
 

Simple model for the nonlinear radiation field of a free electron laser
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It is shown that Jacobi elliptic function solutions of the nonlinear Duffing equation model the radiation
field in a high-gain free electron laser through early saturation. After initial start-up, the field can be
expressed equivalently with a hyperbolic secant. The model is derived for arbitrary detuning from
resonance, which enables study of the spectral properties in the early nonlinear regime.
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I. INTRODUCTION

Linear free electron laser (FEL) theory has been
extremely successful at describing the basic properties of
the single pass, high-gain FEL in the start-up and expo-
nential gain regimes. At saturation, however, nonlinear
terms become dominant and the dynamics of the system is
typically studied by numerical solutions to the underlying
microscopic equations. Simplifications can yield insight
into certain features of the saturation process, but the
expressions must still generally be solved numerically
[1–4]. Alternately, the system can be studied piecewise
by dividing it into distinct dynamical regimes [5,6].
Different approaches have been used to obtain unified

analytic models for the FEL field in both the linear and
nonlinear regimes, each targeting specific aspects. For
example, the transition from exponential gain to saturation
has been modeled by the Ginzburg-Landau equation [7,8]
or with a logistic equation [9]. Werkhoven and Schep in
[10] obtained somewhat involved but closed-form expres-
sions for the resonant FEL field amplitude in terms of
Jacobi elliptic functions that match well with numerical
solutions deep into saturation. Solutions to the time-
dependent FEL equations in the limit of strong slippage
have been obtained in the form of hyperbolic secant
functions that evolve self-similarly [11,12].
Here we show that the radiation field in a time-

independent high-gain FEL can be described from start-
up (either from electron beam bunching or from an external
radiation field) through early saturation by the Jacobi
elliptic function solutions to the unforced, undamped
Duffing equation,

A00 − αAþ βA3 ¼ 0; ð1Þ

where A is the scaled radiation field amplitude, and
α; β > 0 are constants that depend on the detuning. This
Duffing equation with its cubic nonlinearity describes the
dynamical behavior of a myriad of Hamiltonian systems
including nonlinear oscillators, so its use as a model for the
nonlinear FEL may not be unexpected.
Starting from the standard 1D microscopic FEL equa-

tions, here we first derive a nonlinear equation for the
complex field evolution. Using simple approximations, we
show that the field can be modeled by (1) and find relatively
simple Jacobi elliptic function solutions that closely match
numerical solutions for arbitrary detuning. This provides an
analytic description of the spectral evolution of the field as
it saturates. With this model it is also straightforward to
obtain the saturation power and saturation length. For small
initial bunching b0 the Jacobi elliptic functions can also be
written in terms of hyperbolic secant functions in the
exponential gain and nonlinear regimes. For example, at
resonance, the field amplitude is well approximated by

Aðz̄Þ ¼
ffiffiffi
3

2

r
sech

� ffiffiffi
3

p

2
ðz̄ − z̄sÞ

�
; ð2Þ

where z̄s ¼ 1ffiffi
3

p ln ð54=jb0j2Þ is the saturation length.

Finally, we show that the resonant solutions for the
complex field also extend to the electron beam bunching
factor and energy spread.

II. NONLINEAR COLLECTIVE EQUATIONS

We start with the microscopic 1D high-gain FEL
equations, similar to those derived and used by
Bonifacio et al., in Ref. [13] to obtain a collective nonlinear
theory,
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dθj
dz̄

