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Landau damping of coherent modes is strongly dependent on the exact shape of the particle bunches.
One often assumes that the transverse distributions in high-energy hadron colliders can be approximated by
Gaussian distributions, in acceptable agreement with measurements, but known to be only a first
approximation. In this paper, it is investigated how a specific change of the transverse distributions can
cause a loss of Landau damping. A mechanism is introduced where the coherent modes, which are excited
by noise in the machine, act back on the individual particles through wakefields. The impact is modeled as a
narrow diffusion in frequency space, and therefore also in action space due to amplitude dependent
detuning, which leads to a local flattening of the distribution. This distribution evolution corresponds to the
drilling of a borehole in the stability diagram, i.e. a local reduction of the imaginary part of the curve.
Hence, initially stable regions are changed into unstable ones at the real frequencies of the coherent modes.
To mitigate this instability mechanism, one must operate the machine with a stability margin of magnitude
that depends on the noise amplitude and the coherent modes. In this model, the latency is defined as the
time from the start of the noise excitation, on an initially Gaussian distributed bunch, to the bunch
instability. The proposed model is found to agree with results in dedicated latency experiments performed
in the LHC, where bunches eventually went unstable with more than twice the detuning strength required
for the stabilization of a Gaussian distribution.

DOI: 10.1103/PhysRevAccelBeams.23.114401

I. INTRODUCTION

Circular high-energy hadron colliders, such as the Large
Hadron Collider (LHC), depend on Landau damping for
the stabilization of the beams. Landau damping prevents
the self-amplification of coherent modes. The amplitudes
of the discrete modes evolve like expð−i2πQcohTÞ, where
Qcoh is the complex coherent tune and T is the turn number.
Hence, if ImfQcohg > 0, the mode will grow exponentially.
A necessary requirement for Landau damping is that
the individual particles must have a spectrum of particle
tunes Q that contain the tune of the unstable mode. In
the weak head-tail approximation the effect of Landau
damping can be considered by the stability diagram [1]

−1
ΔQcoh;j

¼
Z

∞

0

dJx

Z
∞

0

dJy
Jj

dΨeqðJx;JyÞ
dJj

Q −QjðJx; JyÞ þ iϵ
; ð1Þ

where ΔQcoh;j would be the complex coherent tune shift in
the transverse plane j, if there was no tune spread
QjðJx; JyÞ. Due to the tune spread, the coherent tune
changes to Qþ iϵ≡QLD, Q ∈ R. In the limit ϵ → 0,
the left-hand side gives the modified limit of stability on the
coherent tune shift. Note that the tunes Q and the related
(angular) frequencies ω≡ 2πfrevQ≡ ωrevQ will be
referred to interchangeably throughout this paper.
Instabilitieswere observed in theLHC in conditionswhere

Eq. (1) predicts stability with a margin of approximately a
factor 2 [2]. The uncertainty on the tune spread [3,4] and the
coherent tune shift [5] are not sufficient to explain this
discrepancy. The cause may therefore be found in the
description of the beam distribution. In addition, the obser-
vations of instabilities exhibited latencies ranging from a
few to tens of minutes [2]. In an experiment described in
Sec. V C [6,7], the role of an external source of noise in the
latent instability mechanism was confirmed. Consequently,
we seek to study and explain the possible mechanisms that
systematically drive the evolution of the transverse distribu-
tion toward something non-Gaussian, and the corresponding
possible loss of Landau damping [8,9].
Loss of Landau damping due to a change of the bunch

distribution is assumed to primarily be driven by stochastic
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processes that can be modeled as a diffusion. The prob-
lematic diffusion cannot be uniform, but must be peaked at
a critical frequency: the frequency of a mode that requires
stabilization by Landau damping. The focus of this paper is
a mechanism driven by decoherence, in which the energy
from the coherent modes is transferred to the betatron
motion of the resonant individual particles through wake-
fields. Other mechanisms can cause a similar frequency
dependent diffusion, but will not systematically be peaked
at a critical frequency. If the modes are stable, the energy
they carry is typically assumed to be infinitesimal. However,
since the beam is excited by external noise sources, e.g., the
ground motion, the power converter ripples, or the trans-
verse feedback system, the modes will be excited to finite
amplitudes and carry a non-negligible energy. By trans-
ferring this energy to the resonant particles, the reserve of
Landau damping will be depleted over time.

II. NOISE EXCITED WAKEFIELDS

In a collision-free Hamiltonian system, Liouville’s
theorem states that the distribution function Ψ is constant
along any trajectory of the system in phase space [10].
For non-colliding particles under the influence of the
Hamiltonian H, the Liouville theorem can be stated
mathematically by the Vlasov equation [11–15]

dΨ
dt

¼ ∂Ψ
∂t þ ½Ψ;H� ¼ 0; ð2Þ

where the square brackets are the Poisson brackets.
The impact of noise excited wakefields will be derived

from the Vlasov equation with the perturbed one-turn
Hamiltonian given by

H ¼ H0 þ ϵH1 ¼ H0 þ ϵHwake þ ϵHnoise; ð3Þ

consisting of an equilibrium Hamiltonian H0, which
governs the unperturbed motion over one turn around
the synchrotron, and perturbationsHwake andHnoise, which
model the assumed weak wakefields and external noise,
respectively. The artificial tag ϵ denotes the size of each
term, OðϵnÞ ≫ Oðϵnþ1Þ, which is useful in grouping
terms of equal order. In the end, ϵ will be set to 1.
The perturbation representing the impact of the wake-
fields, Hwake, models the collective wake force from the
full ensemble of particles, as was first suggested by
A. Vlasov [11]. The short-range interactions between
individual particles are in this manner neglected, as
required by the Vlasov equation. Such perturbations to
the Hamiltonian can be constructed based on the dipolar
wake potentials within the ultrarelativistic approximation,
as have been done in [12–17]. In this paper, the perturbation
Hwake is assumed to only represent the transverse kicks
from weak dipolar wakefields.

The distribution can similarly be expanded as

Ψ ¼ Ψ0 þ ϵΨ1 þ ϵ2Ψ2; ð4Þ

consisting of a centered initial distribution Ψ0, which drives
no dipolar wakefields, a quickly oscillating perturbation Ψ1,
and a second order perturbationΨ2, which is assumed to not
drive dipolar wakefields.
The Vlasov equation can be organized by order as

∂Ψ0

∂t þ ½Ψ0;H0� ¼ 0; ð5aÞ

∂Ψ1

∂t þ ½Ψ1;H0� ¼ −½Ψ0;Hwake� − ½Ψ0;Hnoise�; ð5bÞ

∂Ψ2

∂t þ ½Ψ2;H0� ¼ −½Ψ1;Hwake� − ½Ψ1;Hnoise�: ð5cÞ

The leading order distribution termΨ0 is not affected by the
perturbations. The four driving terms on the right-hand side
(rhs) must be considered in detail: (i) The first driving term
on the rhs of Eq. (5b) is the excitation of the perturbation
due to wakefields, often referred to as the linearized Vlasov
equation. Assuming no tune spread or noise, the linearized
Vlasov equation will be solved to get the wakefield driven
eigenmodes with complex eigenfrequencies ωm in
Sec. II B. Due to the tune spread, the discrete mode mixes
with the incoherent spectrum, and the complex eigenfre-
quencies are changed to Ωm. If ImfΩmg > 0, the mode is
already unstable. The interesting case in this paper is
ImfΩmg < 0, for which Ωm will be found in Sec. II C;
(ii) The second driving term on the rhs of Eq. (5b) models
the excitation of the perturbation Ψ1 by the noise. How
much the external noise excites the modes will be discussed
in Sec. II D. Due to the noise, the amplitudes of the
perturbations will no longer be infinitesimal, even if the
mode is stable, and one must consider the driving terms in
Eq. (5c); (iii) The first term on the rhs of Eq. (5c) models
the effect of the noise excited wakefields on the incoherent
particles, found in Sec. II E to lead to a slow and narrow
diffusion in frequency space. This is the main topic of this
paper; (iv) The second term on the rhs of Eq. (5c) models
the direct noise driven diffusion. This terms was studied
in [9] and found to not be critical in loosing Landau damping.
The combined effect is a slow, yet steady, evolution of the
equilibrium distribution Ψeq ¼ Ψ0 þ ϵ2Ψ2, which in critical
configurations will lead to an instability by loss of Landau
damping, after a latency that is estimated in Sec. II F.

A. Single-particle dynamics

The individual particles in a bunch will be described by
their normalized canonical coordinates in either transverse
plane [18]
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y ¼ Yffiffiffiffiffiffiffi
βε0

p ¼
ffiffiffiffiffi
2J

p
cosðϕÞ;

p ¼ 1ffiffiffiffiffiffiffi
βε0

p
�
αY þ β

dY
ds

�
¼ −

ffiffiffiffiffi
2J

p
sinðϕÞ; ð6Þ

where Y is the offset from the design orbit, s is the
longitudinal coordinate along the accelerator, α and β
are the Twiss parameters, ε0 is the initial geometrical beam
emittance, and ϕ is the canonical conjugate of J, which is
the normalized absolute particle action, given in units of ε0.
In the case when ϕ ¼ ϕ0 þ ωt, where ω is the constant

incoherent betatron frequency, and the particle receives
impulses ΔpðtÞ, the perturbed Hamiltonian is

H ¼ ωJ − yΔp ¼ ω
y2 þ p2

2
− yΔp; ð7Þ

such that Hamilton’s equations give

ÿþ ω2y ¼ ωΔp: ð8Þ
For Landau damping to exist, there must be a frequency

spread within the bunch. Usually, this is achieved by
making the frequency of single particles depend on
their transverse actions using Landau octupoles [19].
Throughout this paper, a linear dependence of the trans-
verse frequencies will be considered

ωxðJx; JyÞ ¼ ωx0 þ ãxJx þ b̃xJy;

