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In this work, we present a comprehensive theoretical description of the Lorentz force in dual-grating
dielectric laser accelerators (DLA). Here we examine the dual-grating DLA under arbitrary illumination
conditions, both single-side and dual-side drive. We improve upon previous descriptions of these forces by
providing a unified description of all possible operating modes of these devices, and classify the modes into
three categories. In particular, we predict the existence of the previously observed “line modes” and a novel
“elliptical mode”, provide an experimental demonstration of this new mode, and suggest a possible
application for it in improving the resolution of attosecond-scale streak cameras. Finally, we examine
several complementary methods of tuning a dual-grating DLA to a desired operating mode—particularly
dual-drive phase rotation and translational offset of the grating teeth.
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I. INTRODUCTION

The dielectric laser accelerator (DLA) is an optical-
frequency linear accelerator that uses the high electric fields
of pulsed lasers to increase acceleration gradients over
conventional radio-frequency (rf) linacs by more than an
order of magnitude [1]. Recently, dual-grating, dual-drive
DLAs [2] have emerged as a useful and flexible DLA
architecture. Through tuning of the particle injection phase
and the dual-drive illumination phase, they can provide
acceleration [2,3], transverse focusing [4], microbunching
[5], and transverse deflection [2,5].
The fields and forces in these DLA structures have been

studied previously, and the resulting equations used to
design electron beam control and confinement schemes
[4–9]. Previous literature has examined the single-sided
plane wave illumination of dual-grating structures in great
detail, as well as mirror-symmetric dual-sided plane wave
illumination [5,10–16]. In dual-drive structures, symmetric
illumination of a symmetric dual grating produces a
symmetric Lorentz force distribution providing primarily
longitudinal momentum modulation. Symmetric illumina-
tion produces a “cosh mode”, which gets its name from
the hyperbolic cosine shape of the longitudinal force.

Conversely, antisymmetric illumination of the symmetric
grating produces a transversely deflecting “sinh mode”.
The cosh and sinh modes are referred to as the principal
modes of dual grating operation.
Recently, DLA operating modes providing coupled

longitudinal and transverse momentum modulation (“skew
modes”) have been experimentally demonstrated [2,4].
Because these modes are less obviously useful for an
accelerating beamline, they have not received nearly as
much attention (either theoretically or experimentally) as
the more commonly seen principal DLA modes. However,
current theoretical frameworks derived for the principal
operating modes do not adequately describe the phase
space profile of skew modes. In particular, the theory
presented in [2,4,11] and others do not correctly predict the
linelike character of the skew modes experimentally dem-
onstrated thus far, instead predicting the existence of an
elliptical mode.
It is therefore of great importance to comprehensively

investigate the Lorentz force in dual-grating DLAs under
general illumination conditions (particularly general dual-
drive conditions), and establish a framework for mapping
the characteristics of a dual-grating DLA onto its opera-
tional mode, and thus its effect on an electron beam.
In this work, we present a general analytic description of

the electromagnetic fields and forces on a particle in a dual-
grating DLA under single-side and dual-side plane wave
illumination. We derive the fields and forces present in the
most common devices, symmetric dual gratings, discuss
the symmetries of the resulting equations, then generalize
them to encompass nonmirror-symmetric dual gratings and
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arbitrary illumination conditions. We give a unified descrip-
tion of both the principal modes and skew modes, and find
that three classes of skew modes exist: the linelike mode
which has been demonstrated in previous experiments and
two elliptical modes which have never been observed—an
upright ellipse and a rotated ellipse.
Guided by the unified description, we discuss various

methods of tuning between these operational modes,
including dual-drive relative phase and the “glide ratio”
where the grating teeth of one row are offset relative to the
other. We further employ symmetry arguments to show the
correspondence between tuning methods in the dual-drive
and single-side drive cases. We also present experimental
confirmation of the previously unobserved elliptical skew
mode in a single-side drive configuration. The practical
importance of this mode is due to its potential to improve
the resolution of attosecond-scale streak cameras.

II. DERIVATION OF DUAL DRIVE FIELDS

In this section, we derive the Lorentz force seen by a
phase-matched electron inside a dual-grating accelerator
structure. Although part of the derivation has been pre-
viously presented by Black et al. [5], we present it again
here as a foundation for the more complex analysis of the
symmetries of the force equations and the phase space of
DLA operation modes.
We consider a dual-grating structure as shown in Fig. 1.

