth rates are evaluated.

B. Summary of CIMP formulas

In this subsection we will summarize the main results of
Ref. [52] as the background information for our subsequent
analysis. The rate of change of the uncorrelated energy
spread due to IBS can be written as

1 d65

—1
T =
IBS.,6 o5 ds

2 b a
=2x2m/%A [Z—I; ([Log]xg(a“) + [Log}yg%))] , (1)
5
where a prefactor of 2 is due to lack of the synchrotron
motion [59]. Note that we have changed the time derivative
to the derivative with respect to the path coordinate s
by 7igs[m™'] = g [sec™!]/c.
The IBS growth rates for the transverse emittances are
expressed as

1 de¢
r e
xIBS = G
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and
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where the superscript G denotes the geometric emittances.
In the above equations,

_ reN _ I re
647’y elefoM™o;  (24/21n 2)64n%y*eN el o5 ce ’

4)

with r, is the classical electron radius, ¢ the speed of light,
e the magnitude of the unit charge, N is the number of
electrons per bunch, y the Lorentz relativistic factor, ey ’yG
the normalized (N) or geometric (G) transverse emittances
[Note that €}, = fye?, with f the normalized velocity.],
o™ the rms bunch length (assuming Gaussian bunch), and
o5 the relative uncorrelated (or slice) energy spread. In what
follows, when dealing with phase space microbunched
dynamics a coasting beam approximation will be made, and
thus a factor of 24/2 In 2 is used to convert the rms Gaussian
bunch length to an equivalent full width for uniform flattop
bunch. In Egs. (1) to (3), the Coulomb log factors [Log]x,y

are taken to be [52]

Log), = in(%) (5)
Log], = In (Z-j) (5b)

Y
Courant-Snyder envelope function in the transverse
horizontal and vertical plane [60]. In Egs. (5), ¢ =
opf/2d/r,, d the maximum impact parameter, prescribed
by d = min{o,,0,,1p}, o,, the horizontal and vertical
beam sizes. o will be specified below. The factors [Log], ,
typically range from 10 to 20. Based on the example
that we will illustrate in Sec. IV, Fig. 1 shows the [Log], ,
along the beamline, where [Log], , ~ 12-16, as expected.
Typically the Coulomb log terms depend weakly on the
arguments.

In Egs. (1) to (3), the g function is defined as [61]

with a:"TH\/f:g and b =22 f—g Py the Twiss or

20 r
—[Logd],
18} —ILog], 1

16}

[Log]

14f

12

10 : : : :
0 20 40 60 80 100

FIG. 1. Numerical values of the Coulomb log factors [Log], ,
along s in a recirculating accelerator beamline. This quantities are
defined in Eq. (5).

where P," is the associated Legendre polynomial. For
w > 1, the positive sign is taken; for w < 1, the negative
sign is assigned. g(w) — /7, as w — 1. As suggested in
Ref. [52], the numerical values of g(w) have been bench-
marked and the w dependence is shown in Fig. 2. Inside the
squared brackets of Eqgs. (1) to (3),

1 M, H,

P )
oy o3 ¢ G’

where the dispersion invariants in the x and y directions are

Hx,y = yx,y”)%,y + 2ax,yr/x,y’7ﬁc,y + ﬂx,yngcz,y

Rig 36 + (BryRosa6 + i yRi636)
= ) (8)
ﬂx.y

with a, ,, By, 7y, the Twiss or Courant-Snyder functions
[60]. The R;s and Rss (or n,, 1,) are, respectively, the
horizontal and vertical dispersion functions, and R,s and

2 T
(a)
£ ol -
(o))
) 1
10 T
=z ()
3
59 '
B
o
0 .
107 10° 10
w
FIG. 2. (a) the scattering function g(w) and (b) its product

gw)g(1/w)/w.
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Ry (or 1, ny) are the corresponding derivatives with
respect to the path coordinate s.

Note that the above equations are applicable to both
round and flat beams (assuming Gaussian distribution). For
a flat beam, e.g., o, < 6, (or €, < ¢,), the Coulomb log
terms [Log], > [Log],, and can be pulled outside the square
brackets, resulting in approximated Egs. (38)—(41) in the
Ref. [52]. For a round beam, also the case of our interest in
this paper, [Log], ~ [Log|,. In what follows, we will simply
denote as [Log].

Before ending this section, we comment that, provided
the Twiss or Courant-Snyder functions a,. , f, ,, 7y, along
a beamline, the numerical solutions of Eqgs. (1) to (3) may
be obtained by solving the difference equations in a small
grid As. When advancing each As, the new beam emit-
tances and energy spread should be updated until the end
of the beamline. In Sec. IV we will illustrate for more
details the numerical results based on a practical recirculat-
ing beamlime design.

III. PHASE SPACE EVOLUTION OF
MICROBUNCHED BEAM

In the previous section we have summarized the IBS
growth rates for the change of bulk beam parameters,
including the uncorrelated beam emittances and the slice
energy spread. In this section we will consider the phase
space evolution of a phase space microbunched beam in the
presence of both the collective interaction and incoherent
IBS effects.

In the absence of collision, the phase space dynamics
subject to collective interactions can be described by the
6-D collisionless Boltzmann equation or Vlasov equation
(or Jeans equation) [62,63], which can be written as
df/ds = 0. The collective interactions may arise from
beam-environment interactions, e.g., due to the beam pipe
structure or surface roughness [64], or the beam itself, e.g.,
the space charge [12,65] or CSR [66-70]. It deserves here
to clarify that, under framework of the 6-D phase space, the
Coulomb interactions within a charged particle beam may
be separated into two effects: one is the Liouvillian space
charge force, associated with the collective interaction on
a given test particle of the rest of the beam particles, and
the other the scattering effect [71]. The scattering effect is
further categorized into small-angle, multiple and large-
angle, single scattering events. As mentioned in Sec. I,
the multiple small-angle Coulomb scattering, or IBS, is of
our current interest. By introducing the binary-encounter
model [71], the phase space dynamics involving the
scattering effect can be formulated as the VFP equation
with the corresponding dynamic friction and diffusion
coefficients. Therefore the Vlasov equation itself is no
longer valid; an additional collision term should be added,
i.e., df/ds = (Of/0s). (where the subscript ¢ denotes the
collision).

In the following subsection, we first formulate the phase
space dynamics in the beam rest frame, in which the
momentum change of a test particle before and after a
collision is described by a time-independent probability
function, and derive the VFP equation. The corresponding
dynamic friction and diffusion coefficients can be written as
the Landau collision integrals [72]. Since we are primarily
interested in the onset of MBI, we will linearize the VFP
equation. For high-brightness electron beam, in the lab
frame, the longitudinal beam emittance (or temperature) is
usually much smaller (colder) than the transverse emittance
(or temperature) [48,55], typically T /T, < 107%, so the
friction and diffusion coefficients can be further simplified
and analytically expressed in terms of beam quantities
as a function of the path coordinate s. Having obtained
the friction and diffusion coefficients, we will substitute
them into the linearized VFP equation, and solve for the
perturbed phase space distribution in the forms of the
density and energy modulations. The resultant equations
form a set of coupled linear integral equations.

A. Fokker-Planck formalism

The phase space distribution function F in the beam rest
frame may be described as

F=FL(XL.piD)F)(Z P ), ©)

where the position-momentum pairs (X ,p,) and (Z, p)
represent, respectively, the transverse 4-D and the longi-
tudinal 2-D phase space coordinate at time 7. These
quantities with the tilde on top are denoted in the beam
rest frame. The normalization condition is assumed to
satisfy [ Fdx dp,dzdp, = N, where A is the particle
density in beam rest frame.

The kinetic equation for the phase space distribution in
the presence of collision takes the general form

dF  [(0F
F (a;), (10)

where the subscript ¢ denotes the collision. Now we define
w (P, Ap) as the probability that a particle of the momentum
P acquires a change of Ap due to collision within a time
interval A7. The phase space distribution function at 7,
F(F,p;7), may be expressed in terms of the phase space
distribution at earlier time with the collision probability
function

FEp:T) = / F(E.p— Ap:F— APy (P — AP, AP)dAP.
(11)

Note that y is independent of time, meaning that the
scattering event is assumed a Markov process. Further
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assuming that the momentum change Ap is small compared
with p, one has

<6i>c = LG b D) - (BT — AT

ot A7
1 0
e —_ A~
51| Flem)
'S repann]. )
in which i, j = x,y,zand (---) = [ (--)w(p, Ap)dAp.