ωyðJx; JyÞ ¼ ωy0 þ b̃yJx þ ãyJy: ð9Þ

This is more commonly discussed as a tune spread

QxðJx; JyÞ ¼ Qx0 þ axJx þ bxJy;

QyðJx; JyÞ ¼ Qy0 þ byJx þ ayJy: ð10Þ

Typically, the prefactors aj and bj are different for the
different planes and beams. That is not relevant in this
derivation, and the subscripts will be omitted from here on,
implying ax ¼ ay ¼ a and bx ¼ by ¼ b.
The longitudinal coordinates of a particle, when above

transition, will be given as [18]

z ¼ ffiffiffiffiffiffiffiffiffiffiffi
2Izβz

p
cosðϕz0 þ ωstÞ;

Δp
p0

¼ δ ¼
ffiffiffiffiffiffiffi
2Iz
βz

s
sinðϕz0 þ ωstÞ; ð11Þ

where z ¼ s − s0ðtÞ is the longitudinal position relative to
the synchronous particle, Iz is the longitudinal non-
normalized action, and ωs is the synchrotron frequency,
which is assumed to be small.
If there is a nonzero linear chromaticity Q0 ¼ ω0=ωrev,

the transverse betatron frequencies will depend on the
relative momentum mismatch as

ω0 → ω0 þ ω0δ: ð12Þ

Thus, the frequency of the betatron oscillation is oscillating
as well. In the limit of small ωs, it can be shown that the
single-particle motion, starting at ϕ0 ¼ 0 and ϕz0 ¼ −π=2
for ease of notation, can be described by a Fourier series

cos½ϕðtÞ� ¼ cos

�
ω0tþ

Z
t

0

ω0δdt
�

¼
X∞
n¼−∞

Jn

�
ω0 ffiffiffiffiffiffiffiffiffiffiffiffiffi

2Iz=βz
p
ωs

�
cos½ðω0þnωsÞt�; ð13Þ

where Jnð·Þ are the Bessel functions of the first kind, acting
as coefficients of the various synchrotron sidebands.

B. Wakefield eigenmodes—ωm

It is common to assess beam stability by neglecting noise
and assuming weak wakefield driven perturbations, in
which case Eq. (5) becomes the linearized Vlasov equation.
The dipolar wake force is only dependent on z, not δ. It is
common to model it as one effective kick Pcohðz; tÞ per
turn. One can solve the Vlasov equation with a normal
mode analysis, assuming that the distribution perturbation
in either transverse plane can be written as a sum of
orthogonal modes [14,15]

Ψ1 ¼
X
m

ΔΨmðJ;ϕ; Iz;ϕz; tÞ

¼
X
m

fmðJ;ϕ; IzÞe−iϕmðt;ϕz;zÞ; ð14Þ

with phases

ϕmðt;ϕz; zÞ ¼ ϕm0 þ ðωm þ lmωsÞt − lmϕz −
zω0

ωsβz
: ð15Þ

Here, ωm ¼ ω0 þ Δωm is the complex frequency of mode
m ≠ 0, Δωm is the complex frequency shift generated by
the wakefields, lm is the angular mode number, ω0 is the
bare betatron frequency of the synchronous particle, and
the last term is the headtail phase factor. Here, it has been
assumed that a mode consists of a single angular spatial
frequency. The mode number m is an iterative index.
The individual particles are oscillating in longitudinal

phase space, given by Eq. (11). The phase of the coherent
mode at the location of an individual particle is

ϕΔmðtÞ ¼ ðϕm0 − lmϕz0Þ þ ωmt −
zðtÞω0

ωsβz
; ð16Þ

where the synchrotron frequency has been canceled. This
phase evolves with time equally to the transverse phase of
the single particle in Eq. (13), illustrating that the coherent
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mode in fact consists of the motion of synchronized
individual particles.
The average transverse complex offset of the distribution

in the y-plane, following the longitudinal motion of the
single particles, can be written in terms of normalized, fixed
eigenfunctions mmðIz;ϕzÞ with time dependent amplitudes
χmðtÞ as

χmðtÞmmðIz;ϕzÞ¼
Z

∞

0

dJ
Z

2π

0

dϕðyþ ipÞΔΨmðϕzþωstÞ:

ð17Þ

The normalization of mm is done over the initial distribu-
tion [20]

hmmmmi ¼
Z

∞

0

dIz

Z
2π

0

dϕzΨ0ðIz;ϕzÞjmmðIz;ϕzÞj2 ¼ 1;

ð18Þ
where the horizontal line implies a complex conjugation.
The evolution of these modes with time is governed by

the following equation of motion

χ̈mmm þ ω2
mχmmm ¼ 0: ð19Þ

The eigenmodesmm and eigenfrequencies ωm can be found
with numerical Vlasov solvers, such as DELPHI [14], or
circulant matrix solvers, such as BimBim [8].
The wake impulse of mode m can be found by moving

the impedance dependent terms to the rhs as

χ̈mmm þ ω2
0χmmm ¼ ðω2

0 − ω2
mÞχmmm

¼ ω0PmðIz;ϕz; tÞ: ð20Þ
To drive modes of shape mmðIz;ϕzÞ, with a discrete
frequency shift Δωm, an effective wake kick Pm can be
found that is proportional to the mode mm. It can be
evaluated as the average kick on particles starting at
ðIz;ϕzÞ, over the synchrotron motion

PmðIz;ϕz; tÞ ¼ hPcoh½zðt0Þ; t0�eiϕΔmðt0Þit0e−iϕΔmðtÞ; ð21Þ
where the angle brackets signify an average over the
subscripted parameter.

C. Damped eigenmodes—Ωm

Whether a mode is stabilized by Landau damping or not,
is typically assessed with the mapping given by Eq. (1).
The equation, which is valid only in the weak head-tail
approximation, can be written in terms of frequencies as

−1
Δωmj

¼
Z∞
0

Z∞
0

dJ2
Jj

dΨðJx; JyÞ
dJj

ΔΩmj − ΔωjðJx; JyÞ
; ð22Þ

where Δωmj ∈ C, is the coherent frequency shift without a
frequency spread, Δωj ¼ ωj − ω0j ∈ R is the frequency of
an individual particle with actions ðJx; JyÞ, relative to the
bare betatron frequency, and ΔΩmj ∈ C is the coherent
damped frequency shift. The subscript j, denoting the
plane, will be omitted in the following. The stability
diagram is calculated as Δωm ¼ ΔωSD in the limit
ImfΔΩmg → 0þ. If one desires the rise time τm of a
mode m that is outside/above the stability diagram, this
can be found as τm ¼ 1=ImfΩmg > 0 [21].
Obtaining the damping time of a mode m that is inside/

below the stability diagram, as is of interest in this paper, is
a greater challenge. The mapping in Eq. (22) has a hole in
its domain inside the stability diagram. Van Kampen has
addressed this issue in plasma physics, and we will build on
his results [22]. Inside the stability diagram, there will exist
a continuous spectrum in addition to the discrete modes.
However, if the continuous motion is damped faster than
the discrete modes, an arbitrary initial distribution may
after a short transient time behave like a superposition of
damped discrete modes. In the following, we assume that
the beam motion can be described sufficiently accurately
with a single damped mode. This assumption requires that
the continuous spectrum is damped faster than the discrete
modes [23]. It will be tested with numerical simulations.
An algorithm is needed to extend the mapping in

Eq. (22) inside the stability diagram. The challenge is
illustrated in Fig. 1: Find the ΔΩm that corresponds to
Δωm. Phrased differently, find an expression relating
Mcoh ¼ Δωm − ΔωSD and MLD ¼ ΔΩm − ΔΩSD, the mar-
gins to the free and damped mode frequencies, for a mode
that is barely damped. The free marginMcoh will be chosen
to be purely imaginary.
To be physical, the damped frequency shift ΔΩm should

change continuously through the artificial discontinuity of
the mapping at zero growth rate. If there is no frequency
spread, there is no hole in the mapping, and

FIG. 1. Illustration of the problem of finding the damped
frequency ΔΩm corresponding to the undamped frequency
Δωm that is inside the stability limit in blue, commonly referred
to as the stability diagram.
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−1
Δωm

¼ −1
ΔΩm

⇒ MLD ¼ Mcoh: ð23Þ

When including a frequency spread, one can do a Taylor
expansion, assuming jMcohj≪ jΔωSDj and jMLDj≪ jΔΩSDj.
The left-hand side (lhs) becomes

−1
Δωm

¼ −1
ΔωSD þMcoh

¼ −1
ΔωSD

�
1 −

Mcoh

ΔωSD

�
; ð24Þ

where the higher order terms of Mcoh=ΔωSD have been
omitted. Doing the same for the integrand on the rhs gives

1

ΔΩSDðJx; JyÞ þMLD
¼ 1

ΔΩSDðJx; JyÞ
−

MLD

ΔΩSDðJx; JyÞ2
;

ð25Þ

where ΔΩSDðJx; JyÞ ¼ ΩSD − ωðJx; JyÞ. After integrating,
the first term becomes −1=ΔωSD, the first term in Eq. (24).
Next, assume that the mean squared will be of the same order
as the squared mean, h1=ΔΩ2

SDi ∼ h1=ΔΩSDi2. Thus, the
second terms in Eqs. (24) and (25) gives

Mcoh

Δω2
SD

¼ 1

α

MLD

Δω2
SD

⇒ MLD ¼ αMcoh; ð26Þ

where α is a correction factor, which is 1 without a frequency
spread as in Eq. (23). Based on this derivation, one cannot
determinewhat α is with detuning, but one can assume that it
is close to 1.
Since the mapping in Eq. (22) works for positive growth

rates, one can calculate α in this domain as

α ≈
∂MLD

∂Mcoh
¼ lim

ΔΩm→ΔΩSD

ΔΩm − ΔΩSD

Δωm − ΔωSD
; ð27Þ

and assume that α varies negligibly for small negative
growth rates. In other words, one assumes that MLD is a
smooth function of Mcoh, in addition to being continuous.
The complex α, for a Gaussian distribution, is displayed in
Fig. 2. For large real frequency shifts, one finds α → 1, as

expected. Equation (26) can be considered a correction to
the zeroth order expression in Eq. (23). This expression
works well for small ImfMcohg > 0. Our postulate is that it
also works for small ImfMcohg < 0, inside the stability
diagram. This is tested numerically in Sec. IVA.