We define a right-handed coordinate system with z along
the axis of electron beam propagation and y the transverse
coordinate. The structure is assumed to be quasi-infinite in
the x direction, allowing the problem to be treated in 2D.
The 2D approximation captures the transverse shape of the
modes [2], though 3D effects should be taken into account
to accurately calculate the coupling strength of the incident
lasers into the structure modes and the x-dependence of
the field.

In 2D problems, the electric and magnetic fields can be
separated into orthogonal TE and TM modes, where the
TM mode can be fully described by Hx, and the TE mode
by Ex. We assume harmonic time dependence of the electric
and magnetic fields, writing them as Eðr; tÞ ¼ EðrÞe−iωt,
Hðr; tÞ ¼ HðrÞe−iωt. We assume an isotropic, linear dielec-
tric medium with permeability μ ¼ μ0 and permittiv-
ity ϵ ¼ ϵðrÞ.
The H field must obey the wave equation [17]:

∇ ×

�
1

ϵðrÞ∇ ×H

�
¼ μ0ω

2H: ð1Þ

The dual-grating structure is periodic in z with periodicity
Λ. Therefore, the solutions to Eq. (1) must satisfy the
Floquet-Bloch theorem

HðrÞ ¼ HpðrÞeikzz;
Hpðrþ ΛẑÞ ¼ HpðrÞ; ð2Þ

where kz is a Bloch wave vector.
Being periodic, HpðrÞ may be expanded in a Fourier

series

HpðrÞ ¼
X∞
n¼−∞

hnðx; yÞeiknz; ð3Þ

where kn ¼ 2πn=Λ. Note that we have defined two differ-
ent wave vectors: kn, the propagation constant associated
with the z variation of the field’s nth spatial harmonic, and
kz, the Bloch wave vector associated with the phase
advance of the entire wave through the periodic DLA
structure.
In this section we consider in detail the fields and forces

in the TM case. The TE modes are treated similarly and are
detailed in the Supplemental Material [18].

A. Single side illumination

The TM modes can be described by Hx, and the
x-invariance of the problem restricts the coordinate depend-
ence of hnðx; yÞ to hnðyÞ. Thus, in the TM mode, the
magnetic field can be completely described by a single
scalar function of the form

Hx ¼
X
n

HðnÞ
x ¼

X∞
n¼−∞

hnðyÞeiðknþkzÞz; ð4Þ

where HðrÞ ¼ Hxx̂.
The dual-grating structure is illuminated by a z-polarized

plane wave propagating in the þy direction with electric
field amplitude of E0. Its H field is

FIG. 1. An electron bunch travels along z through a dual-
grating DLA structure. The grating has periodicity Λ and is
assumed infinite in x. Two lasers of equal amplitude with relative
phase θr are normally incident on the grating structure, with wave
vectors �k0ŷ. A reference particle enters the structure traveling
with speed βc at some injection phase α relative to the laser field,
and experiences a force given by Eq. (20).

DYLAN S. BLACK et al. PHYS. REV. ACCEL. BEAMS 23, 114001 (2020)

114001-2



H0ðr; tÞ ¼
E0

μ0c
eiðk0y−ωtÞx̂; ð5Þ

where k0 ¼ ω=c is the vacuum wave vector.
The plane wave scatters off the dual-grating structure,

producing fields in the channel gap whose nth spatial
harmonic is

HðnÞ
x ¼ E0

μ0c
k0
Γn

ðdne−Γny þ cneΓnyÞeiðknþkzÞz: ð6Þ

Here, dn and cn are the dimensionless amplitudes of the
counterpropagating waves inside the vacuum gap of the
dual-grating structure. Γn is a complex number which
describes the transverse variation of the wave. We also
introduce a scaling constant k0=Γn as a multiplicative
prefactor, which is dimensionless and serves only to
simplify the form of the Lorentz force in later discussion.
We also define the parameter rn as the complex ratio of

the counterpropagating evanescent field amplitudes when
the structure is single-side driven