In Eq. (12), the first and the second term, defined
as D; = —4=(Ap,;).D;; =2 (Ap;Ap;), are respectively
interpreted as the friction and diffusion coefficients, which
give the mean rate of changes due to multiple consecutive
weak collisions [71,73]. Note that in Eq. (12) the two terms
have the opposite sign. Under equilibrium conditions,
the diffusion term in momentum space is balanced by
the friction term, and there would be no net change on the
phase space distribution function. Here we note that the
interplay of the friction and the diffusion may not neces-
sarily allow for the beam distribution to remain Gaussian.
For single-pass or recirculating accelerators, where beam
particles do not reach an equilibrium state, the exact form of
the equilibrium distribution may not be our current interest;
we are more interested in the dynamical evolution of a
(given) unperturbed initial phase space distribution.

Now we consider the Coulomb scattering as a series of
consecutive weak binary collisions, in the beam frame the
corresponding friction and diffusion coefficients can be
written as Landau collision integrals [55,72,73]

D, :_8ﬂmee4[L0g]/d% ,f( >|~ 5|; (13)

and

D.. = 4zm,e*[Log]

(14)

where m, is the electron rest mass, [Log] is the Coulomb
log, which can be determined by Eq. (5). From Eq. (10)
and (12), the VFP equation can be written as

_:_z(y

where i, j = x,y,z. As discussed in the beginning of this

section, the longitudinal beam temperature 7| = m,c*o3 is

much lower (colder) than the transverse temperature

1 0*
a~~.

(D F). (15)

the IBS

growth rate is much larger in the longitudinal direction
than in the transverse directions [see Eqgs. (1) to (3) or Fig. 5
below]. Therefore Eq. (15) can be simplified by integrating
the coefficients over the transverse phase space

T, =m.’y’oy ,, typically T/T, <107

2
T (P 55 (D0F) (19

where (-+), = [(--)F (X, P :7)d% dp, and [ F (X,
P )dx Ldp 1 = 1. We note that the decomposition in
Eq. (9) is consistent with the simplification made here.

Transformation of Eq. (16) back to the lab frame can be
done by the following substitution [55]

i—s/cy, p.—AE/cy, F-f, N-ony/y (17)
and
<DZ>J_ - Dz7 <DZZ>J_ - Dzz/CV- (18)
Then Eq. (16) becomes
af 0 D, 0f
Fr —5(sz)+ > 95 (19)

with the relative energy deviation 6 = AE/E, (E, the
reference energy). In Eq. (19) the diffusion coefficient is
moved out from the energy derivative, as we will show in
Sec. III C that it is independent of §. The detailed derivation
and explicit expressions of D, and D, will be discussed in
Sec. HIC.

B. Linearized Vlasov-Fokker-Planck equation

Let us define the 6-D phase space distribution
function, f(X;s), where the phase space coordinate X =
(x, %, 9,5, 2,8)T = (Xup, Xop)T with x,y, respectively,
the transverse horizontal and vertical position, x’,y" the
transverse horizontal and vertical divergence, z the local
bunch coordinate (z > O for the bunch head), and 6 the
relative energy deviation. Notice that the VFP equation is
essentially a nonlinear equation, because not only df/ds,
but also D, and D, in general have f dependencies. It is
therefore, either analytically or numerically, unlikely to
obtain the direct, exact solution of 6-D phase space
distribution to the VFP equation in a general transport line
without any approximation. Since we are primarily inter-
ested in the onset of MBI, we shall linearize the VFP
equation. Assume f = f, + f, where |f| < fo with the
normalization [ f(X;s)dX = ng (ny is the particle density
in the lab frame). After substituting f = f, + f, into
Eq. (19), the zeroth-order equation becomes
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() (D), 5 ),
ds 0Os Ox ox' \ds ), Oy
dfo (dy
+ By <ds>0' (20)
In Eq. (20) we have neglected two terms: 0f,/0z due to
the coasting beam approximation and (d§/ds), due to
absence of collective interaction to the zeroth order. Notice
that, on the right-hand side (rhs) of Eq. (20) [and Egs. (21),
(22) below], the subscripts 0 and 1 are used to denote the
order for those quantities which depend on the bunch
current density and are thus proportional to f(= fo + f1).

Neglecting the second order and higher order terms, we
obtain the first-order equation

dfn 8f0< > )

ds 96 = g5 Pzol8)f1) - 0 56 (P=105)f0)

Dzz.0<s) azfl Dzz.1<s) a fO
2 06° 2 08>’

where the left-hand side (lhs) is
dfy_0fy , Ofy (&) | Ofy (&) | Of: (dy
ds 0s 0Ox \ds/, Ox'\ds/, Oy \ds/,

afl af] dZ
oy (m)ﬁa—z(a)o' (22)

Notice that two terms are neglected: (dx/ds), and
(dx'/ds), due to absence of transverse collective angular
kick. The first term on rhs of Eq. (21) is responsible for
the longitudinal collective interactions, where (dé/ds), at
s = 7 can be explicitly expressed as [8,9,14]

(g>1__N7r/ S;ZII(K 7)b(k;7)e™.  (23)

(21)

where N is the total number of particles per bunch, Z; (k;7)
is the impedance per unit length at s = 7, b(k;7) is the
density modulation or bunching factor, which will be
defined later [see Eq. (41) below]. Combining Eqgs. (21)
and (22) and integrating over the path coordinate, we obtain
the linearized VFP equation

[1(X5s) = f1(X;0) —f% (@> de

_/XL;?&( 20(0)f1) + 5 ( Z,l(r)fo)}df

$ zzO( )a2fl (T)azf()
+A{ 2 652+ 5 a&Z}dT‘

(24)

From Eq. (24) one can see that the perturbed phase space
distribution at a certain location s has three contributions

made by the pure optics transport (the first term on rhs),
the collective effects (the second term), and the incoherent
IBS effects (the third and the fourth terms). Now we have
derived the linearized VFP equation, Eq. (21) and (22), or
its integral form, Eq. (24).

The initial unperturbed 6-D phase space distribution can
be written as

2
G o=hz)?

N =X 0Zih o Xapo— 93—
fo (X 0) e oo 0 Yoo,

(27)’r*el N 020050

(25)

with & the energy chirp (energy-position correlation) of
the bunch.

For modulation wavelengths much smaller than the
electron bunch length, we may assume that the initial
beam distribution is uniform in z (i.e., the coasting beam
approximation) and Gaussian in the transverse phase space
and longitudinal energy variables in the lab frame, i.e.,
ngy —%an,ozlzla‘oxw.o—%

e 9
(2n) 22V eV oy,

(26)

fo(X;0) =

where n is the particle density. Comparing with Eq. (25),

_o
Ne * /V2n0,y — ng. The beam sigma matrix in the
exponent

24po = <X4D,OXZD,O>’ (27)

characterizes the beam second moments. For a transverse
uncoupled (non-magnetized) beam, Eq. (26) can be sep-
arated into the x and y direction and parameterized using
Twiss or Courant-Snyder parameters as

x5+ (BuoX'o + ay0X0)?
XgD,xZELI),xX2D,x ==L . : ) (28)

650:6 x0

and similar for the y direction. Note that the determinant
of the beam sigma matrix can be related to the beam
emittance +/det(Z,p ) = €¥.

Together with the explicit expressions of the IBS friction
and diffusion coefficients that we will derive in the next
subsection, Eq. (24) will be used to derive the governing
equations for the phase space density modulations.

C. Friction and diffusion coefficients
1. Derivation of diffusion coefficient

For convenience of the subsequent discussion, we may
write the 6-D phase space coordinate in the beam rest frame
as the position-momentum pair (F,p), with ¥ = (%, 5,%)
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and p = (p,. Py, P;). In the beam rest frame, the beam
distribution in the momentum space can be expressed in
terms of the beam temperatures [55]

52452

N AL
TomeT | 2mJH
(27[7716)7]_‘ /27rmeTH

F = ]:L(ﬁﬁfu(f?z) =
(29)

where N is the particle density in the beam frame. The
relations between the beam temperature and the divergence
are T\ = m,c*c} and T| = meczyzaﬁ,‘y,, where o, are
the transverse horizontal and vertical angular divergences.
Note that Boltzmann constant k5 has been absorbed in 7' |
and 7' and not explicitly shown in our notation. In what
follows we will substitute Eq. (29) into Eq. (14) to simplify
the diffusion coefficient. To calculate the integral, we will
use the following formula [55,74]

- \ﬁ/m TR ge.
T Jo

The denominator of the integrand in Eq. (14), in the
limit of 7)) < T, can be approximated as |p—p'|’~

[(Px — PL)* 4+ (Py — P})**/?. Using the approximate
form and Eq. (30), Eq. (14) can be integrated over p’,

analytically,
F.(B))

/dpl\/px P+ (By — Py

\/7/ /_7:l )e~ Tl Px=Pi) +(By~ S

¢ PR +p
(5+1)2meTL

(30)

® e

\/27[meTJ_ o VIE+D)

where the dummy variable ¢ = £m,T | is introduced. Here
and in what follows, we will suppress the upper +oo and
lower —oo integration limits if not specified.

d¢ (31)

Next, we evaluate the averaged diffusion coefficient in
the beam rest frame

<Dzz>i = /Dzzfl(f)J_)df)J_v (32)

P22

with F | (p,) = 27["/2/ e "L [Eq. (29)]. Putting Egs. (14)
and (31) together, one can obtain
(D..) | = 4am,e*[Logl————
zz/ L e /727rmeTJ_
o 27 ‘L
x/ = mNm,e*| og}. (33)
o VZ(1+20) vmT |

Using Egs. (17), (18) and T, = m,c*y*c? ,, the above
equation can be transformed back to the lab frame in terms
of the beam current 1,/1, = 4762 r,ng [55]

. :@( [Lo gm>

“ 2 }’(:‘J_ULIA

(34)

where eﬁzw/ NN*y‘/aa/ovar, 6, = ,/6,0,, a
I, =mc*/e~ 17045 A.