D. Noise excited eigenmodes

The particle beam in an accelerator is continuously
excited by external noise sources. The noise has been
neglected in the derivation so far. It can be modeled as an
impulse ξ̃ðtÞ of zero mean, hξ̃ðtÞit ¼ 0, which can be
decomposed as

ξ̃ðtÞ ¼
X
i

ξiðtcÞΞiðzÞ; ð28Þ

where ΞiðzÞ are orthogonal functions of the shape of the
noise kick along the bunch, normalized over Ψ0, and ξiðtcÞ
gives the amplitude of that noise component.
The least stable modes will be excited by the noise. By

adding a noise term to the rhs of Eq. (19), using the damped
frequency Ωm, multiplying by mm, and taking the average
over the longitudinal distribution, one finds

χ̈m þ Ω2
mχm ¼ Ωm

X
i

hmmΞiiξi: ð29Þ

The excitation per noise component is proportional to the
modes’ noise moments ηmi ∈ R, defined as

ηmi ¼ jhmmΞiij: ð30Þ

The spectrum of the mode amplitudes can be found in the
standard way by Fourier transforming Eq. (29)

F ðχmÞ ¼
Ωm

P
ihmmΞiiF ðξiÞ

RefΩ2
mg − ω2 þ iImfΩ2

mg
: ð31Þ

This derivation has modeled the ensemble of oscillators
making up the mode as a single damped oscillator with
frequency found in Sec. II C. The approximation is valu-
able, as it allows the analytical latency estimate below in
Sec. II F. On the other hand, due to the frequency spread of
the individual harmonic oscillators, the frequencies could
also be mapped with Eq. (22). That corresponds to a change
of ω → ωSD and Ωm → ωm in Eq. (31).
The noise in the LHC is of sufficiently low frequency to

change negligibly over the bunch length of 1 ns [24,25].
Therefore, the only noise moment of interest, will be the
rigid-bunch (dipolar) moment of the modes ηm0 ¼ jhmmij.
Dipolar moments can be calculated analytically, e.g. for an
airbag bunch using Eq. (6.186) in [17]. However, calculat-
ing the dipolar moments for a Gaussian bunch that is
perturbed by the transverse feedback system and wake-
fields will here be done numerically with BimBim. In an

FIG. 2. Stability diagram and α given by Eq. (27), in com-
parison to the estimate α ¼ 1. The configuration corresponds to
linear detuning coefficients a ¼ 1 × 10−4 and b ¼ −0.7a.
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LHC like configuration, but without transverse feedback,
the dipole moments of the prevalent modes are presented as
a function of the linear chromaticity in Fig. 3. At nonzero
chromaticity, the dipolar moment of the angular headtail
modes (lm ≠ 0) is nonzero, and can thus be excited by a
dipolar noise. These are the most problematic modes in the
LHC as of 2018, since the transverse feedback can stabilize
the dipolar modes efficiently.
The introductionof crab cavities in an acceleratorwill intro-

duce crab amplitude noise proportional to Ξ1 ¼ z=σz [26].
Headtail modes can have a significant noise moment ηm1

with this type of noise, already at zero chromaticity.
In the following, we will study the case of white

dipolar noise, acceptable over the frequency span of a
single bunch. White noise can be characterized by
hξðtÞξðtþ t0Þit ¼ σ2δDðt0Þ, where δDð·Þ is the Dirac delta
distribution. The impact of the noise on one bunch can be
combined into one discrete kick per turn with variance
σ2ext ¼ τσ2, where τ ¼ 1=frev is the revolution period of the
machine. Thus, the power spectral density of the noise
acting on a bunch is effectively given by

SξðωÞ ¼ jF ðξÞj2 ¼
8<
:

σ2ext
τ

; ω ∈
�
0;
ωrev

2

�
0; otherwise

: ð32Þ

E. Wakefield driven diffusion

The noise and wakefields do not only affect the coherent
modes, but also the individual particles. Describing the
individual particles by their amplitudes y and frequencies
ωðJx; JyÞ, theirmotion in one transverse plane is governed by

ÿþ ω2y ¼ ωξðtÞ þ ωPwake

¼ ωξðtÞ þ
X
m

ω

ω0

ðω2
0 − ω2

mÞχmmm: ð33Þ

The first term on the lhsmodels the direct impact of the noise.
This term was studied in detail in [9] and found to not be
detrimental for stability in the LHC. Thus, it cannot explain
the measurements of latent instabilities. The second term
is themain focus in this paper,modeling the indirect impact of
the noise through the wakefields. Here, the first term will be
neglected, and it will be shown that this is an acceptable
approximation, since the second term will dominate the
diffusion.
To better understand the single-particle dynamics driven

by the stochastic force in Eq. (33), it is modeled by a
perturbed Hamiltonian as in Eq. (3). Focusing only on the
complex effective wake force, the perturbation is given by

ϵH1 ¼ −Refðyþ ipÞPwakeg; ð34Þ

which returns the standard perturbation −yPwake when
Pwake ∈ R [14–17]. The change of the quickly varying
phases due to the perturbation is negligible, while the
change of the action is by Hamilton’s equations only
caused by the perturbation as

_J ¼ −
∂H
∂ϕ ¼ −

ffiffiffiffiffi
2J

p
Refie−iϕPwakeg: ð35Þ

This requires that H0 only depends on the actions, not the
phases of the particles.
If the stochastic forces are sufficiently weak to accurately

be modeled as a perturbation, they drive a diffusion of
the individual particles and thereby the equilibrium dis-
tribution Ψeq ¼ Ψ0 þ ϵ2Ψ2. This diffusion can be modeled
by [27,28]

∂Ψeq

∂t ¼ ∂
∂J

�
JDwake

∂Ψeq

∂J
�
; ð36Þ

Dwake ¼ lim
T→∞

1

T

Z
t0þT

t0

dt
Z

t0þT

t0

ds
h_JðtÞ _JðsÞiϕ

2J
: ð37Þ

In the interesting regime, the modes are uncoupled.
Therefore, the force from the different modes have zero
expected correlation, and the diffusion coefficient can be
given as

Dwake ¼
1

2

X
m

SPm
½ωðJx; JyÞ; Iz�; ð38Þ

where SPm
ðω; IzÞ is the power spectral density of the wake

force due to modem on a particle, calculated by combining
Eqs. (31)–(33). Since the effective wake force has the same
headtail phase shift as the individual particles, these phases
will in fact cancel.
In general, the diffusion coefficient in Eq. (38) depends on

the longitudinal action Iz, in addition to the transverse
actions, sinceSPm

∝ hmmmmiϕz
. Because only the transverse

FIG. 3. Largest dipole moments for modes at various side-
bands, with various chromaticities and zero transverse feedback.
The values have been calculated numerically with BimBim,
in the LHC for the experiment described in Sec. V C.
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diffusion is of concern, and the longitudinal distribution is
expected to not evolve, the average over Iz can be taken,
for which the normalization of mm in Eq. (18) is of use.
The diffusion coefficient, only dependent on the transverse
single-particle frequency ωðJx; JyÞ, can be written as

DwakeðωÞ ¼
X
m

Dm
maxBðωÞC; ð39aÞ

Dm
max ¼

σ2extη
2
m0jΔωmj2

2τImfΩmg2
; ð39bÞ

BðωÞ ¼ ImfΩ2
mg2

ðRefΩ2
mg − ω2Þ2 þ ImfΩ2

mg2
; ð39cÞ

C ¼
����1þ Δωm

2ω0

����2 jΩmj2
RefΩmg2

; ð39dÞ

where the noise has been assumed to be dipolar. In the
relevant limit of small wake driven frequency shifts
Δωm;ΔΩm ≪ ω0, one can ignore terms proportional to
the frequency shifts of squared or higher power, and get

BðωÞ ¼ ImfΩmg2
ðRefΩmg − ωÞ2 þ ImfΩmg2

;

C ¼ 1:

The B function, illustrated in Fig. 4, expresses the depend-
ence of the diffusion coefficient on the single-particle
frequency ω. It has a maximum value of 1 and half width
at half maximum of Δω ¼ jImfΩmgj. The C function
contains the higher-order terms, and will typically be close
to 1. To express the diffusion coefficient as a function of the
tune, one writes ω ¼ ωrevQ. Every factor ωrev will cancel.
Going from diffusion in 1 transverse plane (1D) to 2

transverse planes (2D) is elementary. The noise is already
assumed to be centered, hξðtÞit ¼ 0. By further assuming
no correlation between the horizontal and vertical noise,
and no horizontal wakefields from a vertical offset, there is
no cross plane diffusion. Hence, the wakefield driven
diffusion equation in 2D is

∂Ψ
∂t ¼ ∂

∂Jx
�
JxDxx

∂Ψ
∂Jx

�
þ ∂
∂Jy

�
JyDyy

∂Ψ
∂Jy

�
;

DjjðJx; JyÞ ¼ Dwakej½ωrevQjðJx; JyÞ�; ð40Þ

where Dwakej, given in Eq. (39), includes the noise and
details of the modes in the transverse plane j. Since Eq. (40)
is linear, one can to first order simply add other types of
diffusion, such as the direct diffusion driven by the external
noise, diffusion due to incoherent noise, or diffusion due to
chaotic regions in phase space, most prevalent at high
actions.