rn ¼ cn=dn ¼ krnkeiϕrn : ð7Þ

For a physical interpretation, consider the þy plane wave
(top wave, Fig. 1) as it hits the dual grating. It first scatters
off the −y (top) grating into the modes supported by the
grating. Some fraction of the incident wave remains
undiffracted (the zeroth diffraction order) and hits the
þy (bottom) grating, which also scatters into the grating
modes. If the first grating row is highly reflective, the
zeroth order transmission through the top grating is small,
the scattered amplitude from the þy (bottom) grating is
small while the scattered amplitude from the −y (top)
grating remains large, and thus rn is small. In other words,
the amplitude of rn is usually controlled by the reflectivity
of the single grating row on the side of the incident laser.
The two partially reflective grating rows can also cause
Fabry-Perot effects, where light reflects back and forth
between the two gratings. When Fabry-Perot cavity created
by the dual grating is near resonance, jrnj depends not only
on the reflectivity of a single grating but on the character-
istics of the Fabry-Perot resonator. Usually, the broadband
requirement of DLAs precludes operation near sharp
Fabry-Perot resonances. Therefore, in most cases of interest
jrnj is primarily determined by the reflectivity of the first
grating row.
The phase of rn is also controllable. It is clearly affected

by the width of the channel gap, but also by the position of
one grating row relative to the other. “Gliding” one grating
along z relative to the other can change the phase of rn (See
Sec. VI and Fig. 4). The phase of rn can also be altered by
the angle of the illuminating plane wave (See Supplemental
Material [18]).

Due to the orthogonality of the spatial harmonics defined
by Eq. (3), the modal components of the scattered field
must individually obey Eq. (1), which requires each Γn to
satisfy a dispersion relation

ðkn þ kzÞ2 − Γ2
n ¼ k20: ð8Þ

Since our initial focus is on plane wave illumination at
normal incidence, the Bloch wave vector kz ¼ 0. The non-
normal incidence case (kz ≠ 0) is discussed in the
Supplemental Material [18].

B. Dual side illumination

Next we consider excitation of the dual grating by two
equal amplitude, normally incident, counterpropagating
plane waves, along the þy and −y directions, with a
relative phase of θr between the two as measured from the
center of the channel gap.
We now restrict the discussion to mirror-symmetric dual

gratings (Fig. 1). The mirror symmetry of the structure
simplifies the problem so that we can discuss the contri-
butions from the dual-grating parameters and the dual-drive
phase separately. Both Sec. VI and the Supplemental
Material [18] discuss the general, nonsymmetric case in
detail.
The mirror symmetry allows us to write the dual-drive

fields as

HðnÞ
x ¼ E0k0

μ0cΓn
eiknzððcn − dneiθrÞeΓny þ ðdn − cneiθrÞe−ΓnyÞ;

ð9Þ

where the minus sign is introduced by the action of a mirror
transformation on the pseudovector H.
We then rewrite Eq. (9) in terms of hyperbolic functions,

and define the amplitude

ϵn ¼ 2E0dn; ð10Þ

which is equivalent to the dual-drive electric field Fourier
coefficient en used in [4,12] in the limit krnk → 0. We note
that when krnk ≠ 0, the en coefficient used in previous
publications is not exactly equivalent to ϵn, though both
coefficients play the role of an amplitude and global phase
scaling coefficient in all cases.

HðnÞ
x ¼ −

ϵn
μ0c

k0
Γn

eiknz
�
ð1þ rnÞ

eiθr − 1

2
coshðΓnyÞ

þ ð1 − rnÞ
eiθr þ 1

2
sinhðΓnyÞ

�
; ð11Þ

where rn is defined in Eq. (7).
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To compress the notation of Eq. (11), we define

a�n ¼ ð1 ∓ rnÞ
eiθr � 1

2
; ð12Þ

such that

HðnÞ
x ¼−

ϵn
μ0c

k0
Γn

ða−n coshðΓnyÞþaþn sinhðΓnyÞÞeiknz: ð13Þ

The electric field components corresponding to (13) can be
found from Maxwell’s equations.

EðnÞ
y ¼ ϵn

kn
Γn

ða−n coshðΓnyÞ þ aþn sinhðΓnyÞÞeiknz

EðnÞ
z ¼ iϵnðaþn coshðΓnyÞ þ a−n sinhðΓnyÞÞeiknz: ð14Þ

The Lorentz force acting on an electron traveling with
velocity βcẑ is F ¼ ℜf½EðrÞ þ βcẑ ×BðrÞ�e−iωtg. To
simplify the notation in the following discussion, we focus
on the complex form F̃, which is connected to the force
through F ¼ ℜfF̃g. Re-inserting the harmonic time-
dependence of the fields to Eqs. (13) and (14), we can
now calculate the nth harmonic of the Lorentz force F̃n.