2. Derivation of friction coefficient

In this subsection we will follow similar procedures
outlined in Sec. IIIC 1 to derive the friction coefficient.
Unlike the previous case, we write the denominator
of the integrand in Eq. (13) in the exact form
B0 = (P = P> + (By = PV)* + (P — PL)*/~.

To evaluate the integration in Eq. (13), we use another
useful integration formula [74]

1 1 [o
S R4
R 4\/7:% Veerag,

With Eq. (35), the integration in Eq. (13) over p’, can be
made analytically,

(35)

N 3 (P. = P)F (P
d*p’, F () / dp, —— ,
/ e Py = PL)? + (By — P)* + (P — PLY?
2 = VA [ 5105 5V () e B+ =P e
d*p’ F ((P')) W dp’(p. — pL)F ) (pL)e PPl P =y Pempa)ld ),
F2+P2 Pz
2+nz¢Tli+ﬁ)
p\// da. (36)

2+m TM (24 m,T2)%?
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Similarly, we can evaluate the averaged friction coef-
ficient in the beam rest frame, (D,), = [D,F  (p,)dp,.
Letting p = m,T A, we have m,T | A = (%)p > p. Putting
Egs. (13) and (36) together, one may obtain

(D), = —8aN'm,e?[Log] ——L-—
V2a(m,T2)*?

2
_ﬁp (2m£'l'H )
o e
X/ \/ET 29
o (L+7p)2+p)Y
P
~ —8aN'm, e*|Log| ————
[ g] Vv 27r(meT||/1)3/2
P 52
TH © e_m(m) d
X —_— —_—
TiJo p(2+p)? g

4z N e*[Log] P,
B TJ_ erf <1 /2meT||) ’ (37)

where the assumption 7)) < 7', has been used. Similarly,
using Egs. (17), (18), T = m.c*y*c% , and T = m,c*c3,

the above equation can be transformed back to the lab
frame in terms of the beam current

r.[Log] Ib) ( 8 )
D, =- =— |erf . 38
4 (7/2611 IA \/565 ( )

The IBS dynamics involves small-angle, multiple par-
ticle scattering, and the physical meanings of the friction
and diffusion are similar to particle scattering in plasma
[73]. The friction term would decelerate or accelerate
the local particles, depending on the energy deviation &
[see, e.g., Eq. (38), noting that the error function is an odd
function], and tend to reach the central reference energy. In
contrast, the diffusion term [Eq. (34)] would tend to expand
the local particles.

Before ending this subsection, it deserves here to
summarize the main results obtained in Sec. III B and
Sec. III C. Assuming that the beam phase space distribution
is Gaussian and Ty <T,, we have obtained the friction
and diffusion coefficients, expressed in the lab frame,
respectively,

re[Log] Ib) ( o )
D, =— — |erf =D.,+D.;, (39
Z < ]/2€N2 IA \/§ 5 z.0 z1 ( )

and

vz (r.[Log| I,
D =YY" L)=b D, (40
44 2 7261161_ IA 2z,0 + zz,1 ( )

In what follows, when dealing with phase space density
modulations, the bunch current I, will consist of two
parts: the average current and the modulated current,
ie, I, =1,+Al,=1,(1 +ﬁ—(’)’), where the modulated
current is proportional to the density modulation. For
convenience, we may write the friction and diffusion
coefficients in Egs. (39) and (40) as a sum of the averaged
(with subscript 0) and the modulated (with subscript 1)
quantities.

D. Governing integral equations

In the above subsections we have already prepared all
the ingredients for the semianalytical formulation of the
phase space microbunched dynamics, including the linear-
ized VFP equation [Eq. (24)] and the explicit expressions of
the friction and diffusion coefficients [Eq. (39) and (40)].
To obtain the dynamical equations of the phase space
modulations, let us define the density modulation (or,
bunching factor) as

o Al’l(Zs)

1 .
b(k,;s) :N/fl(X;s)e"kzZ:dX =—

e_ikZZSdZ,
N ng

(41)

where k. is the modulation wave number, i.e., k, = 27/
with A the (initial) modulation wavelength, and the energy
modulation

1 ‘
p(k;s) ZN/(SSf,(X;s)e—zkzz,de

- N/ AS(z,)e k5 dz, (42)

with Ad = d; — hz. For simplicity, we only consider the
case with 7 =0, i.e., without bunch compression. It is
straightforward to extend the following formulation to
h # 0 case by introduction of the bunch compression factor
C(s) = [1 — hRs¢(s)]!. We further assume that the initial
perturbed phase space distribution consists of density
modulation only, i.e., [see also Eq. (26)]

F1(X:0) = i—:fo(X;O). (43)

By multiplying ¢~ on both sides of Eq. (24) and
integrating over the 6-D phase space coordinate, one can
obtain the following integral equation for the density
modulation [see also Eq. (41)]
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ds
b(k.; /f1X0 —ik:(s)z:d X——/ ik.( R56T—>s/fer<d> e~k (9)z(0dX dr
/1

- / ik,(s)Rs(z = 5) / (D o(7)f1(X;7) + D1 (2)fo(X;7))e k)0 dX dr

- RO =) [ (P i)+ P i) ) e 0, (44)

where the integration of § by parts has been applied for those terms with Rss(z — s). The first term on the rhs can be
evaluated analytically, i.e.,

1 A ' .
N/ tz(oz“)fo(X§0)€_’k2(S)z“dX0 = b(k;0){L.D.;0, s} = by(k.;s). (45)

For simplicity and clarity, we shall introduce a set of symbolic expressions here and the following. In Eq. (45),
{L.D.;0, s} characterizes the phase space smearing (or Landau damping)

Ay 2 €S
k%(s) Ef[)ﬁxo (RSI(S) _ﬁR52<S)) +/}L:(;R§2(S>

{L.D.;0,s} = exp > ) G
ay, ¥
e (Rss(5) = 52 Rsa(5) ) + 5 R2(5) + 2R (5)

(40)

For the second term on the rhs of Eq. (44), the integral inside dz can be done using the method of characteristics. This
integration has been performed in many literatures (see, e.g., Refs. [8,9,14,37] for the detailed derivation), and here we only
quote the result

‘ | I
/ k.(e)Rsg(t — 5) / FoX: 1) (L) ek n@axdr = / ik (5)Rso(r = ) D 7 (ks ) {LD s 7. s)NB (k. e,
0 dr 1 0 Yla

(47)

where Z; (k.;7) is the impedance per unit length at s = 7, describing the collective interactions. Rs(7 — s) can be obtained
through extracting the element on the fifth row and the sixth column of the following matrix operation

R(z = 5) = R7Y(7)R(s). (48)
or explicitly written as
Rs6(t = 5) = Rs(5) — Rs6(7) + Rs1(7)Rsa(5) — Rs1 (5)Rs2(7) + Rs3(7)Rsa(s) — Rs3(5)Rs4(7). (49)

Note that when 7 = s, Rss(7 — s) = 0. In Eq. (47), we introduce the phase space smearing term [cf. Eq. (46)]

2 G
( ) 2(s) €fﬁx0<R51(T’S)—,%Rsz(fvs)) + 55 R, (1.9)
LD.;z,s} =exp{ ————
+e0By0 (Res(z.5) = j2 Rsale.5) )+ 55 R (2.5) + 2R (7. 9)

> (50)

where Rs;(7,s) = Rs;(s) = Rsj(7), j =1, 2, 3, 4, 6. When 7 = 0, R5;(0.5) = Rs;(s).
As will be demonstrated in Sec. IV, the impedance per unit length of the steady-state free-space CSR can be written
as [66—-68]

k' (s)
lo(s)[*3

where p is the (local) radius of curvature of the dipole, A = —2z[Bi'(0)/3 + iAi’(0)] &~ —0.94 + 1.63i with Ai’ and Bi’ are
the first derivative of Airy functions [74]. The CSR expression, Eq. (51), is valid when the beam energy is ultrarelativistic,

ZH,CSR(kz;S) = —iA (51)
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the transverse beam size satisfies the so-called Derbenev
criterion k = o, /A*3p'/3 <1 [75], and the modulation
wavelength must be small compared with a threshold

dimension of beam pipe [14], i.e., 1 <4y :,%’;, with

kg, = \/23—” (%)3 (h the full height of the beam pipe).