F. Instability latency

The diffusion derived in Sec. II E will locally flatten the
distribution around the actions resonantwith the frequency of
the least stable mode. Since the derivative of the distribution
appears in the dispersion integral in Eq. (22), a change of the
stability diagram is expected. In general, the diffusion
modeled by Eq. (37) requires a numerical technique to be
solved accurately, as will be done in Sec. III. Nevertheless,
the latency can be calculated analytically under certain
assumptions, as will be done here. For ease of notation,
the complex frequencies will, in this subsection only, be
written with an alternative notation as

ω ¼ Refωg þ iImfωg ¼ ω̃þ iγ;

Ω ¼ RefΩg þ iImfΩg ¼ Ω̃þ iΓ;

using the subscripts already introduced in Fig. 1.
Furthermore, only horizontal noise, and thus diffusion, will
be considered, and it is assumed that only one dominant
mode drives the diffusion.
In 1D, the stability diagram can be calculated as [29]

lim
ϵ→0þ

Z
∞

−∞

fðxÞdx
gðxÞþ iϵ

¼ P
Z

∞

−∞

fðxÞdx
gðxÞ − iπ

Z
∞

−∞
fðxÞδD½gðxÞ�dx

¼ P
Z

∞

−∞

fðxÞdx
gðxÞ − iπ

X
xr s:t:

gðxrÞ¼0

fðxrÞ
jg0ðxrÞj

; ð41Þ

where fðxÞ; gðxÞ ∈ R, P denotes the principal value,
g0ðxÞ ¼ ∂xgðxÞ, and the sum is over all zeros xr of the
function gðxÞ.
The penultimate goal of this section is to calculate the

imaginary part of the stability diagram, γSDðω̃mÞ ¼ γSDr,
at the real frequency ω̃m of the least stable mode. With a
2D frequency spread, it is

γSDr
jΔωSDrj2

¼−π
Z∞
0

Z∞
0

dJ2JxΨ0δD½Ω̃SDr−ωðJx;JyÞ�; ð42Þ

where Ψ0 ¼ ∂Ψ=∂JxjðJx;JyÞ. Consider linear detuning, as
given by Eq. (9). Assuming that ã is nonzero, there will for

FIG. 4. Shape of diffusion coefficient in frequency space due to
a single Landau stabilized mode, given by Eq. (39c). The half
width of the half maximum is equal to jImfΩmgj, the damping
rate of the mode.
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each vertical action be only one resonating horizontal
action Jxr, defined by

ΔΩ̃SDr ¼ ãJxrðJyÞ þ b̃Jy: ð43Þ

Furthermore, in the limit of large relative real tune shifts
jΔω̃SDrj ≫ jγSDrj, which is true for the least stable modes
in the LHC, and assuming that the real part changes
negligibly, sinceΨ0 only will change close to the resonance,
the imaginary part can be approximated by

γSDr
jΔω̃SDrj2

¼ −
π

jãj
Z∞
0

Z∞
0

dJ2JxΨ0δD½Jx − JxrðJyÞ�: ð44Þ

The imaginary part of the stability diagram, at the critical
frequency, is under these assumptions proportional to the
derivative of the distribution at the resonant actions. Thus,
the local flattening of the distribution will lead to a
reduction of γSDr, which can be illustrated as the drilling
of a borehole in the stability diagram at this critical
frequency. See a visual illustration of this process in
Fig. 8. If this process carries on for long enough unin-
terrupted, it can lead to a loss of Landau damping as
γSDr → γþm. Note that in the limit of small relative real tune
shifts, jΔω̃SDrj ≪ jγSDrj, γSDr would be proportional to the
inverse of the rhs of Eq. (44), and a local flattening would
initially lead to an increase of the imaginary part of the
stability diagram. This special case will be investigated in
more detail numerically in Sec. VA.
To evaluate the evolution of γSDr, one must evaluate the

evolution of Ψ0. Taking the action derivative of the
diffusion equation in Eq. (40) gives

∂Ψ0

∂t ¼ ∂2

∂Jx ½JxDxxΨ0�: ð45Þ

It is only the evolution of Ψ0 at the center of the diffusion
coefficient in Fig. 4 that is of interest. However, this
evolution also depends on the diffusion close to it. To
evaluate the macrodiffusion, the finite difference of the rhs
of Eq. (45) has been taken at fJxr −WJ; Jxr; Jxr þWJg,
where WJ ¼ jΓm=ãj is the half width at half maximum in
the horizontal action coordinate. By assuming a Gaussian
initial distribution in ðy; pÞ phase space, equal to an
exponential distribution in action Ψ0ðJx; JyÞ ¼ e−Jx−Jy ,
Eq. (45) becomes

1

Ψ0
r

∂Ψ0
r

∂t ¼ −
Dmax

W2
J
½Jxr þW2

J − JxrW2
J þOðW3

JÞ�; ð46Þ

where Ψ0
r ¼ Ψ0ðJxrðJyÞ; JyÞ. For the relevant cases, it has

already been stated that jΔω̃SDrj ≫ jγSDrj, and that themode
is close to the stability threshold, γm ≲ γSDr. Furthermore, it
is illustrated in Fig. 2 thatmaxðγSDrÞ ≈ ã, when b̃ is small wrt

to ã. It follows thatWJ ≪ 1. Hence, the first term on the rhs
ofEq. (46)will dominate, exceptwhen Jxr ≈ 0. If b̃ ≠ 0, then
JxrðJyÞ is not constant, and one can calculate an effective
action, as will be done in the following. Therefore, all but the
first term on the rhs will be neglected.
If the rhs of Eq. (46) would have been constant, the

distribution derivative would have evolved as

Ψ0
rðtÞ ¼ Ψ0

rð0Þ exp
�
−
JxrDmax

W2
J

t

�
;

where the flattening would gradually slow down. This is
not correct. As Ψ0

r is flattened, γSDr is reduced while γm
stays put, such that Γm approaches 0 and Dmax=W2

J
increases. This evolution has to be solved self-consistently.
The ultimate goal of this section is to get the latency,

i.e., the time it takes for γSDr → γþm and Γm → 0−.
Combining Eqs. (44) and (46), returns an expression for
the relative time derivative of γSDr

1

γSDr

∂γSDr
∂t ¼ −

Jx;effDmax

W2
J

; ð47aÞ

Jx;eff ¼
R∞
0

R∞
0 dJ2J2xΨ0δD½Jx − JxrðJyÞ�R

∞
0

R
∞
0 dJ2JxΨ0δD½Jx − JxrðJyÞ�

; ð47bÞ

using that only Ψ0 depends on time. Assuming that ã b̃ ≤ 0
and ã ≠ 0, as in the LHC, one gets that

Jx;eff ¼minðJxrÞþ
b

b−a
þ ð b

b−aÞ2
minðJxrÞþ b

b−a
≥

2b
b−a

; ð48Þ

expressed in a and b, as the factors ωrev have canceled out.
The value minðJxrÞ is the minimum horizontal action
of a resonant particle, being equal to maxf0;ΔΩ̃SDr=ãg.
The most critical modes in the LHC have ΔΩ̃SDr < 0.
For a positive octupole current, ã > 0, one then gets
minðJxrÞ ¼ 0. For a negative octupole current, on the other
hand, one gets minðJxrÞ > 0 and the effective action Jx;eff
will be larger.
To get the evolution of Γm, one combines Eqs. (47) and

(26), assuming that α will stay constant. This assumption is
a simplification of the physics, necessary to reach an
analytical expression for the latency, and it is the main
difference in this derivation from what the numerical
solver can model. Since γm is constant, it follows that
∂tΓm ¼ −Refα0g∂tγSDr. Thus, one gets

1

Refα0gγSDr
∂Γm

∂t ¼ Jx;effDmax

W2
J

¼ Jx;effDmax 0Γ2
m0ã

2

Γ4
m

; ð49Þ

where the subscript 0 denotes that the values should be
taken at time t ¼ 0, when the diffusion process starts. Note
that Γm < 0 when stable, such that a positive gradient takes
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it toward 0 and a possible loss of Landau damping.
The latency L can finally be calculated as

L ¼ 1

Jx;effDmax 0Γ2
m0ã

2

Z
0

Γm0

Γ4
mdΓm

Refα0gγm − Γm
; ð50Þ

where the fraction outside the integral is a constant only
dependent on the initial condition.
The latency integral in Eq. (50) can be approximated as

the integrand is always positive and its denominator goes
from Refα0gγSDr0 to Refα0gγm, which should be a small
relative change according to the assumptions. A lower
estimate can be calculated by assuming the initial value,
and a maximum value can be calculated by assuming
γm ¼ 0

ðγSDr0 − γmÞW2
J0

5γSDr0Jx;effDmax 0
≡ LL ≤ L ≤ LL

5

4
: ð51Þ

Inserting the physical quantities gives

LL

τ
¼ γSDr0 − γm

γSDr0

ðγSDr0 − γmÞ4
2.5ã2jΔωmj2

Refα0g4
Jx;effσ2extη2m0

¼ ðImfΔQSDr0 − ΔQcohgÞ5
2.5ImfΔQSDr0ga2jΔQcohj2

Refα0g4
Jx;effσ2extη2m0

: ð52Þ

As τ is the revolution period in the machine, the rhs of
Eq. (52) gives the lower estimate of the latency in number
of turns. Remember thatΔQSDr0 is the point on the stability
diagram at the same real tune as the coherent mode,
RefΔQSDr0g ¼ RefΔQcohg. Furthermore, note that α0 to
zeroth order can be approximated by α0 ¼ 1, as illustrated
in Fig. 2. This expression can serve as a guide in designing
future hadron accelerators to avoid this diffusion driven
instability mechanism.
The latency, according to this analytical calculation, is

proportional to W2
J0=Jx;effDmax 0. In words, the latency is

shorter for a fast diffusion that is narrow in action space. Such
a diffusion will efficiently reduce Ψ0 at the resonant actions.
The latency is also proportional to ðγSDr0 − γmÞ=γSDr0. This
is a measure on how much the stability diagram must be
lowered, for the mode to reach the stability threshold. At first
glance, it may look like the latency is shorter for a larger
detuning coefficient (a), which would be counterintuitive,
but note that a larger a also leads to a more negative Γm,
which in total leads to a longer latency.