F̃n ¼ qϵneiknz−ik0ct

2
64

0

ξnða−n coshðΓnyÞ þ aþn sinhðΓnyÞÞ
iðaþn coshðΓnyÞ þ a−n sinhðΓnyÞÞ

3
75;

ð15Þ

where q is the elementary charge, ξn ¼ ðkn − k0βÞ=Γn, and
the vacuum wave number k0 ¼ ω=c. The total (complex)
Lorentz force is F̃ ¼ P

n F̃n.
To obtain the average Lorentz force in the rigid beam

approximation, we assume an electron trajectory described
by z ¼ βctþ z0 over some interaction length L, and
average F̃n to obtain

F̄n ¼ qϵne
i
k0z0
β

2
64

0

ξnða−n coshðΓnyÞ þ aþn sinhðΓnyÞÞ
iðaþn coshðΓnyÞ þ a−n sinhðΓnyÞÞ

3
75

×
1

L

Z L
2

−L
2

eiðkn−
k0
β Þzdz: ð16Þ

Since taking the average and taking the real part of F̃n are
interchangeable, the average Lorentz force of the nth
harmonic over a length L in the rigid beam approximation
is simply ℜfF̄ng.

C. Phase matching

Consider now an electron beam of velocity βc phase-
matched to the nth spatial harmonic over a single grating

period. Over a single period, β is very nearly constant, and
so the phase of the nth harmonic field must be constant with
respect to the electron trajectory described by z ¼ βctþ z0.
This yields the phase matching condition

βðkn þ kzÞ ¼ k0: ð17Þ

Over multiple periods, the phase matching condition
must be appropriately tapered to retain phase synchronicity
[7]. Since we have specialized the discussion to plane wave
illumination at normal incidence, kz ¼ 0, and by Eq. (8), a
phase-matched field must satisfy

Γn ¼ kn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
¼ kn=γ ¼ k0=βγ; ð18Þ

where

γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
: ð19Þ

Thus, all phase-matched modes have ℜfΓng > 0, which
implies that they are evanescent.
When Eq. (17) is satisfied for the nth harmonic, the

integral term in Eq. (16) is 1 for the phase-matched
harmonic and approximately zero for all other harmonics
as long as L ≫ Λ. This means that, in the usual case of
n ¼ 1, the average force on an electron in a dual-grating
structure is well approximated by just F̄1.

D. Lorentz force on phase-matched particle

The form of the Lorentz force on a phase-matched
particle simplifies considerably. For an electron which
propagates along z ¼ βctþ z0, we choose a phase-
matched electron speed such that β ¼ k0=kn. The particle
is effectively stationary relative to the synchronized wave.
We then explicitly separate the amplitude and phase of

ϵn, defined in Eq. (10), as ϵn ¼ kϵnkeiϕϵn . This allows us to
define the “electron phase” αn ¼ k0z0=β þ ϕϵn , which is
the phase of a reference particle relative to the nth phase-
matched Fourier component of the laser field.
Further, the coefficient ξn in Eq. (15) simplifies to 1=γ,

where γ is defined in Eq. (19), and the average complex
Lorentz force is

F̄n ¼ qkϵnkeiαn

2
664

0
1
γ ða−n coshðΓnyÞ þ aþn sinhðΓnyÞÞ
iðaþn coshðΓnyÞ þ a−n sinhðΓnyÞÞ

3
775: ð20Þ

Under symmetric illumination (θr ¼ 0), a−n ¼ 0 and the
longitudinal force has a cosh profile along y, and is referred
to as the “cosh” mode. Under antisymmetric illumination
(θr ¼ π), aþn ¼ 0 and the longitudinal force has a sinh
distribution—the sinh mode. The sinh mode has a nearly
uniform force in the y direction, and is primarily used as a

DYLAN S. BLACK et al. PHYS. REV. ACCEL. BEAMS 23, 114001 (2020)

114001-4



beam deflector. Thus, aþn and a−n are the complex ampli-
tudes of the cosh and sinh modes, respectively. The relative
amplitudes of the transverse and longitudinal momentum
modulation is determined by the ratio a−n =aþn , as well as the
electron speed and phase.
The modifications to this equation in the nonphase-

matched case are found in the Supplemental Material [18].