In addition to the CSR, the steady-state free-
space longitudinal space charge (LSC) effect may be of
interest [12],

4i 1-&5,K,(&)

52
YTp & ( )

Z||,Lsc(kz§s) =

where K is the modified Bessel function of the second
kind, r, = 1.747 x (6, + 6,)/2 is the weighted average
radius of the beam [76] and &, = k,r,/y. Equation (52) is
valid when A > 4zr,/y.

For a more complete collection of CSR impedance
models, including the entrance and exit transient CSR
effects, and the LSC impedance models, we refer the
interested reader to Ref. [14] and references therein.

For the third term on the rhs of Eq. (44), responsible for
the IBS friction effect, we need to evaluate two integrals.
Assume that the term involving f; can be written as a sum
of the density and energy modulations

fi1(X;7) = [A’;(OZT) +5Ti§<z’)]fo(x;r), (53)

where the subscript 7 denotes those quantities at s = 7.
Here we remind the reader that Eq. (53) may not be the
|

plis) = polks) =3 [ [ so(Xim) ks = 513

most general expression; we have neglected possible
phase space modulations that may emerge in the trans-
verse or the transverse-longitudinal dimensions [14,77].
It has been found that for a long beam transport line (a
long section linac or multi-pass recirculating accelerator),
an intuitive way of quantifying MBI by successive
multiplication of individual density modulation gains
from subsections of a beamline is found to underestimate
the effect [77]. In our following discussion, we always
perform the start-to-end analysis; this ensures that
Eq. (53) is valid in this situation.

By substituting Eq. (53) into the third term on the rhs
of Eq. (44), the term with D, f; is further split into two
parts. These integrals, albeit the calculation is somewhat
lengthy, can be evaluated analytically and summarized in
Appendix Al, specifically Eqs. (A4) and (A7). For the
fourth term on the rhs of Eq. (44), responsible for the
IBS diffusion effect, the detailed derivation is similar and
would not be presented in this paper. The resulting
expressions are also summarized in Appendix Al, specifi-
cally Egs. (A1l) and (A12).

For the moment we have completed Eq. (44), i.e., the
governing equation of the density modulation. Collection
of Egs. (45), (47), (A1), (A4), (A7), and (A10)—(A12) will
give the resultant integral equation for b(k,;s). The
complete expression is summarized in Appendix 2.

By multiplying +; 8¢~ on both sides of Eq. (24) and
integrating over the 6-D phase space coordinate, as has
been done in Eq. (44), one can obtain the following integral
equation for the energy modulation [see also Eq. (42)]

dé e—ik:(9)2:0) dX dr
dr 1

+%AS / (D.o(0)f1(X57) + D, 1 (7) fo(X;7))[ik,(5)Rse(z = 5)8,]e ") dX dr

~ [t Rsr =) [ (P2 g0+ P 1 650) ) 2 )Rl = )8 Je 0 X,

2

(54)

In order to perform the above integrations, one can follow the similar procedures to evaluation of Eq. (44), as outlined
above. We skip the lengthy but straightforward derivations and only present the resulting integral equation for the energy

modulation p(k_;s) in Appendix A2.

We have thus far obtained the coupled linear integral equations for the density and energy modulations, Egs. (A13)
and (A14). To further simplify the expressions we introduce several shorthand notations in Appendix A3. The governing
integral equations for the density and energy modulations, b(k_;s), p(k.;s), can be rewritten in a simpler form

b(k.;s) :bo(kZ;S)—I—i/SK(ZI)(T,s)b(kZ;T)dT—I—/S
0 0

N N0
Killa)s,.z(f’s)b(kz§7)d7+ll KIB(S,)Z(T,S)p(kz;T)dT

- 2/)‘ K%)S_ZZ(T, s)b(k,;7)dr + iA‘ Kg)s,zz(f’ s)p(k,;7)de (55)
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and
§ (0
plkis) = polki:s) - / K (09) = KD (e 90 ol e)de + 1 "KL (e s)b(ksola
K2 .
—|—21/ IBSZ (7, 8)b(k,;7)dr — IBSZ (7.5) kz,r)dr—i-/ Kips-(7,s)p(k;7)dr
0 0
/ IBS 2z T S dT+2[/ IBS 22 T S Gﬁrb(k )dT
0 0
3[) KIBS . (78)p(k7)dr + ; IBS ZZ(T s)o3 p(k.;7)de (56)
|
with A linear Volterra integral equation of the second kind
may be written as
bo(k.;s) = bo(k.;0){L.D.;0, s} (57a)
_ b(s) = by(s) + /A K(z,s)b(r)dr (58)
polk.;s) = —ik.(s)Rss(s)o3.by(k.;0){L.D.;0,s}. (57b) 0

In the absence of IBS, those kernel functions Kigg vanish
and the above integral equations reduce to the familiar ones
[37]. Since the integral equations are linear, we may collect
those terms involving the density modulations, separate
from the remaining energy modulations, and express in a
matrix equation in the most compact form.

E. Numerical procedures for solving
the integral equations

In this subsection we will present a general numerical
procedure for solving the integral equation of Volterra type.
Then we apply it to solve Eqgs. (55) and (56).

or split into the discrete sum as [78]

b b A lK 0 - K b
50 = uls) + (300,90 + 3 Kl s00(0)).

(59)

for s; = 5o + iAs and u; = uy + jAs being the grid points
along the beam path, with 7 and j the grid indexes [not to be
confused with the imaginary unit]. Here As is the grid
spacing, s, and u the initial positions. Here we assume
so = ug = 0. Equation (59) can be expressed in a
matrix form

b(s) bo(s1) | 0 0 [ b(sy) ]
b(sy) by(s2) 1K (s2.51) 0 b(sz)
b(s3) bo(s3) 3K (s3.51) K(s3,52) 0 b(s3)
b(ss) | = | bo(ss) | £ ag| 2K(s451) K(s4.55) K(s4,83) 0 b(s4)
b(sy-1) bo(sn-1) % (Sy-=1.81) K(sy-1.52) K(sy_1.53) 0 b(sy-1)
b(sy) bo(sn) 1K(sy.s1)  K(sy.sa)  K(sy.s3) K(sy.sy-1) O b(sy)
(60)
|
or in shorthand notation identity matrix. An alternative method may resort to
numerical iterations, from which the order of iteration
b = b, + Kb. (61) signifies the multistage microbunching amplification

Therefore, solving a linear integral equation may become
to find the inverse of the matrix (Z —K), with Z the

124401-

[9,79]. The number of numerical grid points must be
ensured that the results are converged in the presence of
both the collective interaction and IBS effects.
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Now let us write Egs. (55) and (56) in the matrix form as

P QN [bx b
(= s)n)-l) @

R S) [P Po
Since the block matrices P, Q, R, and S do not explicitly
depend on by and p;, the solution can always be

expressed as

b, = Ab, + Bp, (63a)
pi. = Cb, + Dpy, (63b)

where
A=P T+ Q(S-RP Q) 'RP!], (64a)
B=-P'Q(S-RP'Q), (64b)
C=—-(S-RP1Q)'RP, (64c)
D= (S-RP'Q)\ (64d)

In Eq. (64), P, Q, R, & can be related to the kernel
functions as [see Eqs. (A17) and (A18)]

(1 1 2
P=T-iK}y - Kigs. +2Kigh ... (65a)

0 2 .~(0 L~(1 (1

. ~(3
- 21K;§B>S,zz(7§7:’ (65C)

S=1+ KIJ1_3(S)Z - KIJI_S(s)z + 3K§123)Szz - ’Cg)s,zzoz%r‘ (65d)
where 7 is the identity matrix. When the IBS is absent, Q
vanishes and S = 7. In this special case, substitution of
Egs. (65) into Egs. (64) gives an equivalent expression to
Eq. (55) of Ref. [37].