¼ ηj

dηj
dz̄

¼ aeiθj þ a�e−iθj

da
dz̄

¼ −he−iθji þ iδa; ð3Þ

where θ and η are the electron phase and scaled energy, a is
the scaled radiation field [14], z̄ ¼ 2kuρz is the scaled
distance along the FEL, ρ is the FEL parameter [15], and
δ ¼ ðω − ω0Þ=2ρω0 is the frequency detuning. One can
show that

hηji þ jaj2 ¼ C1

hη2ji
2

þ iðaheiθji − a�he−iθjiÞ − δjaj2 ¼ C2 ð4Þ

are constants of motion, with C1 and C2 zero if the initial
value of each of the terms is also zero [5].
The collective variable for the bunching factor is

recognized as

b ¼ he−iθji: ð5Þ

Differentiating gives the standard collective energy
variable p:

db
dz̄

¼ −i
�
dθj
dz̄

e−iθj
�

¼ −ihηje−iθji ¼ −ip: ð6Þ

The evolution of p is also found by differentiating and
using the definition for dηj=dz̄,

dp
dz̄

¼ a − ihη2je−iθji þ a�he−2iθji: ð7Þ

The second and third terms are ignored in the linear theory
as they are both small prior to saturation, but are retained
here to yield saturation effects.
The second term hη2je−iθji describes the first Fourier

component of the energy spread of the beam about zero. We
can use the fact that η2j is only weakly correlated with e−iθj

up through early saturation such that the average of the
product can be approximated as the product of the averages,

hη2je−iθji ¼ hη2jihe−iθji ¼ σ2b: ð8Þ

The real-valued collective variable σ2 ¼ hη2ji gives the raw
second moment of the beam energy distribution. The
factorization ansatz in Eq. (8) here differs from that
described in Ref. [13], where there the factorization is
chosen to be in terms of the central second moment
hðηj−hηjiÞ2e−iθji¼hðηj−hηjiÞ2ihe−iθji. The latter choice
adds highly nonlinear terms and more complicated

expressions [e.g., Eq. (3) in Ref. [7]]. The difference
between ansätze appears negligible in the early saturation
regime as both closely match exact numerical solutions to
Eq. (3). See Fig. 1 here and in Ref. [13].
The third term in (7) includes the bunching at the

second harmonic he−2iθji. Its contribution to the nonlinear
equations by way of the collective variables is included by
assuming that

he−2iθji ≈ he−iθjihe−iθji ¼ b2: ð9Þ

The validity of this approximation is also shown in Fig. 1.
The inclusion of this term helps to better model the
nonlinear behavior near saturation, including specific
features of the saturated FEL gain spectrum. Overall,
results from numerical particle simulations of the governing
equations (3) show that the approximations in (8) and (9)
are reasonable in early saturation, thereby enabling a
concise mathematical framework in terms of collective
variables that leads to the simple analytic model for the
FEL up through the early nonlinear regime.
Using (4) for a cold beam [σ2ð0Þ ¼ 0] and an FEL that

grows from initial bunching rather than an external seed
[að0Þ ¼ a0 ¼ 0] we have C2 ¼ 0, and σ2 ¼ hη2ji becomes

σ2ðz̄Þ ¼ 2iða�b − ab�Þ þ 2δjaj2: ð10Þ

FIG. 1. Check of factorization ansätze in Eqs. (8) and (9).
Results are from the numerical solution to the microscopic
equations in (3) with initial condition jb0j ¼ 5 × 10−4.
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Combining terms yields a set of three equations of
collective variables that models the high-gain FEL from
start-up through exponential gain and into early saturation,

db
dz̄

¼ −ip

da
dz̄

¼ −bþ iδa

dp
dz̄

¼ aþ 2b½ða�b − ab�Þ − iδjaj2� þ a�b2: ð11Þ

This can be condensed into a single equation for the field,

i
d3a
dz̄3

þ aþ δ
d2a
dz̄2

¼
�
da
dz̄

− iδa

��
2a

da�

dz̄
− 3a�

da
dz̄

þ 3iδjaj2
�
: ð12Þ

From this equation wewill derive approximate solutions for
aðz̄Þ in terms of Jacobi elliptic functions.