E. The real Lorentz force in the TM mode

To obtain the momentum modulation on the interacting
electrons, it is useful to have an explicit form of the average
real Lorentz force. From Eq. (20),

Fn ¼ qkϵnk

2
664

0

1
γ ½ρ−n cos θr2 sinhðΓnyÞ − σþn sin θr

2
coshðΓnyÞ�

−½ρþn sin θr
2
sinhðΓnyÞ þ σ−n cos

θr
2
coshðΓnyÞ�

3
775;

ð21Þ

is the real Lorentz force, where we have defined the real
analogues of the complex a�n coefficients:

ρ�n ¼ k1� rnk cos
�
αn þ

θr
2
þ∠ð1� rnÞ

�
;

σ�n ¼ k1� rnk sin
�
αn þ

θr
2
þ∠ð1� rnÞ

�
: ð22Þ

rn is defined in Eq. (7).∠ð1� rnÞ indicates the phase angle
of the quantity ð1� rnÞ in the complex plane.
Comparing Eq. (21) with previous literature [2,4,5,10–

13], it is evident that the dependence of the Lorentz force on
the electron phase αn, the dual-drive phase θr, and the
“reflection phase” ϕrn is more complex than previously
reported. However, these equations exactly match the
literature in the common limit of high-reflectivity gratings
(rn → 0) operated on pure cosh and sinh modes (θr ¼ 0
or π).

III. SYMMETRIES OF THE TM-MODE FORCES

The Lorentz force in the mirror-symmetric dual gratings
shown in Eqs. (20) and (21) manifests different symmetries
under different conditions. The various symmetries provide
a powerful tool for understanding the tuning of dual-grating
devices and the correspondence between single-side and
dual-drive illumination.
We can rewrite Eq. (20) in the following form:

�
F̄n;z

F̄n;y

�
¼ iqkϵnkeiαnð1 − r2nÞ12

�
1 0

0 1
γ

�
U

�
coshðΓnyÞ
sinhðΓnyÞ

�
;

ð23Þ

where

U ¼ ei
θr
2

2
64 ζ cos θr

2
−ζ−1 sin θr

2

ζ−1 sin θr
2

ζ cos θr
2

3
75
�
1 0

0 −i

�
; ð24Þ

and

ζ ¼
�
1 − rn
1þ rn

�1
2

: ð25Þ

The longitudinal and transverse forces can be expressed
as a transformation U acting on a basic vector v ¼
½coshðΓnyÞ; sinhðΓnyÞ�. By tuning the relative phase θr
and designing a DLA structure with a specific rn, we
control the operatorU acting on v and thus control the force
on the synchronized electrons.

A. High reflectivity limit

In the limit of highly reflective gratings (krnk→0), ζ→1
and U becomes an element of the Lie group U(2). By
tuning θr, the amplitude of the cosh (and sinh) components
can be varied frommaximum to zero (zero to maximum). In
this limit, the cosh and sinh modes have the same maximal
amplitude, but are π=2 out-of-phase. Previous dual-drive
experiments tend to favor this limit, due to its operational
simplicity [2,3].

B. High transmissivity limit

In the highly transmissive limit (krnk → 1), ζ ¼ffiffiffiffiffi
−i

p ðtan ϕrn
2
Þ12 and the operator U becomes

U ¼
ffiffiffiffiffi
−i

p
ei

θr
2

2
664
�
tan ϕrn

2

�1
2 cos θr

2
−
�
cot ϕrn

2

�1
2 sin θr

2

i
�
cot ϕrn

2

�1
2 sin θr

2
−i
�
tan ϕrn

2

�1
2 cos θr

2

3
775:

ð26Þ

In contrast to the highly reflective gratings, the operator
U is no longer unitary. Though tuning the relative phase θr
can still change the relative amplitudes of the cosh and sinh
modes, the maximal amplitudes of the cosh and sinh modes
are influenced by the phase of rn. When ϕrn ≈ ð2mþ 1Þπ,
m ∈ Z, the cosh mode is dominant, while the sinh mode
dominates when ϕrn ≈ 2mπ, regardless of θr. Further, the
amplitudes of the cosh and sinh modes are either in-phase
or π out-of-phase. Such properties are also found in
multichannel DLAs where, by necessity, each grating
row has high transmissivity [26].
A further symmetry manifests when krnk → 1 and

rn can be written as a pure phase term rn ¼ eiϕrn .
Equation (12) becomes

a�n ¼ ð1 ∓ eiϕrn Þðeiθr � 1Þ
2

: ð27Þ
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The interchange of ϕrn and θr causes a
�
n ↔ −a∓n . The form

of Eq. (20) is preserved, with the cosh and sinh terms
exchanging roles and flipping sign. This implies that in the
highly transmissive limit ϕrn plays an almost identical role
to the dual-drive phase θr, and by tuning it, one can
replicate nearly all the properties of a dual-drive structure.