To solve the coupled linear integral equations become to
find the matrices A, B, C, D or equivalently P, @, R, S. To
evaluate the matrix elements in Egs. (65), the beam second
moments in the kernel functions [beam emittances €, , and
energy spread o] should be updated based on Egs. (1) to
(3) with IBS effects included. We will discuss more details
in Sec. IV when a practical example of a recirculating
beamline will be presented. As for numerical evaluation of
the confluent hypergeometric function [Eqgs. (A18)], when
the third argument is small, we may use the following
useful approximation [18]

1

1Fy (-:—;ﬁﬁ) ~T(f) <§)l_ﬂfﬁ—1(’/)v (66)

where I' is the Gamma function and Jj_; is the Bessel
function of the first kind [80]. Equation (66) can be further
simplified to be the relevant forms

1 3
F (6;5;5>R’/COSI/ and |F, (e—f—l;;é)msinc(u).
(67)

Using Eq. (67), the confluent hypergeometric functions
in Eq. (A18) can be approximated to

31 1
17y (” +§§§§_§k%(S)R§6(T - S)"%r)

~ cos(V2n + 3k.(s)Rse(t — §)05,), (68a)
53 1
1y (” "‘5;5; _Ekg(s)R§6(T - S)O-(%r>
~ sinc(V2n + 5k, (s)Rs6(t — 5)035,). (68Db)

Figure 3 shows the dependence of the aforementioned
two confluent hypergeometric functions on the third
argument and comparison with their respective approxi-
mate forms. It can be seen that Eqgs. (68) are good
approximations within |x| < 1. In practical situations,
x| = LK2(5)R2(z = )% < 0.1.

Before ending this section we summarize that the linear-
ized VFP equation, in its differential form [Eq. (21)] or
integral form [Eq. (24)], with the corresponding friction and
diffusion coefficients [Egs. (39) and (40), respectively] are

1
x a
& (a)
§ 0 =
S ="
w F-""
- L
-0.5 -0.4 -0.3 -0.2 -0.1 0
X
1
R (b)
o
™
c\\l 0.5t - -
= =
o ==
O 1 1 ' 1
-0.5 -0.4 -0.3 -0.2 -0.1 0
X
FIG. 3. The confluent hypergeometric functions (solid lines)

and their small-argument approximation (dashed lines).
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TABLE 1. Initial electron beam and lattice parameters for
recirculating IBS ring.

Name Value Unit
Beam energy 150 MeV
Average bunch current 62 A
Relative slice energy spread 1.13 x 1073

Transverse normalized emittance 04,04 um
Initial beta function, Sy o 0.36, 0.22 m
Initial alpha function, a,g —1.82,1.33

obtained. Instead of directly solving the linearized VFP, we
derive the governing equations of the microbunched phase
space distribution, including the density and energy mod-
ulations. The IBS effects reflect in two ways: the inflation
changes of the transverse beam emittances and the energy
spread via the phase space smearing or Landau damping
[Egs. (46), (50), (AS5), and (A9)], evaluated based on the
CIMP formulas [Egs. (1) to (3)], and the dynamic friction
and diffusion coefficients, determined by Eq. (A16).

IV. EXAMPLE: A LOW-ENERGY
RECIRCULATING RING

In this section we would illustrate a recirculating IBS
(RIBS) ring as a practical application to the developed
semi-analytical formulation. The RIBS ring [51] was
designed to enhance the IBS effects as an alternative option
to laser heating, in order to increase the slice energy spread
(while maintain high-quality phase space distribution) to

()

%

suppress microbunching in the downstream transport line
up to the undulator entrance. Having briefly described the
lattice information (IVA) and outlined the numerical
settings in particle tracking simulation (IV B), the semi-
analytical calculations would be benchmarked against
particle tracking simulations using ELEGANT. The results
and the model assumptions are then compared and dis-
cussed in Sec. IV C and Sec. IV D, respectively.

A. Recirculating IBS ring

The lattice design of the RIBS ring is adopted from
Ref. [51]. Table I lists the initial beam and lattice param-
eters. Such a recirculating beamline is composed of two
identical low-beta focusing-drift-defocusing-drift (FODO)
channels and two identical 180-degree quasi-isochronous
achromatic arcs, as shown in Fig. 4(a). In the straight
sections, the design value of the rms beam size is about
20 pm, corresponding to betatron function about 0.3 m [see
Fig. 4(b)]. A smaller betatron envelope function might
be achievable, e.g., down to a few mm, but the stronger
quadrupole strengths may result in undesired optical
aberrations. The straight-section lattice configuration
ensures a standard technical design of the quadrupole
magnets and negligible emittance growth in the presence
of optical aberrations [51]. The optics design for the
achromatic and quasi-isochronous arc is based on
Ref. [81]; the dispersion and the momentum compaction
functions are illustrated in Fig. 4(c). Between the straight
and arc sections, additional quadrupole magnets are used to
match the transient optics. Regarding the RIBS ring and the

R R N DAL e e b S AN
* R 7

£ B 11111 T PP o

FIG. 4.

16 10%Rgq (M)
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©
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(a) Schematic layout of the recirculating IBS ring, where dipoles are marked as green, focusing quadrupoles as red, and

defocusing quadrupoles as blue. (b) Courant-Snyder envelope function. (c) Dispersion R;s and momentum compaction Rs¢ functions.
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TABLE II. Numerical setting used in ELEGANT tracking sim-
ulations.

Name Value Unit
Number of macroparticles 128 x 109

Number of CSR bins 9000

Number of macroparticles per bin 7000

Number of CSR kicks 400

Number of IBS bins 30

Density modulation amplitude 0.01%

Modulation wavelength 125 um
Simulated uniform flattop duration 16/4800 ps/pum
Number of modulations atop 38

estimate of the beam parameters, the readers are referred to
Ref. [51] for more details.

B. Numerical settings for particle tracking simulations
and data postprocessing

Before presenting the tracking simulation results, some
remarks deserve to be made here on the numerical settings
relevant to MBI and IBS and data postprocessing in
ELEGANT [53,54]. Table II summarizes the converged
numerical parameters used in preparation of the initial
6-D phase space distribution of macroparticles, in setting
up the steady-state CSR effect within bending magnets
(CSRCSBEND) [82] and the IBS effect along the beamline
(IBSCATTER) [83]. Here we note that in particle tracking
simulations, due to a limited number of simulation par-
ticles, the numerical settings for binning and filtering of
numerical noise play an important role in the evaluation of
MBI, especially when the microbunching amplification
gain is high. In general, more simulation particles ensure
lower numerical fluctuations (noise), and thus increasing
the number of simulation particles will tend to converge
the results. To compare with the linear theory at the onset
of MBI, the initially imposed density modulation needs to
be small enough to remain in the linear regime while such
modulation should be large enough to rise above the
numerical noises [13,14]. In ELEGANT simulations, we
have simulated using 32, 64, and 128 millions of macro-
particles and found that 64 or 128 millions of particles
with density modulations smaller than 0.025% would give
almost the same (converged) results. Furthermore, since
the theoretical formulation assumes single-frequency
modulation, the cutoff frequency is set up to the second
harmonics [40]. The interested readers are referred to
Refs. [14,40,82,84] for more details about the numerical
settings.

As for setting the number of IBS bins, we set a criterion
that this number should not be larger than the number of
modulation wavelengths on top of the particle phase space
distributions. This restriction can avoid emergence of non-
physical phase space modulations when ELEGANT redis-
tributes the simulation particles after an IBS kick.

In postprocessing of particle tracking simulation data for
analysis of MBI, to obtain the density modulation [cf.
Eq. (41)], we make a histogram of the 6-D particle phase
space distribution at a certain location over z (or ), and then
take fast Fourier transform (FFT) on the histogram. The
density modulation amplitude can be extracted from the
modular amplitude of FFT at the corresponding modulation
frequency. About histogram binning, we vary and choose at
least five bins within a modulation wavelength to ensure that
a complete modulation wavelength can be sampled, while
not too many in order to avoid high-frequency noise when
performing FFT. Another way to obtain the density modu-
lation amplitude is to perform a sinusoidal fit, from which
the fitting amplitude is the density modulation amplitude. To
estimate the energy modulation amplitude [cf. Eq. (42)], the
longitudinal beam phase space distribution (z,8) is first
sliced to obtain the mean energy within each slice, and a
linear (or quadratic) polynomial fit is used to remove the
residual linear (or quadratic) energy chirp. For each modu-
lation period, the peak and valley are identified and the
energy modulation amplitude can be calculated by averaging
over the modulation periods.

C. Semianalytical calculation and particle
tracking simulation results

In this subsection, we shall present the semi-analytical
calculations and ELEGANT tracking simulation results for
the RIBS ring outlined in Sec. IV A. Figure 5 displays the
evolution of the IBS growth rates for the beam slice energy
spread and the transverse slice emittance along the beam-
line. In ELEGANT, the IBS growth rates are calculated slice
by slice based on Bjorken and Mtingwa formula [57]. In the
following simulations, the number of IBS bins is chosen 30.
From Fig. 5 we can see that both the CIMP [52] and
ELEGANT give the consistent results, though in the first
straight section the growth rate for the energy spread
predicted by CIMP is a bit lower than that by ELEGANT.

