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The technique of microbunched electron cooling (MBEC) is a coherent cooling scheme with possible
applications in high-energy hadron and electron-ion machines. In our previous work we analyzed the
cooling of the hadron energy spread and transverse emittance using a one-dimensional (1D) technique that
tracked the microscopic fluctuations in the hadron and electron beams. However, in order to obtain
analytical expressions for our key quantities, we limited ourselves to calculating and optimizing only the
initial values of the cooling rates. In this paper, we extend our approach so that it properly addresses
the issue of the long-term, dynamic evolution of the hadron beam. In order to do so, it becomes necessary
to consider the synchrotron motion of the hadron beam, in conjunction with the effects of diffusion
and intrabeam scattering (IBS). With these modifications, our formalism allows us to develop a simple
numerical tool that can effectively model the final state of hadron beam after many passages through the
MBEC cooler.
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I. INTRODUCTION

In order to achieve the challenging brightness require-
ments for the hadron beam in prospective hadron-hadron or
electron-ion circular colliders, various coherent cooling
schemes have been proposed as a possible solution [1,2]. In
all these techniques, random fluctuations in the hadron
beam lead to an energy modulation being imprinted onto a
co-propagating electron beam through the space charge
interaction. This energy modulation is then converted into
density modulation (bunching) by passage through a
dispersive chicane and this bunching is subsequently
amplified by means of a suitable mechanism. Finally,
the cooler electron beam is once more copropagated with
the hadrons and interacts with them via the boosted space
charge field. If this process is repeated over many times, the
brightness of the hadron beam can be enhanced signifi-
cantly (cooling), for both the longitudinal and the trans-
verse degrees of freedom. While other coherent cooling
schemes make use of the free-electron-laser (FEL) effect
[2], in microbunched electron cooling (MBEC, proposed in
[3]) one relies on the principle of the space charge amplifier
in order to boost the bunching of the cooler electron beam:
the plasma oscillations induced in the electron beam during
its passage through a drift stage result in energy modula-
tion, which is then translated into enhanced density

modulation in a subsequent chicane. Originally conceived
for purposes of coherent radiation generation [4], the
space charge amplifier method provides a broadband
alternative to narrow-band amplification techniques such
as the FEL.
In our earlier work [5–7], we utilized a one-dimensional

(1D), Vlasov equation-based technique in order to obtain
useful, analytical expressions for the MBEC cooling rates
(both transverse and longitudinal). However, in the process
of doing so, we limited ourselves to calculating and
optimizing only the initial values of the above-mentioned
cooling rates (i.e., those achieved at the beginning of the
cooling). In this paper, we build on our previous results and
extend our approach so that it accurately covers the long-
term, self-consistent evolution of the hadron beam. In order
to do so, it becomes essential to consider the synchrotron
motion induced by the rf systemof the ring,which causes the
hadrons to move relative to each other in the longitudinal
direction. Alongwith synchrotron oscillations, we also need
to take into account other important effects such as diffusion
and intrabeam scattering (IBS). With these modifications,
our formalism enables us to develop a kinetic equation for
the cooling process, which leads to an efficient numerical
tool that canmodel the evolution of the hadron beam over an
arbitrary number of passages through the cooler. A similar
study for the Coherent Electron Cooling has been recently
published by G. Wang in Ref. [8].
This paper is organized as follows: in Sec. II, we

introduce the basic concepts regarding the synchrotron
motion of the hadrons (including the action-angle varia-
bles) and review the averaging process that leads to the
kinetic equation for the hadron beam. In Sec. III, we present
the details of this kinetic equation for a typical MBEC
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configuration and also show some preliminary results from
its numerical solution. In Sec. IV we show how to incor-
porate IBS into our analysis and demonstrate how the
deleterious effects of the latter can be effectively counter-
balanced by an MBEC cooler for a machine like eRHIC.
Finally, Sec. V summarizes the main results of this study.

II. PRELIMINARIES

In MBEC, the hadron beam first imprints an energy
modulation on the copropagating (cooler) electron beam in
a segment of the machine known as the modulator. This
energy modulation is then converted into a density modu-
lation (bunching) after the e-beam passes through a dis-
persive chicane section with strength Rðe;1Þ