IV. CLASSIFICATION OF MODES
BY PHASE-SPACE PROFILES

The transverse and longitudinal momentum kicks felt by
a phase-matched electron over one grating period follow
directly from integration of Eq. (21) over z. For a phase-
matched particle, Eq. (21) has constant phase and thus no
z-dependence, and so the momentum kicks over one period
Λ are given simply by multiplication of the Lorentz force
by the time-of-flight for one grating period: Δpn ¼ Λ

βcFn.
The mismatched case is only slightly different. It has a
z-dependent phase, and so an integral must be carried out
explicitly.
It is instructive to make plots of the phase space

furnished by (Δp⊥, Δpk) as the electron phase αn varies
over the interval ½0; 2πÞ, because the patterns drawn in this
space correspond exactly to the experimentally measured
electron beam profiles seen in [2,5] and many other studies.
Parallel and perpendicular kicks are defined relative to the
electron reference trajectory along the z-axis.
Consider the phase space profiles produced by an

electron beam traveling on-axis (y ¼ 0). There are three
distinct profiles that can be produced in (Δp⊥,Δpk) space.
The linelike profiles which rotate around a central point as
θr is varied, upright ellipses whose major and minor axes
grow and shrink with θr, and elliptical profiles which both
rotate and stretch with θr (See Fig. 2).
The linelike profile observed by Leedle et al. [2] occurs

when∠ð1þ rnÞ ¼ ∠ð1 − rnÞ, which is satisfied only when
rn ∈ R. Variation of the dual-drive phase θr manifests as
clockwise rotation of the line by angle φ relative to the Δpk
axis (See Supplemental Material [18], Rotation Angle of
Modal Profiles section, for an implicit form of φ).
The upright ellipse is produced when krnk ¼ 1. If rn is

also real (i.e., rn ¼ �1), then this ellipse has zero width,
and manifests as a line on the Δp⊥ or Δpk axis which
grows and shrinks with θr.
The most general case occurs when none of the previous

conditions are satisfied, i.e., rn ∈ C—the profile is a
general rotated ellipse. The rotation angle φ depends on
both the dual drive phase θr and the ratio rn. An implicit
form on φ is given in the Supplemental Material [18].
Through the Lorentz force, we can establish a mapping

from the dual-grating and illumination characteristics (rn,
θr, etc.) to the momentum modulation of the phase-
matched electrons, and thus to the mode profiles observed
in experiment. Equipped with this mapping, one can design
the dual grating and tune the experimental configuration to

achieve the desired operational mode. In addition, by
observation of the electron beam profiles under different
dual drive phases, this mapping can provide valuable
information about the dual-grating characteristics.
Via tuning of θr and rn, the whole phase-space of dual-

grating operation modes can be explored. Previous studies,
such as those presented in [2,4,11], predict the upright
elliptical profile in (Δp⊥, Δpk) space, which agrees with
experiment only when θr ¼ 0 or π. However, the previous
equations cannot explain the rotated line modes observed
by Leedle et al. for θr ≠ 0 or π in [2], which are rotated by
some angle corresponding to the dual-drive phase. The
equations presented here correctly reproduce the line
modes if rn is real. Further, they capture all operating
modes of the dual-grating structures thus far observed and
predict a new mode, the rotated ellipse. The correspon-
dence between θr and ϕrn also suggests that these modes
should be accessible to both single and dual-side drive
operation of dual-grating structures.
In practical design of dual pillar DLAs, the desired rn

can be achieved through parameter tuning, and a simple
concrete geometrical design rule may not be necessary.

FIG. 2. The (Δp⊥,Δpk) phase space is plotted for the three
classes of modes. The (normalized) momentum kicks plotted here
are derived by integration of the n ¼ 1 component of Eq. (21) for
an on-axis particle (y ¼ 0). γ is set to 1 for convenience. As α
varies from 0 to 2π, it traces out ellipses in (Δp⊥, Δpk) space.
Values of rn corresponding to the three mode classes are then
chosen, and θr is varied from 0 to 2π for each mode. The rotated
line (solid black) has r1 ¼ 0.1. The upright ellipse (dashed blue)
has r1 ¼ e2i. The general ellipse (dashed red) has r1 ¼ 0.7ei. The
principal modes occur when θr ¼ 0 or π. All other θr values
produce skew modes.

DYLAN S. BLACK et al. PHYS. REV. ACCEL. BEAMS 23, 114001 (2020)

114001-6



For simple geometries like ellipses and rectangles, even
brute-force parameter sweeps can provide a design with
desired rn. In some special designs like the multichannel
photonic crystal DLAs, the value of rn is associated with
the band structure properties of the underlying photonic
crystal, which is discussed further in [26].