Figure 6 illustrates the dynamic friction and diffusion
coefficients along the beamline. Although it appears that
Digg ; is two orders of magnitude larger than Dygg .., the
dependence of Dygg, on & via the error function [see
Eq. (A.16)] is not included in the figure. Within the core of
the beam energy distribution, the effect of IBS friction is in
fact smaller than IBS diffusion.

Figure 7 demonstrates the evolution of phase space
microbunching along the beamline at the modulation
wavelength 4 = 125 um, including the density and energy
modulations. In Fig. 7(a) the microbunching density gain
G(s) is defined as the ratio of density modulation ampli-
tudes at a certain location s to that at the initial location
[see Eq. (41)], or

| blk;;s)
=) " b(k.:0)]

(69)
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FIG. 5. The calculated IBS growth rates along the recirculating
beamline for (a) slice energy spread, and (b) the transverse
horizontal emittance. The solid lines are from CIMP model and
the blue dots are from ELEGANT through IBSCATTER element
[83]. There is a total of 30 blue dots at a certain location s,
corresponding to the number of IBS bins [see Table II].

It can be seen that the density gain becomes much higher
in the second arc than in the first arc, showing a significant
gain enhancement. Note that the maximum gain in the first
arc (around s = 45 m) is only 20. Since only the steady-
state CSR is taken into account, there is no gain enhance-
ment in the two straight sections. An intuitive estimate of
the overall gain may be 400. However the information of
the phase space microbunching residing in (x, z) or (x/, z)

10°
7D|BS,27D|BS,ZZ

Gl A e T
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14 L \ . ) \
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10

FIG. 6. The calculated IBS friction and diffusion coefficients
[see also Egs. (A.16)].
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FIG. 7. (a) Gain functions G(s), Egs. (70) and (84), as a

function of s, for A = 125 um. (b) Energy modulation, Eq. (56),
as a function of s, for 2 = 125 ym. Only the steady-state CSR is
included in the cases. The red with £ = 0 corresponds to the case
without IBS; the green £ = 1 includes the normal IBS effect; the
blue £ =10 means the enhanced IBS inflation effect [see
Eq. (70)]. In ELEGANT simulations, marked as square symbols,
the initial modulation amplitude is set 0.01% and a total of
128-million macroparticles are used. Here we comment that, for
the case with CSR and IBS, the tracking simulations may take
about 10 hours using a 24-core computer, while obtaining the
solid lines only takes within 5 minutes.

dimension, which is not accounted for by the naive
estimate, will carry on growing and converting to the
density or energy modulations downstream to the second
arc [77]. In this regard, the start-to-end analysis is necessary
and important to accurately evaluate the microbunching
amplification.

The energy modulation plotted in Fig. 7(b) is in unit of
the initial density modulation. Note that here in our
calculation the initial phase space microbunching consists
only the density modulation. Therefore such an energy
modulation is primarily induced by CSR. In the presence
of both initial density and energy modulations, one should
append the additional contributions of by(k,;s) and
polk.;s) to Egs. (45) and (57). The interested readers
should be referred to Ref. [77] for more details. From
Fig. 7, we clearly see that both the semianalytical calcu-
lations (solid lines) and the particle tracking simulations
(squares) are in good agreement. For convenience of the
following discussion with IBS, let us introduce an
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enhancement factor £ > 0, such that the relevant parameters
to IBS will scale as [see also Egs. (1) to (3) and (39), (40)]

D. D.
DZZ DZZ
Tilgs p — X TalBs p. (70)
T IS L
T;,%BS T;}BS

The trivial case with £ = 0 corresponds to the absence of
IBS. The case with £ = 1 refers to the normal IBS effect,
and ¢ > 1 the enhanced IBS effect. As can be seen in Fig. 7,
the normal IBS effect on MBI is negligibly small along the
beamline, except for the locations where the gain is high,
for example, at s = 88 or 93 m for the density gain and
at slightly delayed locations for the energy modulation.
The & = 10 case is also shown in this figure, where both
semianalytical and tracking results agree, and indicates
further gain reduction due to the enhanced IBS effect. The
small gain reduction is expected, as IBS can be considered
a slow diffusion process and the illustrated density gain
only evolves in a single turn.

Demonstrated above is the evolution of phase space
microbunching along the beamline at a certain modulation
wavelength. The spectral response to MBI can be presented
by scanning a range of modulation wavelengths, i.e., the
gain spectrum at a particular location of the beamline.

1200
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FIG. 8. Gain spectrum for (a) the maximum gain and (b) the

gain at the exit of the recirculating beamline. Only the steady-
state CSR is included in the cases.

Figure 8 illustrates the gain spectrum at s = 93 m (where
the maximum gains occur) and at the exit of the beamline
(the final gains, G;). The shorter wavelengths enhance
the phase space smearing (or Landau damping), while the
longer wavelengths feature a negligible CSR effect.
Although the IBS effect itself is small for a single turn,
we can still see that the gain reduction due to IBS is more
effective in the high-gain spectral region.

To further benchmark the theoretical formulation and
gain a deeper understanding of the interplay between IBS
and collective effects on phase space microbunching, a
preliminary study may be conducted to investigate how the
IBS scaling factor & affects MBI for a single turn. Figure 9
compares the semianalytical calculation with ELEGANT
tracking for different IBS enhancement factors, including
the maximum gain and the final gain for A = 125 ym. From
Fig. 9(a) it is evident that the beam emittances ¢, , and slice
energy spread o5 in Egs. (46), (50), (AS), and (A9) should
be updated based on the inflating IBS effect [determined by
Egs. (1) to (3)] to obtain the consistent results to particle
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800 = ELEGANT
—semi-analytical calc. (wo/ update) N
—semi-analytical calc. (w/ update)
600 . . - ' . . .
0 2 4 6 8 10 12 14 16
(b) R |
L = ELEGANT
160 —semi-analytical calc. (wo/ update)
—semi-analytical calc. (w/ update)
1407 - -semi-analytical calc. (wo/ update, x0.6)
- -semi-analytical calc. (w/ update, x0.6)
120+t
S 100}
80
=‘::: ___________________________
60} e ..,
40 : -
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FIG. 9. Dependence of (a) the maximum gain and (b) the final
gain on the IBS enhancement factor £ Only the steady-state
CSR is included in the calculation. The solid lines are from
semianalytical calculations and the square dots from ELEGANT
tracking simulations. The black and red solid lines are, respec-
tively, without and with update of 65 and ¢, ,, due to IBS along the
beamline. The black and red dashed lines in (b) are 0.6 times their
corresponding solid lines. It can be seen that the red lines match
well with the particle tracking results. For detailed discussion of
the dashed lines, see comments in the context.
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tracking simulations. Update of the only IBS-induced
energy spread will result in underestimate of the IBS effect
and thus giving a higher microbunching gain. As for the
relevance of the friction and diffusion terms of the IBS
dynamics to the overall microbunching gain, we use the
developed semianalytical Vlasov solver to perform a
numerical experiment, and find that the contribution of
the friction term is in general small compared with that
of the diffusion term. For the present example at 125 um,
let us consider four cases: (a) IBS off; (b) IBS on, with both
Digs ;» Digs.z;; (c) IBS on, with only Dygg ..; (d) IBS on,
with only Djgg.. In the comparisons, the IBS-induced
growths of the slice energy spread and emittances remain
the same for the cases. The difference only goes to the
presence/absence of the friction and diffusion terms in
the dynamical equations [Egs. (63)—(65)]. It turns out that
for cases (b)—(d) there is about 3 ~ 5% gain reduction,
compared with the case (a). With IBS, the difference
between case (b) and (c¢) is much smaller (smaller than
0.1%), while the difference between (c) and (d) is about
1% in the gain reduction. We note that, since the friction
and diffusion effects are not purely additive, a fair
comparison should be made with respect to the absence
of IBS [i.e., case (a)]. The exact numerical factor of gain
reduction may vary for different beam parameters and
different lattice designs. In our experience, the additional
Landau damping due to IBS is stronger (primarily the
slice energy spread increase, then the emittance growth)
than the diffusion-induced gain reduction, followed by
the friction-induced gain reduction.

Before ending this subsection, here we briefly conclude
that the semianalytical and particle tracking results quanti-
tatively agree to each other for the maximum microbunch-
ing gain [Fig. 9(a)], while in qualitative agreement to each
other for the final gain in the presence of both normal and
enhanced IBS effects [Fig. 9(b)]. In fact, the reduction of
ELEGANT results [blue square dots in Fig. 9(b)] is due to
gain saturation at the modulation wavelength in particle
tracking simulations. This will be discussed in more detail
in the next subsection.