III. NUMERICAL METHOD

The diffusion modeled by Eq. (36) must be solved
numerically to be solved accurately. Numerical estimates
are also needed to lift the assumptions, such as the one of
large real tune shifts, taken in Sec. II F. The results that will
be presented in the following have been produced with a
finite volume method (FVM) solver implemented in
PyRADISE [9] (PYTHON radial diffusion and stability evo-
lution). The 2D transverse action space has been discretized

into a 700 × 700 grid, going from 0 to Jmax ¼ 20, which is
equidistant in

ffiffiffi
J

p
. Thus, the minimal grid spacing is

minðΔJÞ ¼ 4 × 10−5, and the grid spacing increases for
larger actions where the distribution is less dense.
It has been assumed that a single mode is dominant,

although this is not a requirement of the code. The diffusion
coefficient has been recalculated at each time step during
the diffusion process, whereupon the diffusion has been
solved with an implicit backward differentiation formula
for the following time step. Using an implicit scheme is
necessary, as the maximum value of the diffusion coef-
ficient will grow as the instability is approached, eventually
rendering an explicit solver numerically unstable.
The FVM solver gives as output the evolving distribu-

tion Ψk after each discrete time step tk. For each of these
distributions, the tune QLD of the damped mode is
calculated using the algorithm in Sec. II C and a numerical
trapezoidal integrator implemented in PySSD [30], which
has been imported in PyRADISE. If ImfQLDg eventually
becomes positive, the bunch will be considered to have
become unstable.

IV. NUMERICAL VERIFICATION

In this section, various aspects of the new theory derived
in Sec. II will be tested with macroparticle simulations run
in COMBI [8,31].

A. Dynamics inside the stability diagram

The response of the beam to an external noise has been
modeled as a single under-dampedharmonic oscillatorwith a
complex frequency, found by Eqs. (26) and (27). To verify
this, simulations have been run with 106 macroparticles.
The simulations were run with an antidamper inducing a
complex tune shift ΔQcoh ¼ −1.47 × 10−4 þ 1.25 × 10−5i.
This mode is stabilized with a ¼ athresh ¼ 5.0 × 10−5 and
b ¼ −0.7a. The real and imaginary tune shifts, in both the
simulations and according to Eqs. (26) and (27), are
presented in Fig. 5. Each point is the average of 10
simulations, from which the standard deviation has been
used as an error bar. The Taylor algorithmworks equallywell
for modes outside and inside the stability diagram. For this
complex tune shift, the approximation α ¼ 1 has a minimal
impact close to athresh, compared to finding α by Eq. (27).
The simulations presented here were initialized with

nonzero initial horizontal amplitudes, to get a measurable
evolution from which to calculate the negative imaginary
frequency. With a nonzero initial offset, some bunches that
were supposed to be barely stabilized by Landau damping,
eventually became unstable. This was caused by a similar
mechanism to the one introduced in this paper, except that
the noise over multiple turns was combined into a single
kick. Furthermore, according to the law of large numbers,
the average ofNp numbers drawn from a centered Gaussian
distribution of spread σx, will itself be drawn from a
Gaussian distribution with zero mean and spread
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σx=
ffiffiffiffiffiffi
Np

p
. Therefore, the imaginary part of the frequency

has been calculated based on the initial damping until the
center of mass reached 4 × 10−3σx, which occurs earlier for
a larger a and smaller initial offset, causing a larger error
bar at these points. The real part of the frequency has been
calculated based on the turn-by-turn position, using an
interpolated fast Fourier transform implemented in the code
HARPY [32]. The real part did not change systematically
with time for each calculation separately.

B. Wakefield driven diffusion

In Sec. II, the impact of the wakefields was modeled as a
diffusion, with diffusion coefficient given by Eq. (39).

Here, we want to verify this expression, by comparing to a
numerical diffusion coefficient

DnumðJ0Þ ¼
hΔJ2i
2TJ0

; ð53Þ

where J0 is the initial action of a particle and ΔJ is the
change of action after T turns. Without loss of generality,
the diffusion coefficient is in this section given in units of
action variance per turn, instead of per second.
The test configuration includes an antidamper

induced tune shift ΔQcoh ¼ −1.47 × 10−3 þ 1.25 × 10−4i,
athresh ¼ 5 × 10−4, a ¼ 1.5athresh, b ¼ −0.7a, Q0 ¼ 0,
and σext ¼ 1 × 10−4. 20 simulations have been run with
Np ¼ 107 particles over T ¼ 104 turns. This many particles
were needed tomake the numerical noise negligible, and this
few turns were necessary to avoid a significant change of the
distribution and thereby the stability. The individual and
average numerical diffusion coefficients are presented in
Fig. 6(a) in comparison to Eq. (39). The numerical diffusion
coefficients in the individual simulations have not reached
the expectancy value, but the average has. The apparent small
difference in the real tune shift of the coherent mode may be

FIG. 5. Tune shift of a coherent mode outside and inside the
stability diagram. The theoretical curves have been calculated with
Eq. (26), using both α ¼ 1 and α given by Eq. (27). The error
margin (solid lines in the bottom) is the standard deviation (std)
of 10 simulations, for each value of a separately.

(a)

(b)

FIG. 6. Numerical diffusion coefficient in 20 simulations and
comparison to theory given by Eq. (39). (a) with external noise of
amplitude σext ¼ 10−4. (b) without external noise.
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attributed to the Taylor technique used to map ΔQcoh to
ΔQLD ¼ −1.06 × 10−3 − 1.987 × 10−4i. The width of the
average numerical diffusion coefficient is slightly larger than
in the new theory, which may cause an underestimation of
the latency, analytically found to be proportional to the
width squared in Eq. (51). Note that the peak wake diffusion
∼3 × 10−7=turn is significantly larger than the direct dif-
fusion 5 × 10−9=turn, as stated in Sec. II E. The direct
diffusion will be reduced even further in the presence of a
transverse feedback [9].
In the simulations presented in this section, we have

used the antidamper, equal to an ideal dipolar impedance,
acting on the centroid of the beam. This way, the coherent
tune shift ΔQcoh can be controlled perfectly. The main
challenge in calculating Dnum is that a bunch consisting
of Np particles normally distributed with zero mean and
spread σx, will not actually have zero mean, due to the law
of large numbers. Therefore, a large number of particles is
needed for the numerical noise to be negligible compared to
the small controlled external noise. With 107 particles, the
numerical diffusion coefficient without external noise is
presented in Fig. 6(b). The maximum of this average is
6% of the maximum with external noise. At least this
many particles is therefore needed in simulations of this
configuration.

C. Diffusion or resonant motion?

It was assumed in Sec. II E that the impact of the
noise excited wakefields was sufficiently stochastic to
be modeled as a diffusion mechanism. Whether the events
in the future and the past are sufficiently independent
was considered by a phase mixing condition in [28].
The autocorrelation function of the underdamped
stochastic harmonic oscillator (USHO) is an exponential
expðImfΩmgjt − t0jÞ, which satisfies the phase mixing con-
dition. The process will in this case converge to a diffusion
process in the limit of small perturbations ϵH1 → 0 and long
times t → ∞. Thus, aminimal requirement is a lower limit on
the time of the process, which should be much longer than
the correlation time of the USHO, L ≫ τm ¼ 1=jImfΩmgj.
For typical modes in the LHC, this requirement implies that
the latency should be L ≫ 10 s to be well modeled as a
diffusion.
Now, consider in more detail the process at hand. To be

modeled as a diffusion, the change of the distribution
during a correlation time of the stochastic excitation must
be limited. Therefore, the integrated change of a particle’s
action due to the wake force within one correlation time,
κwake, must be small compared to the width of the diffusion
coefficient in action space. The power spectral density of
the noise excited wakefields was in Eq. (39) found to have
half width at half maximum of jImfΩmgj. Since the
considered detuning is caused by octupoles, the width in
action space is given byWJ ¼ jImfΩmgj=ã. In the relevant
limit of a small Δωm and a single dominating mode, one

can write Pwake ¼ Pm ¼ −2Δωmχmmm. The mean square
amplitude of an USHO can be given as the product of the
noise power spectral density and τm=4. Thus, the condition
for diffusion can be written as

κwake ≈
ηm0σextjΔωmj
jImfΩmgj3=2

≪
���� ImfΩmg

ã

����: ð54Þ

Due to the definition of σext ∝
ffiffiffi
τ

p
, there is no direct

dependence on the revolution frequency.
In the limit ImfΩmg → 0, the wake force becomes a

deterministic harmonic excitation of a single frequency.
The particles will oscillate around the harmonic frequency
RefΩmg, causing an oscillation of the distribution and
emittance, discussed in more detail in Appendix. The
maximum half width in action of particles oscillating
around the harmonic frequency is Wh, estimated by
Eq. (A14). The period of this oscillation is estimated to
be somewhat larger than the minimal τhmin, given by
Eq. (A12). This deterministic evolution will be negligible
when Wh ≪ WD and τhmin ≫ τm. Both these requirements
and the requirement in Eq. (54) can be summarized by a
condition on a single ratio of relevant parameters

RD ¼ jImfΔΩmgj2.5
afrevσextηm0jΔωmj

≫ 1: ð55Þ

If this condition is met, then the diffusion will dominate
over the resonant motion.
The condition on RD has been estimated by simple

calculations. Simulations have been run to verify this
condition, and to find how large RD needs to be, before
the process is acceptably estimated by a diffusion. The
emittance evolution in 5 different simulations is presented
in Fig. 7(a) and the distribution evolution for the case of
RD ¼ 10 is presented in Fig. 7(b). It was assumed in Sec. II
that the least stable mode could be modeled as an USHO.
To avoid the numerical noise challenges described in
Sec. IV B, such a stochastic oscillator has been imple-
mented in COMBI. There is a great agreement between the
simulations and the diffusion solver PyRADISE for RD ¼ 10.
For small values of RD, the emittance oscillates as in the
Appendix and is clearly dominated by the resonance.
It seems that the evolution is fairly well modeled as a
diffusion starting already at RD ¼ 1. In all the following
results, it has been checked that RD ≫ 1 at the initial
condition.
The result in this section is that the effect of the noise

excited wakefields is a diffusion only if the noise is small
enough. In Sec. IVB, it was found that a large noise was
needed to be stronger than the numerical noise. To model
this mechanism self-consistently with macroparticle simu-
lations, both of these requirements must be met. One should
use a minimum of 107 macroparticles and Oð106Þ turns.
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This is why the analytical diffusion model presented in this
paper is invaluable in evaluating this mechanism.