V. SINGLE-SIDE DRIVE

Although the full phase-space of operation modes
discussed in Sec. IV can be achieved using dual-side
illumination, it is experimentally simpler in some cases
to use only single-side illumination. Both the field and
force equations for single-side illumination can be recov-
ered immediately from Eq. (20) by setting eiθr to 0 in the
definition of a�n . With single-side illumination, rn depends
primarily on the dual-grating design, though angled illu-
mination will also affect rn (See Supplemental Material
[18]). By tuning the geometries of the two gratings, rn can,
in principle, be any complex number. Therefore, the whole
space of modes, as illustrated in Fig. 2 can be explored with
single-side illuminated dual gratings.
In the limit rn → 1 (a perfectly transmissive grating), the

single-illumination gratings behave very similarly to dual-
illuminated gratings, where the phase of the rn term plays
the role of θr. Up to a sign, ϕrn enters into Eq. (20) in
exactly the same fashion as θr. Thus, the effects of ϕrn
rotation on a singly illuminated DLA should precisely
match that of θr rotation on a dual-illuminated DLA. The
converse is also true—the tunability provided by dual-
illumination can be used to partially compensate for
fabrication error in rn, or dynamically alter the properties
and mode of a DLA device with fixed rn.
Figure 3 shows the elliptical profile produced by a

single-sided illumination of a dual-pillar DLA structure
with a design similar to [2] and [5]. The elliptical mode in
Fig. 3 appears slightly skewed, and thus corresponds to the
general elliptical case where rn ∈ C (the red line shown in
Fig. 2). This is the first time that an elliptical mode profile
has been observed. The dual-pillar structure used to
produce this mode was originally designed as a high-
efficiency cosh mode structure, but produces the elliptical
profile seen in Fig. 3 when illuminated at a slight angle.
Angled illumination of dual-grating structures changes the
effective rn coefficient, and thus provides a good example
of the use of this rn parameter to design the phase space
modulation of an electron beam. A more powerful method
of tuning rn is explored in Sec. VI, and angle tuning is
treated in more detail in the Supplemental Material [18].
Further experimentation that fully explores the phase

space profiles predicted by Eq. (21) requires dedicated
fabrication of devices designed for production of elliptical
modes, as well as improvement of the electron beam point-
spread function so that the profiles are easier to distinguish.
Based on the theory presented here, it should be possible to

probe the space of all possible modes with either single or
dual-side drive structures.
An elliptical mode, or better yet perfectly circular mode,

has a potential use case in attosecond-scale temporal
streaking measurements. Attosecond-scale measurements
of electron bunch length have previously been accom-
plished by electron beam streaking either in the energy
dimension or in angle [5,8,27–31]. However, because the
resolution of any single-axis streaking measurement is
proportional to the instantaneous slope of the streaking
field, the resolution of these measurements is identically
zero at the field extrema. Consider a skew mode like the
black line in Fig 2. The temporal resolution is identically
zero at the edges of the mode, corresponding to α ¼ 0 and
π. The resolution is only maximized at the field zero-
crossing (the center of the line profile). Additionally, due to
the linear profile, the intervals α ¼ ½0; πÞ and α ¼ ½π; 2πÞ
physically overlap, reducing the “analysis window” to one
half the optical cycle.
However, a streaking measurement that traces a circle in

the 2D phase space furnished by (p⊥, pk) can have
maximal resolution at all phases. In a circular mode, there
are no extrema that occur simultaneously in both the

FIG. 3. This figure shows an elliptical profile produced by
single-side illumination of a dual-pillar DLA device. The
structure was originally designed for cosh mode operation, but
can be made to produce elliptical beam profiles through suitable
angle tuning. For a 57 keV beam, an energy gain of 500 eV
corresponds to a longitudinal momentum kick of roughly
1.1 keV=c, and a 5 mrad deflection corresponds to a transverse
momentum kick of roughly 1.2 keV=c. Note: The rn value for
this ellipse was extracted by an elliptical fitting algorithm in
MATLAB. The fit error is unknown due to large uncertainty in
the horizontal (deflection) axis calibration. Please see the
Supplemental Material [18] for experimental details.
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p⊥ and pk dimension. Additionally, the circular mode only
overlaps itself once per optical cycle, automatically dou-
bling the analysis window. This streaking method requires
a 2D electron detector.