III. LINEAR REGIME

Solutions for the field in the linear regime will be helpful
in obtaining solutions that extend into the nonlinear regime.
In the linear regime the energy spread and harmonic terms
that comprise the right-hand side of (12) are negligible, so
the field evolution is

ia000 þ aþ δa00 ¼ 0: ð13Þ

With a0, p0 ¼ 0, the general solutions are [16]

aðz̄Þ ¼ −ib0
X3
l¼1

e−iμl z̄

3μl þ 2δ
; ð14Þ

where the initial bunching b0 can be complex valued and
where each μl is a solution to the cubic dispersion equation

μ3 − 1þ δμ2 ¼ 0 ð15Þ

that satisfies
P

3
1 μl ¼ −δ and

Q
3
1 μl ¼ 1. The exponen-

tially growing mode solution is

μ ¼ ξ
−1þ i

ffiffiffi
3

p

2
−
δ

3
−
δ2

9ξ

1þ i
ffiffiffi
3

p

2
; ð16Þ

where ξ ¼ ð27 − 2δ3 þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81 − 12δ3

p
Þ1=3=541=3, and ξ ¼ 1

at δ ¼ 0. Exponential growth occurs only for detuning
less than a critical value δ < δc ¼ 3=41=3 [17]. In this
domain the real and imaginary components μ ¼ μR þ iμI
are related by

μ2I ¼
μ3R þ δμ2R − 1

3μR þ δ
¼ μRð3μR þ 2δÞ: ð17Þ

Expanding (16) to second order in δ gives μ≈
− 1

2
ð1þ δ

3
Þ2 þ i

ffiffi
3

p
2
ð1 − δ2

9
Þ, which shows that the field

intensity of the growing mode has an approximately
Gaussian detuning spectrum,

jaj2 ∝ je−iμz̄j2 ≈ e
ffiffi
3

p
z̄−δ2=2σ2δ ð18Þ

with rms bandwidth

σ2δ ¼
3

ffiffiffi
3

p

2z̄
: ð19Þ

IV. NONLINEAR SOLUTIONS:
THE DUFFING EQUATION

Returning to the full nonlinear equation for the field
evolution in (12), closed form approximate expressions are
obtained by assuming that the complex field can be written
in terms of an amplitude and phase, both real valued:

aðz̄Þ ¼ Aðz̄Þeiϕðz̄Þ: ð20Þ

In the exponential growth regime (i.e., after start-up),
Eqs. (14) and (16) show that the field phase is linear with
z̄, and has a slope −μR that depends on the detuning.
Inspired by this dependence we model the phase as

ϕðz̄Þ ¼ −μ̃Rz̄þ ϕ0; ð21Þ

where ϕ0 is determined by the initial conditions to keep A
real valued, and

−μ̃R ¼ ξ

2
þ δ

3
þ δ2

18ξ
: ð22Þ

This is plotted in Fig. 2. Note that μ̃R ¼ μR for δ < δc but,
unlike μR, is smooth at δ ¼ δc.

FIG. 2. Continuous differential gain parameter μ̃2I from (24) and
phase slope −μ̃R from (22).
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Inserting aðz̄Þ from (20) into the nonlinear equation for
the field evolution (12) and setting the imaginary term to
zero reveals our unforced, undamped Duffing equation
from (1) that models the amplitude evolution through early
saturation,

A00 − αAþ βA3 ¼ 0; ð23Þ

where the coefficients are

α ¼ μ̃Rð3μ̃R þ 2δÞ ¼ μ̃2I ; β ¼ −2μ̃R −
4δ

3
: ð24Þ

Using the relation between μR and μI in (17) we define μ̃I in
(24) in terms of μ̃R, where μ̃I ¼ μI identically for δ < δc
but, like μ̃R, it is also smooth across δ ¼ δc (see Fig. 2). The
coefficient α ¼ μ̃2I of the linear term in (23) is thus related
directly to the term responsible for gain in the linear FEL
theory. This is to be expected, since if the nonlinear term A3

is small, solutions to (23) are Aðz̄Þ ∝ eμ̃I z̄, as required in
the exponential growth regime. The nonlinearity, set by β,
produces the saturation effect once the field strength
becomes large enough.
Equation (23) is a well-known nonlinear differential

equation with analytic solutions described by the Jacobi
elliptic functions [18]. General solutions for arbitrary
α; β > 0 are given by