56 (Fig. 1). In the
meantime, the hadrons are transported through their own—
separate—section of the lattice, which also includes a

chicane with strength RðhÞ
56 . The bunched electron beam

then once again interacts with the hadrons in a subsequent
section of the machine (the kicker), in a way that can
ultimately lead to a significant reduction in the hadron
energy spread and transverse emittance, aftermany passages
through the cooling section. In order to accelerate
this process and ensure that the cooling timescale is
small enough for practical purposes, additional amplifica-
tion stages are typically required, in which the bunching
of the electron beam is boosted through the space
charge effect. Each such amplification stage consists of a

drift space followed by a chicane of strength Rðe;jÞ
56

(j ¼ 2;…;M þ 1, where M is the total number of stages).
For simplicity, in this paper we assume that all stages have
the same lengthLd. To simplify our analysis, wewill neglect
transverse cooling effects throughout this paper. Hence, the
appropriate starting point for our treatment is the kinetic
equation for the 1D hadron distribution function Fhðη; tÞ in
the presence of longitudinal cooling and diffusion, where
η ¼ E=E0 − 1 is the relative energy deviation variable for
the hadrons.We can readily obtain this particular form of the
kinetic equation from the results of our previous analysis,
namely Eq. (41) of Ref. [7]. To ignore the transverse cooling
effects we set R; S → 0 in that equation to obtain

∂Fh

∂t ¼Dη
∂2Fh

∂η2 þ rhc
2πγT

∂
∂η

�
Fh

Z
∞

−∞
dkZðkÞfeikRðhÞ

56
η−1g

�
;

ð1Þ

where γ ¼ E0=mhc2 is the relativistic factor (common for
electrons and hadrons), T is the revolution period for the
ring, rh ¼ ðZeÞ2=mhc2 is the classical radius of the hadrons
and the diffusion coefficientDη can be expressed in terms of
the impedance ZðkÞ by Eq. (35) of [7]. The MBEC
impedance is, in turn, expressed analytically by Eq. (48)
of [7], appropriately modified by the gain factors for a
cascade of amplification stages. For a detailed derivation of
the latter, we refer the interested reader to the analysis of
Ref. [6]. We should also note that the diffusion coefficient
Dη is outside the partial derivative as it does not depend on
the energy variable. Moreover, we clarify that Eq. (1) has
been specifically derived for the case of MBEC and cannot
be directly applied to other forms of cooling, such as
stochastic cooling. That being said, the fluctuations-based
approach on which our derivation is based has been used in
the past by one of the authors (GS) for treating stochastic
cooling in terms of a simple model that is typically found in
textbooks [9].
However, this form of the kinetic equation only applies

to the distribution function in the so-called local approxi-
mation, that is when the dependence of Fh with respect to
the intra-beam position zb is not taken into consideration.
Moreover, it does not quantify the impact of the synchro-
tron oscillations imposed on the hadrons by the RF system
of the ring, which change their relative longitudinal
positions within the beam. If one wishes to incorporate
these two interconnected effects, the kinetic equation
becomes

∂Fh

∂t −cαη
∂Fh

∂zb þ
ω2
s

αc
zb
∂Fh

∂η
¼DηðzbÞ

∂2Fh

∂η2 þ rhc
2πγT

∂
∂η

�
Fh

Z
∞

−∞
dkZðk;zbÞfeikR

ðhÞ
56

η−1g
�
;

ð2Þ

where Fh ¼ Fhðzb; η; tÞ. Here, ωs is the synchrotron
oscillation frequency, while α is the (dimensionless)
momentum compaction factor. This modified form of the
kinetic equation is justified by the fact that—in the absence
of collective effects such as cooling, wakefields etc—the
linearized, longitudinal equations of motion for the hadrons
are dzb=dt ¼ −cαη and dη=dt ¼ ω2

szb=αc. More details
regarding the theory and nomenclature of synchrotron
oscillations can be found in [10]. We emphasize that the
zb-dependence in the impedance and the diffusion coef-
ficient is a consequence of the finite longitudinal size of the
cooler and hadron beams, which results in a zb-dependence
for their two respective currents. Next, if we introduce the
scaled quantities

t̃ ¼ t=τs ≡ ωst; z ¼ −ωszb=cα; ð3Þ

the kinetic equation becomes

FIG. 1. MBEC configuration with two amplification stages (the
length Ld is a free parameter but, in practice, its value is ∼λp,
where λp is the wavelength of plasma oscillations in the electron
beam).
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∂Fh

∂ t̃ þη
∂Fh

∂z −z
∂Fh

∂η ¼DðzÞ∂
2Fh

∂η2 þ1

2

∂
∂ηðνðz;ηÞFhÞ; ð4Þ

where D ¼ τsDη and

ν

2
¼ τs

rhc
2πγT

Z
∞

−∞
dkZðk; zÞfeikRðhÞ

56
η − 1g: ð5Þ

The cooling timescale is typically much longer than the
synchrotron oscillation period. As a result, the kinetic
equation should be properly averaged over the synchrotron
oscillations. In order to accomplish this task, we first
introduce the action-angle variables ðJ;ϕÞ via the trans-
formation

z ¼
ffiffiffiffiffi
2J

p
cosϕ; η ¼

ffiffiffiffiffi
2J

p
sinϕ; ð6Þ

the inverse of which is

J ¼ 1

2
ðz2 þ η2Þ; tanϕ ¼ η

z
: ð7Þ

Next, we need to express the distribution function Fh in
terms of J, ϕ and t̃, transform the Vlasov equation to these
new variables and perform an averaging over ϕ. This
manipulation is carried out in Appendices A and B. The
final result is an evolution equation for the averaged
distribution function F̄hðJ; t̃Þ, namely

∂F̄h

∂ t̃ ¼ 1ffiffiffi
2

p ∂
∂J ð

ffiffiffi
J

p
ν̄ðJÞF̄hÞ þ

∂
∂J

�
D̄ðJÞJ ∂F̄h

∂J
�
; ð8Þ

where the average cooling/diffusion functions ν̄ðJÞ and
D̄ðJÞ are given by Eqs. (A9) and (B11), respectively.