VI. GLIDING OF DUAL GRATINGS

Thus far, we have considered only dual-gratings that
have mirror symmetry. When this restriction is relaxed, we
find that gliding one grating row along z with respect to the
other provides a powerful degree of freedom in the design
of dual-grating DLAs, which is especially critical for
single-side drive structures [16]. In particular, the phase
ϕrn can be tuned independently of the amplitude krnk by
gliding one grating row with respect to the other.
When the near-field coupling of the two gratings is weak,

a gliding operation has negligible influence on the ampli-
tude of rn, which is determined by the transmissivity of the
first row of grating and the diffraction strength of the two
gratings. The near-field coupling, where the channel width
is w, is characterized by expð−ΓnwÞ, which is generally
small for subrelativistic DLAs.
To demonstrate the tuning of the phase of rn through

gliding, we numerically investigate a nonsymmetric dual
grating under single-side drive. We define the glide ratio
g ¼ δl=Λ as the ratio between the translation δl of one row
of grating along z-direction and the periodicity of the
grating Λ, as illustrated in Fig. 4(a).
Since the specific pillar geometry is not important to

demonstrate the effect of gliding, we choose simple
rectangular silicon pillars to form the dual gratings. To
phase match electrons with β ¼ 0.5 with an illuminating
wavelength λ of 2 μm, we choose a grating period Λ of
1 μm (and use the n ¼ 1 diffraction order). We also choose
the rectangle’s parameters such that transmissivity of a
single grating row is above 90%. The rectangular pillars
have width and length of 0.52 μm and 1.32 μm, respec-
tively. The electron channel width w is 0.4 μm. The field
distribution for g ¼ 0.5 is shown in Fig. 4(b).
As the glide ratio increases from 0 to 1, the amplitude of

rn is roughly constant, as shown in Fig. 4(c) (See
Supplemental Material [18] for fitting rn from numerical
simulations). However, the phase of rn changes almost
linearly with the glide ratio [Fig. 4(c)]. This modulates the
relative amplitudes of the cosh and sinh modes, as shown in
Fig. 4(d). The gradual tuning of the longitudinal force
profile here is very similar to the dual drive phase
modulation. For a single-side illumination structure, tuning
the glide ratio of a high-transmissivity dual grating provides
the same functionality as tuning the dual-drive phase in a
dual-drive configuration. When krnk ≈ 1, pure cosh or sinh
modes can be achieved. This provides a systematic
approach to achieve arbitrary operation modes in the
phase-space even with single-side illumination.
When the symmetric dual gratings are offset by exactly

1=2 period, forming “glide-symmetric” gratings, it is

possible to excite pure cosh or sinh modes in a very
similar manner to mirror-symmetric gratings. An analytic
description of these gratings and their special properties is
given in the Supplemental Material [18].

VII. CONCLUSION

In this manuscript, we generalize previous studies to
dual-grating DLAs with arbitrary illumination conditions.
In doing so, we fully classify the modes producible by
single DLA structures in both single-side drive and dual-
drive configurations. We provide a framework that unifies
the description of linelike skew modes previously observed
by Leedle et al. in [2] with the previously predicted upright
elliptical modes, and both predict and experimentally
demonstrate a novel rotated-ellipse mode profile.

FIG. 4. (a) Gliding one row of grating with respect to the other.
The dual grating consists of two rows of rectangular silicon
pillars with width 0.52 μm, length 1.32 μm, periodicity 1 μm and
electron channel width 0.4 μm. The illumination laser wave-
length is 2 μm and electron velocity is 0.5c. (b) shows the electric
and magnetic field of the dual grating with glide ratio g ¼ 0.5 and
top-side illumination. The amplitude and phase of rn through
tuning the glide ratio are shown in (c). (d) shows the amplitudes
of the cosh and sinh modes as a function of the glide ratio.
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Additionally, we highlight the flexibility of the structures
currently employed in DLA research—they are capable of
arranging electron beams into diverse phase space profiles
with many potential use cases. As an example, while a pure
accelerating structure requires a linear profile, a circular
profile could have superior resolution in a streaking
measurement.
Further, the symmetries of the Lorentz force equations

imply that the tunability of a dual-drive system can be
entirely replicated in a single-side drive system by suitable
tuning of the structure geometry and/or illumination con-
ditions (angle, etc.). Through symmetry arguments and
discussion of the glide ratio, we offer complementary
methods of designing the electron phase space for both
single and dual-side drive configurations.
It is our hope that this study will assist in the future

development of accelerators and other sophisticated beam
manipulation devices based on the DLA architecture.
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