Aðz̄Þ ¼ Ycnðκz̄þ ψ jnÞ; ð25Þ

where cn is the cosinelike Jacobi elliptic function. In the
convention of [19], κ is called the frequency and n the
parameter (the so-called modulus is

ffiffiffi
n

p
). They are

related by

κ2 ¼ βY2 − α; n ¼ βY2

2κ2
: ð26Þ

The peak amplitude is given by

Y2 ¼ α� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðα − βA2
0Þ2 þ 2βðA0

0Þ2
p

β
: ð27Þ

The phase angle ψ satisfies a general relation subject to
initial conditions,

snðψ jnÞdnðψ jnÞ
cnðψ jnÞ ¼ −

A0
0

A0κ
: ð28Þ

In the a0 ¼ 0 case considered here, Að0Þ ¼ A0 ¼ 0 and
ψ ¼ −KðnÞ, where KðnÞ is the complete elliptic integral of
the first kind. The sign is chosen in anticipation of matching
the linear FEL solutions in tandem with the proper choice
of A0

0, which is proportional to jb0j and small. Taking the
upper sign in (27) [20], Y and κ are independent of A0

0 to
lowest order,

Y ≈

ffiffiffiffiffiffi
2α

β

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
−3μ̃R

p
; κ ≈

ffiffiffi
α

p ¼ μ̃I: ð29Þ

The peak amplitude Y is related to the phase slope from
(22), while the frequency κ relates to the differential gain in
(24). For n, the next order term is needed to properly
account for the initial conditions,

n ≈ 1 −
ðA0

0Þ2β
2α2

¼ 1þ ðA0
0Þ2

3μ̃Rμ̃
2
I
: ð30Þ

The parameter n is generally close to unity, enabling two
simplifying approximations. The first is

KðnÞ ¼ ln
�

4ffiffiffiffiffiffiffiffiffiffiffi
1 − n

p
�
: ð31Þ

The second is that cnðxjnÞ ≈ sechðxÞ in the exponential
growth and early saturation regimes. The sech solution in

the exponential regime is then aðz̄Þ ¼ A0
0

2μ̃I
eκz̄−iμ̃Rz̄þiϕ0 while

from (14) the field should be aðz̄Þ ¼ −i b0
3μþ2δ e

−iμz̄.
Equating these expressions yields the initial condition
required to match the exponential growth from linear
theory,

FIG. 3. Top: saturation length at δ ¼ 0 as a function of initial
bunching amplitude from (38) (blue line) and from solutions to
the microscopic equations in (3) (squares). Bottom: saturation
length z̄s from (34) for different values of initial bunching. The
saturated field amplitude jaðz̄sÞj is also shown.
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A0
0 ¼ −2i

b0μ̃I
3μþ 2δ

e−iϕ0 ¼ ζe−iϕ0 ; ð32Þ

where the phase offset is

ϕ0 ¼ −i ln ðζ=jζjÞ: ð33Þ

With the cn Jacobi functions it is straightforward
to calculate the saturation point because they are 4KðnÞ
periodic. Namely, the saturation point of cnðκz̄ − KðnÞjnÞ
is given by cnð0jnÞ ¼ 1, or, with (31) and (32), at the
location

z̄s ¼
KðnÞ
κ

¼ 1

2μ̃I
ln

�
−
12μ̃Rj3μþ 2δj2

jb0j2
�
: ð34Þ

The saturated field amplitude is then simply jaðz̄sÞj ¼ Y,
which also depends on the detuning and is shown in Fig. 3.
We note the similarity in the shape and amplitude of jaðz̄sÞj
with the equilibrium saturation field calculated from a
statistical theory in Ref. [21]. The saturation point z̄s scales
logarithmically with the initial bunching, and depends on
the detuning though μ, μ̃R, and μ̃I. Figure 3 also shows the
saturation length for different b0 as a function of δ. Positive
detuning increases the output power despite the longer
associated gain lengths.
Combining everything together yields an expression for