V. RESULTS

A. Distribution and stability evolution

In this section we will display the change of the distribu-
tion, and corresponding change of the stability diagram, in
two representative configurations with only horizontal noise.
Both cases use athresh¼ 5×10−5, a ¼ 1.5athresh, b ¼ −0.7a,
and ηm0σext ¼ 1 × 10−4. The difference is the coherent tune
shift in absence of Landau damping, ΔQcoh. Note that the
diffusion coefficient in Eq. (39) and analytical latency
estimate in Eq. (50) does not depend on the absolute values
of a and ΔQcoh, only on the ratio between them. This fact is
also illustrated in Fig. 2, as the frequency shifts are given in
units proportional to a.
In the first case, the least stable mode is at

ΔQcoh ¼ −1.47 × 10−4 þ 1.25 × 10−5i. This is the same
configuration as was tested in Sec. IVA. The relative change
of the distribution at the time of the instability is illustrated
in Fig. 8(a). The distribution is locally flattened in the hori-
zontal direction at the resonant actions QðJx; JyÞ ¼ QLDx,
equivalently to the process illustrated in Fig. 7. The local

flattening causes a change of the horizontal stability diagram
that is illustrated in Fig. 8(b). A borehole is drilled in the
stability diagram directly at the frequency of the least stable
mode. The drilling speeds up as the instability is approached,
since ImfQLDxg approaches 0. The vertical stability diagram
in Fig. 8(c) is barely modified in this process.

(a)

(b)

FIG. 7. Evolution of emittance in (a) for different values of RD
given by Eq. (55), and of the distribution in (b) for RD ¼ 10. The
solid lines correspond to macroparticle simulations in COMBI,
while the dotted lines have been calculated with PyRADISE. RD
was changed by changing the external noise amplitude σext and
the number of turns T, while keeping the product Tσ2ext constant.

FIG. 8. Change of distribution in (a) due to diffusion driven
by horizontal wakefields, and corresponding evolution of the hori-
zontal and vertical stability diagrams in (b) and (c), respectively.
The dashed line in (a) marks where QxðJx; JyÞ ¼ QLDx. The cross
atΔQcoh ¼ −1.47 × 10−4 þ 1.25 × 10−5i in (b) marks the tune of
the least stable mode in the horizontal plane. Nomode, nor noise, is
included in the vertical plane.
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In the second case, the least stable mode is at
ΔQcoh ¼ 5.00 × 10−5i. The relative change of the distri-
bution after 10 s and the evolution of stability diagram are
illustrated in Fig. 9. The distribution changes as in the first
case, with the main difference being a shift of the resonant
tune, due to the difference in RefΔQcohg. Instead of the
drilling of a borehole in the stability diagram, the stability
threshold does initially grow, before a loop starts devel-
oping. This loop is difficult to interpret and it causes
challenges for the numerical algorithm used to calculate α
and ΔQLDx. Therefore, the diffusion coefficient has, in the
calculation presented here, been kept constant at the initial
value. Similar evolutions have been calculated with time
evolving diffusion coefficient. With zero real tune shift, it
was derived in Sec. II F that a local flattening at the
resonant actions would initially lead to an increased
stability threshold, which has been verified.
The evolution of ImfΔQLDxg for these two cases is

presented in Fig. 10. In the derivation of the analytical
latency in Sec. II F, it was assumed thatαwould stay constant

at its initial value αð0Þ. This is not correct. As the borehole is
drilled, the curvature of the stability diagram will increase,
leading to a reduction of αðtÞ with time. In addition to the
calculations presented in Figs. 8 and 9, an additional
calculation has been executed of case 1 where α has
artificially been kept constant at its initial value.The latencies
for case 1 in the PyRADISE calculations are 1.65 s with
evolvingαðtÞ and 3.88 swith constantαð0Þ, in comparison to
3.84 s estimated with the analytical theory in Eq. (50). Note
also that even if the stability margin initially increases for
case 2 with RefΔQcohg ¼ 0, it eventually decreases.
Nevertheless, the latency is longer than the 87.0 s that would
have been wrongfully estimated with Eq. (50), which
assumed jRefΔQcohg=ImfΔQcohgj ≫ 1.

B. Detuning margin

Test case 1 in Sec. VA is representative of the type
of modes that typically are the least stable modes in the
LHC. The drilling of a borehole in the stability diagram can
be expected, and this drilling speed increases as the insta-
bility is approached. The latency for the least stable
mode ΔQcoh ¼ −1.47 × 10−4 þ 1.25 × 10−5i, with differ-
ent detuning margins, is presented in Fig. 11. By scaling the
detuning margin by 1 order of magnitude, from 10% to
100%, the latency increases by more than 4 orders of
magnitude.
Note the three different sets of points calculated with

PyRADISE: (i) For the points labeled “αð0Þ”, the factor α has
been kept constant at its initial value, as was assumed in the
analytical latency in Eq. (50). The agreement between these
points and the approximative analytical latency is striking
for a < 2athresh; (ii) The points labeled “αðtÞ” are consid-
ered to best represent the physics at hand, self-consistently
solving for both α and the diffusion coefficient as the
distribution changes. However, for large stability margins,
a > 2athresh, the linear extrapolation of the damped mode
becomes increasingly inaccurate at t ¼ 0. Furthermore,
as the borehole is drilled this deep for this mode,
α ¼ ∂MLD=∂Mcoh is quickly varying due to an increased

FIG. 9. Change of distribution in (a) and evolution of the
horizontal stability diagram in (b), due to diffusion driven by
horizontal wakefields. The dashed line in (a) marks the actions
where QxðJx; JyÞ ¼ QLDx. The cross at ΔQcoh ¼ 5.00 × 10−5i in
(b) marks the tune of the least stable mode.

FIG. 10. Evolution of ImfΔQLDg for two test cases illustrated
in Figs. 8 and 9. The vertical line marks the latency estimated
with Eq. (50) for the calculation represented by the dashed line
(“Case 1, αð0Þ”).
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curvature of the stability diagram. Thus, a small inaccuracy
in the initial RefΔQLDg will cause an unphysical drift of
RefMLDg by use of Eq. (26) for jMcohj ≫ ϵ. This can
prevent the instability in the numerical calculation, by
nonphysically varying the resonant action; (iii) Therefore,
for the points labeled “αðtÞ ∈ R;RefΔQgð0Þ”, the real
tune of the damped mode has been forced constant at the
initial value, while α has been allowed to evolve in time, but
forced to be real. This is considered the best approximation
of the drilling at large detuning margins for this mode.

C. Experiment in the LHC

An experiment has been conducted in the LHC, where up
to 13 proton bunches per beam, with a minimal separation
of 5.25 μs, were accelerated to flat top under nominal
conditions [6,7]. With this injection scheme, all beam-beam
interactions were avoided. While at flat top, subsets of the
bunches were excited by a controllable noise source, acting
equally on all particles per bunch per turn with effectively a
white spectrum over multiple turns. The time from the
noise was turned on until the bunches went unstable was
measured as the instability latency. Only latencies between
1 min and 60 min were acceptable, due to constraints of the
theory and the allotted machine time. A few key parameters
are listed in Table I. The condition for diffusion in Eq. (53)
has been found to be met as RD⪆200 for all investigated
bunches.
The experiment was conducted at flat top with β� ¼ 1 m.

For the corresponding optical functions, the linear detuning
coefficients in the horizontal plane can be calculated for
beam 1 (B1) as

ax ¼ þ543.2 · Ioct ·
εnx0
βrelγrel

;

bx ¼ −383.6 · Ioct ·
εny0
βrelγrel

; ð56Þ

where Ioct is the octupole current, limited to a maximum of
about �570 A, εnj0 is the initial normalized emittance in

plane j, and βrel and γrel are the relativistic factors. For
beam 2 (B2), the prefactors are slightly changed to
531.3 and −383.4.
The latency for a specific bunch depends strongly on the

individual bunch parameters, especially the emittance and
intensity. This can mask the dependence on the machine
parameters. The analytical latency for the worst mode,
given by Eq. (50), is illustrated as a function of the
chromaticity and feedback gain in Fig. 12(a). The second
shortest latency is given in Fig. 12(b), in units of the
shortest latency, hinting at whether a single mode is
sufficient in modeling the latency or not. Latencies below
0.6 s have been marked as if the bunch was already
unstable. Note that the predicted latency varies over more
than 6 orders of magnitude in this limited parameter space,
where neither the octupole current, nor the noise amplitude,
nor the bunch specific parameters have been varied.
The latencies of 8 bunches in B2 in fill 1 have been

investigated in more detail, including the bunch specific
parameters, such as the intensity, emittances, bunch length,
and applied noise amplitude. The comparison between the
experimental latencies, and the latencies calculated with
PyRADISE is given in Fig. 13(a). The first set of bunches
(450-1350) was the first experimental realization of this
mechanism. These bunches were acted on by external noise
in two intervals, and the emittance measurement was by
chance sub-par, detailed below, giving cause for the large
error bars. They went unstable with a ≈ 2athresh, assuming a
Gaussian bunch. The second set of bunches (1950-2850)
was acted on in slightly better conditions, allowing for a
better quantitative comparison to the diffusion model.
The first three of these bunches went unstable with
a ≈ 2.4athresh, assuming a Gaussian bunch. Bunch 2850
did not go unstable during the experiment. The chroma-
ticity was Q0 ¼ 15, and the damping time due to the
feedback was 170 turns. For this configuration, all modes
with positive ImfΔQcohg, and centered maximally

FIG. 11. Latency for a mode of coherent tune
ΔQcoh ¼ −1.47 × 10−4 þ 1.25 × 10−5i, stabilized by octupole
detuning with athresh ¼ 5 × 10−5 and b ¼ −0.7a.