D. Discussions

In the previous subsection, although a good agreement
has been found in Fig. 9(a), a persistent reduction of the
final gain in Fig. 9(b) does still exist. Having carefully
checked our semianalytical code and the numerical param-
eters in ELEGANT, we find that the reduction is indeed due
to gain saturation at the modulation wavelength and the
second-harmonic modulation emerges near the exit of the
beamline. To verify this, let us first take a look at the time-
domain bunch current density distribution. Figure 10
illustrates the bunch histograms, with the average back-
ground being removed, at three different locations. For
comparison, we have used a sinusoidal fit (blue lines) with
a fixed wavelength 4 = 125 ym to overlap the raw data

PHYS. REV. ACCEL. BEAMS 23, 124401 (2020)
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FIG. 10. Particle density distribution along the bunch at (a)
s = 0 m, the initial location, (b) s = 93 m, where the maximum
gain locates, and (c) s = 97 m, the exit of the beamline. The
initial modulation wavelength is assumed 125 ym. Only the
steady-state CSR is included in the calculation. The red lines are
from the histogram of simulation data (raw data), the blue lines
from sinusoidal fit.

(red lines). It can be seen that from Fig. 10(a) and (b) the
overlapping between the sinusoidal curve and the raw data
is passable. However, the deviation in Fig. 10(c) becomes
obvious; the raw data (red curve) appear distorted.
Another way to confirm this numerical observation may
resort to Fourier spectrum of the bunch current density,
shown in Fig. 11. In Fig. 11(a), where the maximum gain
occurs, the spectrum is clearly a single peak at 125 ym or
2.4 THz. However, in Fig. 11(b), the final density modu-
lation is composed of two main components: the funda-
mental one 125 ym (2.4 THz) and the second-harmonics
62.5 ym (4.8 THz). It is interesting to note that the
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FIG. 11. FFT spectra for the corresponding bunch histograms at

s =93 m and 97 m, i.e., Fig. 10(b) and (c), respectively. The
initial density modulation is assumed 125 um, which corresponds
to 2.4 THz. It is evident that the higher harmonics emerge in the
bottom plot.

fundamental and the second harmonic components, respec-
tively, occupy about 60% and 40% of the total spectrum,
neglecting the remaining higher frequency components.
If we hypothetically move those leaking to the second
harmonics back to the fundamental peak, the FFT ampli-
tude should be recovered by about 66.7%. In other words,
the 66.7% reduction of the semianalytical calculation,
which is only based on the single-frequency model, may
give a consistent prediction to the particle tracking simu-
lation results. The red dashed line in Fig. 9(b) agrees well
with ELEGANT results.

It deserves here to discuss one model assumption
between the theoretical formulation and the particle
tracking simulation. For the former, the growth of the slice
transverse emittance and the slice energy spread along
the beamline is merely due to IBS; the contribution of
collective effects is excluded in the linearized formulation.
For the latter, there is no such a restriction: the growth of the
slice transverse emittance and the slice energy spread can
be contributed by both the IBS and CSR. Using ELEGANT,
Fig. 12 shows, in the presence of IBS, the slice energy
spread and the transverse emittance with and without CSR
along the beamline. The slice parameters are evaluated by
taking average over the longitudinal central bunch slices,
while excluding the variation due to edge effect from bunch
head and tail parts. From Fig. 12 it can be seen that the
(fractional) growth of the slice energy spread due to CSR is
much larger than that of the slice transverse emittance, and

(a) gx10°

—ELEGANT (W/ IBS, wo/ CSR)
| —ELEGANT (w/ IBS, w/ CSR)

0 20 40 60 80 100

—ELEGANT (w/ IBS, wo/ CSR)
—ELEGANT (w/ IBS, w/ CSR)

0 20 40 60 80 100

FIG. 12. The evolution of (a) the slice energy spread and (b) the
normalized emittance along s. The red lines are for the case with
IBS and with (steady-state) CSR; the blue lines without IBS but
with (steady-state) CSR. It can be seen that, for (a), about 400%
increase for red and ~200% increase for blue. For (b), only 5%
increase for blue and 12% increase for red. Here, only the central
slices in the bunch are taken for calculation of the slice energy
spread and emittance. Those slices close to the bunch head and
tail are excluded.

the rapid growth occurs especially at the end of the second
arc or near the exit of the beamline. We believe that this
rapid growth of the additional slice energy spread will
lead to failure of the linear MBI analysis and an unfair
comparison with particle tracking simulations.

One may wonder how the IBS may impact MBI when
not only steady-state CSR but also other relevant collective
effects are present. In addition to computational efficiency,
another one major advantage of the semianalytical calcu-
lation is that it is straightforward to add relevant impedance
models into consideration via Z (k.;s) [see, e.g., Egs. (65)
or (A17)]. This will enable us to estimate how the micro-
bunching amplification responds when different collective
effects are included. Figure 13 demonstrates the gain
spectra when the entrance and exit transient CSR and
longitudinal space charge (LSC) are included. The overall
gain is higher, while an obvious gain reduction is seen in
the high-gain region. The gain reduction due to IBS, as
expected, does not play a significant role for a single-turn
recirculation. The proposed RIBS ring design, from current
perspectives, seems not satisfactory as it is vulnerable to
MBI, although the goal of the RIBS ring was to provide
the enough slice energy spread to suppress MBI in the
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FIG. 13. Gain spectrum at the exit of the recirculating beamline

with inclusion of different collective effects and with/without
IBS. The all CSR includes steady-state, entrance, and exit
transient impedances.

downstream transport line up to the undulator entrance.
However the idea (of using RIBS ring to enhance IBS
effects) itself may not be completely ruled out, if a better
design would be proposed. For example, in Ref. [37],
a specialized isochronous arc design with a magnetized
beam transport was shown to effectively suppress MBI If a
new RIBS ring were composed of such a specialized arc
design, the two straight sections can be used to enhance
IBS effects, while the two specialized arcs still preserve the
longitudinal beam quality from MBI. Feasibility of this
option would require further investigation.

V. SUMMARY AND OUTLOOK

In this paper, we have formulated the effect of the multiple
small-angle collision or intrabeam scattering (IBS) on the
phase space microbunching dynamics based on the Vlasov-
Fokker-Planck (VFP) framework. The corresponding fric-
tion and diffusion coefficients are simplified based on the
binary-collision model and written as the Landau collision
integral form. The fact that a high-brightness relativistic
electron beam with 7 < 7', further simplifies the integrals
and collisional dynamics in the VFP equation. By applying
the standard perturbation technique, the VFP equation can be
separated to the zeroth-order and the first-order equations.
The inflation effect of IBS [Eqgs. (1) to (3)] is attributed by
the zeroth-order effect, assuming the unperturbed Gaussian
phase space distribution, and in the meanwhile contributes
to the phase space smearing (or Landau damping). The
collective effects [Eqs. (A17)] and the IBS friction and
diffusion [Egs. (A18)] are connected with the first-order
dynamics. By defining the phase space density and energy
modulations, a set of linear coupled integral equations are
obtained and can be numerically solved in an efficient way.
We then demonstrate the application of the developed
semianalytical formulation to a practical recirculating beam-
line. The results from the semi-analytical calculation are
validated, compared and show good agreement with

ELEGANT tracking simulation. Some model assumptions
behind the theoretical formulation and particle tracking
simulation are discussed. We believe that the developed
formulation shall be generally applicable for linear
analysis of 6-D phase space dynamics for single-pass
high-brightness beams in the presence of both collective
and incoherent effects, and hope that it may be applied to
further investigate the interplay among the beam collec-
tive effects, the incoherent scattering effects.

Here we remark that the present theoretical framework
assumes no beam acceleration (or deceleration) nor the
bunch compression (or decompression). These are weak
points for a direct application of the presented theory to the
wider varieties of high-brightness linac-based facilities
presently running or planned. The extension can be made
by including the bunch compression factor and introducing
a set of scaled six-dimensional phase space coordinates.
Since the IBS effects, including additional Landau damping
through slice energy spread, emittances, and the induced
diffusion and friction, depend on the local bunch current (or
bunch compression factor) in slightly different ways, the
microbunched beam dynamics can be complicated when a
beam experiences bunch compression. We have applied
the developed semianalytical Vlasov solver to a lattice
with bunch compression, where the compressed (larger)
beam current would enhance IBS effects, resulting in more
pronounced suppression of microbunching instabilities.
This work is ongoing; more detailed studies, together with
examples involving bunch compression and/or beam accel-
eration, and investigation on competition between MBI and
IBS will be presented in a separate work.