the complex field,

aðz̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
−3μ̃R

p
cn½μ̃Iðz̄ − z̄sÞj1 − 16e−2μ̃I z̄s �e−iμ̃Rz̄þiϕ0

¼ 2b0
3μþ 2δ

cn

�
iμ̃I z̄þ

π

2

			16e−2μ̃I z̄s�e−iμ̃Rz̄: ð35Þ

The second, more compact expression has been obtained
with the Jacobi elliptic function transformations. This is the
main result of this paper. It describes the complex field of
the FEL as a function of z̄ and δ through early saturation
due to initial bunching.
The detuning spectrum for jaðz̄Þj at different z̄ positions

is shown in Fig. 4 as calculated from microscopic particle
equations in (3), the nonlinear field equation in (12), and
Jacobi functions in (35). There is good agreement between
all three up through early saturation. In the linear regime the
spectrum resembles the Gaussian approximation from
Eq. (18). As the system saturates, the spectrum begins to
fragment, with the development of a narrowed spectral
region for δ > 0 that supports increased output power [22].
Figure 5 shows the normalized detuning spectrum for a

fixed initial bunching amplitude. The Jacobi function
solutions in (35) reproduce the essential features of the
spectrum, including the 1=

ffiffiffī
z

p
bandwidth narrowing in the

linear regime and the bifurcation at saturation. The evolution
of the relative bandwidth can be seen clearly in Fig. 6, where
again there is good agreement. The increase in bandwidth at
saturation is well known and accompanies a reduction in
energy fluctuations in radiation pulses starting from noise,
which scale like 1=

ffiffiffiffiffi
σδ

p
in the linear regime [23].

FIG. 4. Detuning spectra for (a) z̄ ¼ 9, (b) 10, (c) 11, (d) 12, (e) 13, and (f) 14. Here jb0j ¼ 5 × 10−4 with ρ ¼ 10−3, and saturation
occurs at z̄s ¼ 11. The good agreement between solutions begins to dissolve a couple of gain lengths (Δz̄ ≈ 2) after field saturation,
defined for δ ¼ 0.
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After lethargy, the field in (35) can also be written as

aðz̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
−3μ̃R

p
sech½μ̃Iðz̄ − z̄sÞ�e−iμ̃Rz̄þiϕ0 ð36Þ

for jb0j ≪ 1. At resonance, from this one can obtain
Eq. (2). This solution bears resemblance to the sech
solutions derived for the time-dependent FEL in the short
pulse limit in Refs. [11,12].

V. NONLINEAR SOLUTIONS FOR δ= 0

At zero detuning there are significant simplifications.
The gain parameter in (16) is

μ ¼ −
1

2
þ i

ffiffiffi
3

p

2
¼ μ̃R þ iμ̃I ð37Þ

such that α ¼ 3=4, β ¼ 1, and Y ¼ ffiffiffiffiffiffiffiffi
3=2

p
. The Duffing

equation becomes A00 ¼ 3
4
A − A3. The equilibrium solution

for the power is A2 ¼ 3=4, which is close to the value given
in Ref. [5].

The saturation point for the resonant field from (34) is

z̄s ¼
1ffiffiffi
3

p ln

�
54

jb0j2
�
: ð38Þ

The dependence of z̄s at resonance on the initial bunching is
shown in Fig. 3. The complex field from (35) is therefore

aðz̄Þ ¼ 2b0
3μ

cn

�
i

ffiffiffi
3

p

2
z̄þ π

2

				 827 jb0j2
�
eiz̄=2: ð39Þ

With solutions for the resonant field it is straightforward
to also write the other collective variables in terms of the
Jacobi elliptic functions. Using b ¼ −da=dz̄ from (11) and