TABLE I. Important parameters during a latency experiment
conducted in the LHC [6,7]. The bunch parameters are averaged
values in, e.g., the horizontal plane of beam 1 (B1H).

Parameter Unit Fill 1 Fills 2 & 3

Energy per proton [TeV] 6.5 6.5
Horizontal tune, Qx [mod 1] 0.275 0.275
Vertical tune, Qy [mod 1] 0.295 0.295
Synchrotron tune, Qs [1] 0.00191 0.00191
Revolution frequency, frev [kHz] 11.2455 11.2455
Total RF voltage [MV] 12 12
Normalized emittance B1Ha ½μm� 1.86 1.91
Normalized emittance B1Va ½μm� 1.14 1.18
Normalized emittance B2Ha ½μm� 0.87 1.37
Normalized emittance B2Va ½μm� 1.48 1.24
Intensity [1011 p=b] 0.91 1.10
Bunch length, 4σs [ns] 1.12 1.07

aMeasured with the beam synchrotron radiation telescope.
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10 sidebands from the bare tune, are displayed in Fig. 13(b).
Since one mode stands out, a single mode should represent
the diffusion well.
The error bars in Fig. 13(a) are large, because the latency

scales quadratically or faster with a set of uncertain
parameters, as given by Eq. (52). The considered most
significant uncertainties are: (i) The emittance measured
with the beam synchrotron radiation telescope (BSRT) was
in 2018 found to have a 10% accuracy [33]. During the
measurement of bunches 450-1350, the emittance measure-
ment of all bunches displayed an unphysical oscillatory drift.
The total uncertainty in the emittance of these bunches has
therefore been estimated to 25%. As the linear detuning
coefficients in Eq. (56) are proportional to the emittance, this
uncertainty affects the knowledge of the stability margin.
Furthermore, the horizontal noise σext is given in units of
beamdivergence, such that σ2extεx is constant. Thus, the larger
emittance corresponds to the upper error bar on the latency.
A10%uncertainty in the emittance causes an uncertainty of a
factor ∼2 on the latency for these detuning margins. It was

found in 2018 that the BSRTon average underestimated the
emittance, favoring the upper error bar [34]; (ii) The noise
amplitude was experimentally known with low accuracy. By
comparing the emittance growth of these bunches in B2with
macroparticle simulations, the noise amplitude has been
scaled by a factor 3.85� 0.30 to σext ∈ ½3.4; 14.3� × 10−4 in
units of the beam divergence, ignoring the uncertainty;
(iii) The gain is considered to be estimated with approx-
imately 10%margin; (iv)The chromaticitywas notmeasured
on the day of the fill presented in Fig. 13. It is therefore only
estimated with accuracy�1. The uncertainty in the feedback
gain and chromaticity causes an uncertainty in ΔQcoh and
ηm0. The shortest and longest latency has been calculated
with Q0 ¼ 15� 1 and g ¼ ð12� 1Þ × 10−3. The uncer-
tainty in gain and chromaticity only causes a small part of
the total error bar on the latency, in comparison to that caused
by the uncertainty in the emittance.
The experiment was repeated in similar conditions, but

with the chromaticity set to Q0 ¼ 5. No instabilities were

(a)

(b)

FIG. 12. Analytical latency of the worst horizontal mode in B1
in the LHC in (a) and second worst mode in (b), for the para-
meter values: normalized emittance εj ¼ 1.4 μm; bunch length
4σs ¼ 1.05 ns; intensity N ¼ 1.1 × 1011 p=b; noise amplitude
σext ¼ 1 × 10−4; octupole current Ioct ¼ 400 A. The feedback
gain g is defined for a system featuring a single kicker, such that
the corresponding damping time in number of turns is 2=g.

(a)

(b)

FIG. 13. Comparison between experiment in the LHC [6,7] and
numerical latency found by PyRADISE solving the diffusion
equation introduced in this paper in (a), for the worst mode
found by BimBim in (b). The error bars in (a) are due to uncertain
measurements of the emittances, chromaticity, feedback gain, and
external noise amplitude during the experiment. Predicted laten-
cies below 1 min are not shown, as the dynamics require more
time to be modeled accurately as a diffusion (see Sec. IV C).
Bunch 2850 did not go unstable before Ioct was reduced
after 52 min.
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reached during the experiment at the initial octupole current.
Furthermore, by reducing Ioct, it was found that the stability
threshold had barely been modified by the noise. This is in
qualitative agreement with the predictions in Fig. 12(a),
where the latency is more than an order of magnitude longer
for g ¼ 0.01 and Q0 ≈ 5, than for g ¼ 0.01 and Q0 ≈ 15.
However, other instability mechanisms have been observed
with low positive chromaticities [35]. They may limit the
range of acceptable chromaticities for the operation of
the LHC.

D. Physics fills in the LHC

This study was mainly motivated by the observations of
instabilities developing when the beam was maintained in a
steady configuration for a few to tens of minutes, with an
octupole current less than twice the required value expected
from linear Vlasov theory, with a Gaussian distribution.
Consequently, the LHC was operated with at least twice as
much octupole current as initially expected to mitigate this
instability [2,36]. The detuning coefficients in normal
operation in 2018 were on average close to the ones in the
experiment described in the previous section,with an average
normalized emittance of 1.9 μm and octupole current
Ioct ¼ 280 A. The noise was measured at approximatively
σext ¼ 6 × 10−5, with the operational gain of g ¼ 0.01 [25].
The predicted latency for the average bunch at Q0 ¼ 15 and
g ¼ 0.01 is 120min, which is slightly larger than the value in
Fig. 12, due to the lower noise amplitude. With a 15% lower
emittance, the expected latency drops to 9.9 min, illustrating
again how sensitive the latency is to the individual bunch
parameters. Similar reductions of the latency occur from an
equal reduction of Ioct or increase of the intensity. We note
that the latencies obtained with the formula in Eq. (50) are
usually overestimated with respect to the numerical esti-
mates. Nevertheless, such latencies seem compatible with
safe operation of the LHC. With this study we therefore
confirm the observed efficiency of the mitigation strategy of
operating with a margin in the octupole current, initially
implemented based on empirical evidence only.

VI. DISCUSSION

The analytical latency and simulated results that has been
presented, assumed that a single mode is dominant. The
ratio of the second shortest latency in B1 in the LHC to
the shortest latency was presented in Fig. 12(b). In the
configurations that has been studied, the shortest latency is
at least an order of magnitude shorter than the second
shortest. In configurations where two modes are relevant,
one of three things can happen: (i) The modes flatten the
distribution at exactly the same frequency, reducing the
latency by maximally a factor 2 for uncoupled modes;
(ii) The modes flatten the distribution at close but different
frequencies, widening and increasing the diffusion, causing
either an increase or decrease of the latency, depending on

the separation in frequency; (iii) The modes flatten the
distribution at well separated frequencies, with no impact
on one another. A case by case study would be required for
exact predictions of the impact of the second worst mode.
In this paper, only the wake driven diffusion has been

considered. It is found to be a strong candidate for the
driver of the instabilities of long latencies observed in
the LHC. Diffusion that can counteract the drilling in the
stability diagram has not been studied in detail here. The
diffusion due to the first term on the rhs of Eq. (33) and due
to intra-beam scattering (IBS) were studied in [37], and
found to only weakly increase the latency in an LHC-like
configuration. The effect of IBS will depend on the ratio
between the latency and the IBS driven emittance doubling
time, which is in the order of days in the LHC at flattop. If
the latency, ignoring the IBS, is similar to the doubling
time, it may be increased indefinitely. However, in such
configurations, the latent instability will not be a problem
for operation of the LHC.

VII. CONCLUSION

Transverse instabilities with latencies from a few to tens
of minutes have been observed in the LHC, both in regular
operation and in dedicated experiments. In this paper, we
have considered the hypothesis that such instabilities are due
to a long-term evolution of the transverse distribution, which
leads to a loss of Landau damping. The mechanism that has
been studied in detail here, is that external sources of noise
excite the beam, which then acts back on itself through
electromagnetic wakefields. The coherent response of the
beam has been modeled as a set of damped harmonic
oscillators, modeling the least stable wakefield driven
modes. The impact of the wakefields on the individual
particles has beenmodeled as a diffusion, which is narrow in
frequency space around the real frequency of the least stable
mode. Thus, the diffusion is also narrow in action space
around the resonant action, causing a local flattening of the
distribution in 2D action space. Numerical calculations with
PyRADISE have shown that the distribution evolution effi-
ciently drills a borehole in the stability diagram at the
frequency of the least stable mode, if the absolute value of
the real tune shift of the coherent mode is large compared to
the imaginary part. This can cause an instability with a
latency. One of the most effective techniques to extend the
latency, and thus mitigate this instability mechanism, is to
operate with a large stability margin. An analytical expres-
sion for the latency has been derived in Eq. (50) under strict
assumptions, and found to consistently be a factor∼2 longer
than the latency found with PyRADISE. The predicted latency
is sensitive to the input, being proportional to the second or
higher power of multiple parameters. Consequently, the
latencies of the configurations considered in this paper vary
by more than 8 orders of magnitude.
The new theory and numerical solver have been

compared with latency experiments performed in the
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LHC [6,7]. The latencies measured in the experiment have
been reproduced, albeit with large error bars, eventually
causing instabilities with more than twice the required
detuning strength for a Gaussian distribution. The latencies
in regular LHC operation are also in agreement with the
new theory. Thus, it can be concluded that the loss of
Landau damping observed in the LHC is most probably
caused by noise excited wakefields driving a diffusion of
individual particles. One important result is the confirma-
tion that the latency is approximately an order of magnitude
longer at an intermediate chromaticity Q0 ≈ 5 with a
feedback driven damping time of 200 turns, than at
Q0 ≈ 15. This constitutes an alternative working point for
the LHC worth considering in view of relaxing intensity
limits that may arise due to this mechanism.
Going forward, there are various aspects of this mecha-

nism that deserve further studies: (i) Improve the modeling
of the beam response, compared to the current under-
damped stochastic harmonic oscillator with frequency
found by a linear extrapolation; (ii) Study the impact of
crab-cavity amplitude noise, which should give a large
noise moment ηm1 to headtail modes; (iii) Perform experi-
ments showing the qualitative effect of the diffusion. The
local flattening in 2D action space will not be resolvable
with beam profile measurements, but the drilling of a
borehole in the stability diagram can be measured through
beam transfer function measurements.
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APPENDIX: HARMONICALLY DRIVEN
DISTRIBUTION EVOLUTION