Since the IBS is an accumulation effect, further inves-
tigation of the collective phase space microbunching
dynamics for the multi-turn recirculation, particularly the
dynamical transition from single-pass transport (initial-
value problem) to few-passes recirculation and eventually
to the storage-ring configuration (eigenvalue problem) may
be worth pursuing and is in our plan. In the single-pass
theory, as we have formulated in this paper, the every
detail of local beam optics (and collective effects of various
types) have been considered and the formulation of the
phase space dynamics is six-dimensional. On the other
hand, most studies of the microwave/microbunching insta-
bilities tend to solve the eigenvalue problems for only two-
dimensional longitudinal phase space and the Landau
damping depends only on the energy spread and globally
averaged optics (and the integrated collective kick) of a
storage-ring system (the smooth approximation) [63],
where possible local effects might have been overlooked.
In storage rings, the energy spread is much larger than that
for single-pass or recirculation accelerators and may cause
the dominant Landau damping effects, yet this is not true if
an accelerator is operated for a few turns of recirculation
prior to reaching the equilibrium condition. Studying how
the two distinct analyses transit should help bridge the

124401-21



TSAIL QIN, FAN, WANG, WU, and ZHOU

PHYS. REV. ACCEL. BEAMS 23, 124401 (2020)

understanding of the above two scenarios, at least of
academic interest.

Finally, we note that recently Di Mitri et al. [50]
published some interesting experimental evidence of IBS
in a linac-driven FEL facility. It deserves here to comment
that their simplified analytical estimate includes both beam
acceleration and bunch compression. They have studied the
impact of the IBS on MBI using FERMI linac facility, and
concluded that neglecting IBS effect may result in too
conservative facility design or failure to realize accessible
potential performance for VUV and soft x-ray FELs [50].
With extension to accommodate the bunch compression/
decompression and beam acceleration/deceleration scenar-
ios, we believe that our developed theoretical formulation
would be applicable to further investigate the role of both
various collective effects and IBS on MBI in the single-pass
linac-driven FEL transport line.
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APPENDIX: DETAILED EXPRESSIONS
IN SEC. III D

1. Derivation of the third and fourth terms
on rhs of Eq. (44)

By substituting Eq. (53) into the first integral in the third
term on rhs of Eq. (44), the term with D_ f, is further split
into two parts

5.08(z)

/ Dz.o(T)fl(X;T)e_"kz(“')zl‘(”dX:—;<re[L0g] h) / {An(z» , 0:80

2.2
VELN Iy

5 .
erf ‘ X:7)e k()z0gxX, (Al
} ( ﬁ%)m ) (A1)

Osc

Note that z in the exponent can be expressed in terms of the phase space coordinates at s = 7

75(t) = Rs1 (7 = $)x; + Rsy(7 = 5)x; + Rs3(7 — 5)y; + Rss(t — 5)¥; + 2, + Rs(7 — 5)5;,

(A2)

where the relative transport functions from 7 to s can be determined using Eq. (48), explicitly expressed as

Rsi(7 = 5) = [Rs51(5) = Rs1(7)|Ry2(7) — [Rs52(s) = Rsx(7)| Ry (7),
Rsy(7 = 5) = [R55(5) — R5p(7) Ry (7) — [R51(s) = Rs1 (7)]R)2(7),
Rs3(7 = 5) = [Rs3(5) — Rs3(7)|Rus(7) — [Rs4(s) — Rss(7)|Ry3(7),

Rsy(7 = 5) = [Rs4(5) — Rs4(7)|R33(7) — [Rs3(s) — Rs3(7)|R34(7).

(A3a)
(A3b)
(A3c¢)

(A3d)

To work out the first part of Eq. (A1), we first integrate over &,, then over z,, resulting in the density modulation b(k_; 7) at
s = 7 [see also Eq. (41)]. The remaining integrations over the transverse 4-D phase space coordinate leads to a smearing

term. The resultant expression is

A 0 .
/ I’Z(Zr) erf< >f0(X, T)e—lkz(.\')z,,-(r)dx
no \/565

1 A
= —ierfi (2 kZ(S)Rsﬁ(T d S)> e_ékﬁ“')R?o(T_"")”%f/ I’l(ZT)

noy

= —Nierfi (%kZ(S)R%(T - s)> {L.D.;7 - s}b(k,; 1),

where {L.D.;7 — s} is defined as [cf. Egs. (46) and (50)]

] —ik,(s 4 i(t=s5)X;
e~k dz, / Foap(X;z)e )2 Rl i dX

(A4)
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€0 (Rsi (s = ) =52 Ra(c = 8) ) + 55 RS (2 = )
. (AS)
+efh0(Rss(z = ) = 52 Rsalc = 5) )" + 55 RE (0 = 5) + G3RE(c = )

In deriving Eq. (A4), the following integration formula has been used [85]

1 o0 6 —5_22‘17\5 1 142 2
erf e ™ dé= —ierfi| =A5 |e V% A6
V 27[05 /—oo (\/EG@) (2 > ( )

(LDt — s} = exp{_@

with erf(iz) = ierf(z).

The second part of Eq. (A1) can be evaluated in a similar way, but the energy modulation p(k_; 7) at s = 7z would appear
[see also Eq. (42)],

5.AS P .
/ : 2(zf)me< : > Fo(X; 7)ok 2(0dX
657 \/EU&'

1 5 P — ik, (5)Rss (7—5)5, 4 Zik(5)S™  Rs (r—s)X,
:m/ar rf<\/_; )e 20;1 6 d‘sf/Aé(zf)e_lkZ(s)z’dZT/f0,4D(X§T)€ (0) 251 Rl ‘)XﬂdX4D
ot ot ot

= N2{LD.;t — s}l\/%%& [2%F< +;> F, <n-|-3 1 1k§(s)R§6(1—> S)6§r>:|p(kz;7)’

- 2’272

(A7)
where the following integration formula is used [86]

1 00 § O\ ~S&-ias 232 [&(=2)"(2n—1)!! 3 31 1
oerf oods ="~ -~ 2T ). F Zo—— A2 )|, A8
\/2ﬂ'05/—oo © (\/EO};)e \/7?65{; (2n+1)! <n+2>1 1<n+2 202 %)} (A8)

where I' is the gamma function and | F, is the confluent hypergeometric function [80]
The remaining transverse phase space smearing term is defined as

_kG)

{LD.;t—> s}, =exp :

€90 (Rsi(r = 5) =50 Rer(z = 5)) " + 5 R (7 = ) ]
(A9)

+€>G'ﬂy0<R53(T - ) —%RM(T - S)> t35. & R54(T - )

For the other term involving f, in the third term on the rhs of Eq. (44), it can be analytically integrated in a similar manner

4 1 (r.[Log] I 5 \A .
/ D.1(2)fo(X;7)e LI 0dX = -2 <rez[ fg] ”) / erf< ) nz) fo(X;7)e k(0)udx

rein Ia V203 ng
1 Log| I 1
— N= 2[ 20g] 2 ierfi( = k,(s)Rse(r = 5) |{L.D.;7 — s}b(k,:7).  (A10)
2\reln Ia 2

For the fourth term on the rhs of Eq. (44), responsible for the IBS diffusion effect, the detailed derivation is similar and
would not be presented here. The resulting expression is

/Dzz;)(f)fl(xﬂ.)e—lk DENGR) o DZZ.O(T)/ |:An(zr) _,_5 Aé(zf)

2 ny,
— NDZZO( )

Joxescnsinn

51'

{L.D.;t — s}[b(k;;7) — ik (s)Rss(t = s)p(k; 7)) (All)

for the term with fy, and the other term involving f,
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D
/ 1 (7 )fO(X 7)e k%0 dX = N "20( ){L.D.;r — s}tb(k,;7).
This section completes the derivation of the third and fourth terms on the rhs of Eq. (44).

2. The resultant integral equations for b(k,;s) and p(k,;s)

The complete expression of the integral equation for b(k_;s) is

blkis) = bulhess) 1 [k (Rsg (e = 5)2) k) LDisr. s Yolhs

[ (G o Rale = LDt = shet(Jels)Raale = S ) ksl
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and that for p(k.;s) is
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In deriving Eq. (A14), we have used the following identity [86]
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s*erf oAb =—iA——oy |y ~———— T 5 F 55
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3. Some shorthand notations for the kernel functions

For the IBS-related terms, we define
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z,0 (7263_’1\, IA \/505 IBS.z \/265
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For the kernel functions that involve the collective effect in the integrals, we define

0 Ib
kY (z.5) = el (k;7){L.D.;z, s},

1
Ky (z,5) = yTbAkZR%(T — )7 (k;7){L.D.;7, s},

2 I
KD (,5) = -

= kiR%(t — s)Zj(k;;7){L.D.; 7,5},

and those involving the IBS
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The above shorthand notations are used to simplify Eqs. (A13) and (A14), leading to Egs. (55) and (56).
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