the derivative property of elliptic functions dcnðujmÞ
du ¼

−snðujmÞdnðujmÞ, the bunching factor is

bðz̄Þ ¼ −
ib0
3μ

eiz̄=2
�
cn

�
i

ffiffiffi
3

p

2
z̄þ π

2

				 827 jb0j2
�

−
ffiffiffi
3

p
sn

�
i

ffiffiffi
3

p

2
z̄þ π

2

				 827 jb0j2
�

× dn

�
i

ffiffiffi
3

p

2
z̄þ π

2

				 827 jb0j2
��

: ð40Þ

Using the field approximation in (20), the energy spread
parameter is simply

σ2ðz̄Þ ¼ 2jaðz̄Þj2 ð41Þ

using (39). The evolution of jaðz̄Þj, jbðz̄Þj, and σðz̄Þ at
resonance is shown in Fig. 7. Good agreement through
early saturation is found with both the microscopic equa-
tions (3) and the nonlinear collective equations in (11).
A couple of gain lengths beyond field saturation the
solutions diverge, particularly the microscopic equations.
Both the collective equation solutions and Jacobi functions
fail to properly reproduce the postsaturation oscillations
produced by synchrotron motion.

FIG. 5. Normalized detuning spectra from (a) microscopic particle simulations, (b) numerical solutions to the nonlinear collective
equations, and (c) Jacobi elliptic functions. Here jb0j ¼ 5 × 10−4, which gives saturation at z̄s ¼ 11.

FIG. 6. Evolution of the relative rms detuning bandwidth with
jb0j ¼ 5 × 10−4 for different solutions, including the Gaussian
approximation for the linear regime in Eq. (19).
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With (38), it is straightforward to obtain the value of the
field, bunching, and energy spread at field saturation,

jaðz̄sÞj ¼
ffiffiffi
3

2

r
; jbðz̄sÞj ¼

1

2

ffiffiffi
3

2

r
; σðz̄sÞ ¼

ffiffiffi
3

p
: ð42Þ

A couple of points are worth mention. First, inspection of
the collective bunching variable in (40) gives an initial
value bð0Þ ¼ ib0=

ffiffiffi
3

p
μ, such that there is slight disagree-

ment between the analytic and numerical solutions in the
early values of a, b, and σ in the lethargy regime, as seen in
Fig. 7. This is due to our choice of initial condition A0

0 for
the Duffing equation, which was made in order that the
Jacobi solutions better match the full solutions in the linear
and saturation regimes. Second, while (40) and (41) are
reasonable models for b and σ at resonance, unlike a,
the description does not accurately generalize b and σ for
arbitrary detuning.

VI. SOLUTIONS FOR b0 = 0, a0 ≠ 0

It is straightforward to apply the same procedure and
obtain solutions to theDuffing equation for anFELamplifier
where the initial bunching can be neglected and the input
field is a0. In this case, α ¼ μ̃Rð3μ̃R þ 2δÞ þ 2δja0j2 and
Y ¼ A0 ¼ 2a0μ

3μþ2δ e
−iϕ0 . For ja0j ≪ 1 the field is then

aðz̄Þ ¼ 2a0μ
3μþ 2δ

cn

�
iμ̃I z̄

				 4

3μ̃R

				 a0μ
3μþ 2δ

				2
�
e−iμ̃Rz̄; ð43Þ

and saturation occurs at

z̄s ¼
1

2μ̃I
ln

�
−
12μ̃Rj3μþ 2δj2

ja0μj2
�
: ð44Þ

VII. CONCLUSIONS

We have shown that the complex radiation field in a 1D
high-gain FEL can be described by a Jacobi elliptic
function or hyperbolic secant through the early nonlinear
regime. The model is derived for arbitrary detuning, which
enables study of the spectral properties of the system as it
saturates. At resonance, the description extends to the
bunching factor and beam energy spread, and provides
an accurate estimate of the saturation length and saturation
power. The presented approach may provide insight into a
more general description that extends into deep saturation
and is time dependent.
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