The body of this paper models damped, wake-driven
modes as under-damped stochastically driven harmonic
oscillators. Due to their stochastic nature, the resulting
force is modeled as a diffusion. However, in the limit
ImfΔΩmg → 0, the force becomes a pure harmonic exci-
tation. In this appendix, we study the resulting distribution
dynamics when a bunch is affected by a harmonic
excitation.
Consider that a harmonic oscillator of angular frequency

ω is harmonically driven by a real impulse Ph cosðωhtÞ,
kicked once per turn, changing the one-turn Hamiltonian in
Eq. (3) to

H ¼ H0 −
ffiffiffiffiffi
2J

p
cosðϕÞfrevPh cosðωhtÞ; ðA1Þ

where H0 models the free motion. In the simple case of no
amplitude detuning, H0 ¼ ωJ, the motion of the harmonic
oscillator will consist of the free and the forced motion, as
due to an ac dipole [38]. The amplitude of the forced
motion is

AðωÞ ¼ ωfrevPh

jω2 − ω2
hj
; ðA2Þ

which is singular for a harmonic oscillator at exactly the
driving frequency.
In an accelerator, the incoherent particle frequency is

typically amplitude dependent, for instance due to Landau
octupoles as given by Eq. (9). Therefore, a particle’s
amplitude will no longer be singular, because the resonance
condition is disrupted as the amplitude grows. For a
harmonic excitation in only one plane, only the amplitude
detuning in that plane requires consideration. Hamilton’s
equations of motion for ϕ and J then reads [10,39]

H ¼ ω0J þ
ã
2
J2 −

ffiffiffiffiffi
2J

p
cosðϕÞfrevPh cosðωhtÞ; ðA3Þ

_ϕ ¼ ω0 þ ãJ −
frevPhffiffiffiffiffi

2J
p cosðϕÞ cosðωhtÞ

¼ ω0 þ ãJ −
frevPh

2
ffiffiffiffiffi
2J

p ½cosðϕþ ωhtÞ þ cosðϕ − ωhtÞ�;

ðA4Þ

_J ¼ −
ffiffiffiffiffi
2J

p
sinðϕÞfrevPh cosðωhtÞ

¼ −
ffiffiffi
J
2

r
frevPh½sinðϕþ ωhtÞ þ sinðϕ − ωhtÞ�: ðA5Þ

The harmonic frequency corresponds to a harmonic action
Jh such that _ϕðJhÞ ¼ ωh. One can find new conserved
properties of the full Hamiltonian [39], but that is not the
current goal. Here, we will study the motion of particles
starting at the harmonic action Jh and any initial phase ϕ0

in terms of the original action corresponding to H0. The
goal is to get an expression for the width of the action
oscillation, and the period of this motion. The terms with
the high angular frequency _ϕþ ωh will not produce a
macroscopic change of action. The terms with the poten-
tially low frequency _ϕ − ωh will have the same sign for an
extended period of time, and can cause a macroscopic
change of action for particles close to the harmonic action
Jh. The beating excitation leads to a slowly oscillating
action evolution of a certain width and period, which will
be estimated in the following by directly solving Eqs. (A4)
and (A5) in multiple limits.
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In the limit of large harmonic excitation,
frevPh=

ffiffiffi
J

p
≫ ãðJ − JhÞ, and neglecting the high-

frequency term, the equations of motion become

_ϕ ¼ ωh −
frevPh

2
ffiffiffiffiffi
2J

p cosðϕ − ωhtÞ; ðA6Þ

_J ¼ −
ffiffiffi
J
2

r
frevPh sinðϕ − ωhtÞ: ðA7Þ

Regardless of the initial phaseϕ0, the phasewill approach its
one stable value at ϕ − ωht ¼ −π=2þ 2πn, where n is an
integer. The corresponding time derivative of the action is
positive. The action will grow until frevPh=

ffiffiffi
J

p
∼ ãðJ − JhÞ.

Alternatively, if the harmonic excitation could be treated
as a weak perturbation, frevPh=

ffiffiffi
J

p
≪ ãðJ − JhÞ, the last

term in Eq. (A4) can be neglected. If one also assumes
small phase offsets jϕ − ωhtj ≪ 1 and small action offsets
jJ − Jhj ≪ Jh, the equations of motion read

_ϕ ¼ ωh þ ãðJ − JhÞ; ðA8Þ

_J ¼ −
ffiffiffiffiffi
Jh
2

r
frevPhðϕ − ωhtÞ: ðA9Þ

These are the equations of motion of a simple harmonic
oscillator, but it is the phase and action that is oscillating.
In the following it is assumed for simplicity, but without
loss of generality, that ã > 0 and that ϕ0 ∈ ð−π; πÞ. It can
be verified by insertion that the equations of motion,
combined with the initial conditions Jð0Þ ¼ Jh and
ϕð0Þ ¼ ϕ0, are solved by

ϕðtÞ ¼ ωhtþ ϕ0 cos

�
2π

t
τhmin

�
; ðA10Þ

JðtÞ ¼ Jh −Whmin sin

�
2π

t
τhmin

�
; ðA11Þ

where the minimal period τhmin and action offset amplitude
Whmin are given by

ðτhminfrevÞ2 ¼
ð2πÞ2ffiffiffiffiffiffiffi
2Jh

p
Phaπ

; ðA12Þ

Whminðϕ0Þ ¼
ð2JhÞ1=4

ffiffiffiffiffiffiffiffi
Phπ

p
2

ffiffiffi
a

p ϕ0

π
; ðA13Þ

where the detuning coefficients have been rewritten with
ã ¼ ωreva. The initial phase is the maximum phase offset,
fulfilling the assumption of small jϕ − ωhtj. The maximum
action offset jJ − Jhj is small if the harmonic excitation is
weak. The action offset amplitude is proportional to ϕ0,
which is assumed small.

The maximum action offset should occur for large
initial phases jϕ0j → π−, for which the approximation
sinðϕ0Þ ¼ ϕ0 in Eq. (A9) is wrong. In this case, both _ϕ
and _J approaches 0 initially and there is almost an
asymptotic motion with an infinite period τh → ∞. This
will, however, be prevented by the last term in Eq. (A4). The
action offset amplitude will, on the other hand, not grow
infinitely. Since jsinðϕ − ωhtÞj ≤ jϕ − ωhtj, the maximum
width in action can be approximated by jWhminðπÞ2=πj as

Wh ¼
ð2JhÞ1=4

ffiffiffiffiffiffi
Ph

pffiffiffiffiffiffi
aπ

p : ðA14Þ

Due to different harmonic periods of different particles,
the corresponding distribution oscillation will decohere
with time.
To test the analytical derivations, numerical tracking

simulations have been run with a ¼ 5 × 10−3 for particles
starting at the harmonic action Jh ¼ 2 with phases ϕ0

uniformly distributed on ½−π; π�. The peak-to-peak action
variation divided by two and the period of the oscillation is
presented in Fig. 14. At small jϕ0j, the expressions in
Eqs. (A12) and (A13) are shown to be correct. At large jϕ0j,
the action offset amplitude approaches Wh given by
Eq. (A14), while the period grows substantially. For large
Ph=aJh, the motion is different, but qualitatively similar.
Note that the largest widths clearly breaks the assumption
Wh ≪ Jh ¼ 2. For a < 0, the general picture is the same,
but the particles oscillate around ϕ − ωht ¼ π instead of 0.

FIG. 14. Peak-to-peak (p-p) action variation amplitude on the
top, and period on the bottom, for particles starting at Jh ¼ 2with
various initial phases ϕ0. The dashed diagonal and horizontal
lines on the top correspond to Eq. (A13) and Eq. (A14),
respectively. The dashed horizontal line on the bottom corre-
sponds to Eq. (A12).
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To study how the harmonic perturbation affects the
bunch distribution, a macroparticle simulation has been
run with Ph ¼ 10−2, a ¼ 5 × 10−3, and Jh ¼ 2, equal to
the curve labeled Ph=aJh ¼ 1 in Fig. 14. The bunch
evolution is presented in Fig. 15. The action oscillation
around Jh ¼ 2 is clear. The full width is close to
2Wh ¼ 2.2, given by Eq. (A14). For this large Wh=Jh,
the amplitude is not symmetric around Jh, but slightly
larger for J > Jh than for J < Jh. The emittance period is
as expected longer than the minimum incoherent action
period, τhmin ¼ 354 turns, given by Eq. (A12). This
process cannot be modeled as a diffusion because it is
deterministic and not stochastic. It may, however, enhance
the diffusion across Jh driven by other stochastic processes.
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