III. KINETIC EQUATION

In the absence of cooling and diffusion, the (equilibrium)
distribution function of the hadrons is a function of J alone.
From the definition of the longitudinal action-angle vari-
ables, we recall that

J ¼ 1

2
ðη2 þ z2Þ ¼ 1

2

�
η2 þ ω2

s

α2c2
z2b

�
: ð9Þ

With this relation in mind, we consider an initial distribu-
tion of the form

F̄hðJ; t̃ ¼ 0Þ ∝ exp
�
−

J
σ2h;0

�
¼ exp

�
−

z2b
2ðσðhÞz;0 Þ2

−
η2

2σ2h;0

�
:

ð10Þ
This particular choice corresponds to a hadron beam with a
Gaussian current/energy profile, its parameters satisfying
the matching condition

ω2
s

α2c2
ðσðhÞz;0 Þ2 ¼ σ2h;0: ð11Þ

If the initial hadron bunch length σðhÞz;0 and rms energy
spread σh;0 satisfy Eq. (11), the hadron distribution does not
evolve in time when cooling and diffusion are absent.
To facilitate the eventual numerical solution of the

kinetic equation we further define the scaling J̃ ¼ J=σ2h;0
and η̃ ¼ η=σh;0, so that η̃ ¼

ffiffiffiffiffi
2J̃

p
sinϕ. In terms of these

new energy and action variables, we have F̄hðt̃ ¼ 0Þ ∝
expð−J̃Þ and the scaled kinetic equation becomes

∂F̄h

∂ t̃ ¼ ∂
∂J̃ ðν̃ðJ̃ÞF̄hÞ þ

∂
∂J̃

�
J̃ D̃ðJ̃Þ ∂F̄h

∂J̃
�
: ð12Þ

Here, the cooling function ν̃ðJ̃Þ is given by [6]

ν̃ðJ̃Þ≡
ffiffiffi
2

p

σh;0

ν̄

2

ffiffiffĩ
J

p
¼ τs

2πT

Z
π

−π
dϕ sinϕ

4
ffiffiffi
2

p
IeðJ̃;ϕÞLmLkrh

Σ3πγ3IAσeσh;0
× ð−1ÞMqe;1qe;2…qe;Mþ1

×

�
1

σe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2IeðJ̃;ϕÞ

γIA

s �M Z
∞

0

dϰϰ

�
ϰHðrpϰ; 1Þ

rp

�
M=2

expð−ϰ2ðq2e;1 þ q2e;2 þ � � � þ q2e;Mþ1Þ=2Þ

×
ffiffiffĩ
J

p
sinðϰqh

ffiffiffiffiffi
2J̃

p
sinϕÞH2ðϰ; rÞsinM

�
rp

ΩpðJ̃;ϕÞLd

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϰHðrpϰ; 1Þ

rp

s �
; ð13Þ

where we have used the analytical expression for the
MBEC impedance, assuming a cascade of M amplification
stages with equal length Ld. Specifically, Lm and Lk are the
lengths of the modulator and kicker sections, σe is the rms
energy spread of the electrons (assuming a fixed, Gaussian
energy profile for the cooler) and IA ¼ mec3=e ≈ 17 kA is

the Alfven current. We assume that the electron beam
current has a longitudinal profile IeðzeÞ; when this current
overlaps with the hadron beam in the modulator and the
kicker the coordinate ze can be identified with zb and then
expressed through J̃;ϕ, as indicated in the argument of Ie in
Eq. (13). As far as the transverse properties of the two
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beams are concerned, we adopt Gaussian profiles for both
and assume that (a) at the modulator and kicker, the
interacting beams have an identical, elliptical cross section
characterized by a horizontal rms size Σ and a size aspect
ratio r (b) at the amplification stages, the e-beam is round
with a common rms size rpΣ. The squeeze factor rp is also
involved in the definition of the plasma frequency Ωp,
which is given by Ωp ¼ ðc=rpΣÞðIe=γ3IAÞ1=2. Moreover,

qh ¼ RðhÞ
56 σh;0γ=Σ is the scaled hadron chicane strength and

qe;j ¼ Rðe;jÞ
56 σeγ=Σ are the normalized strengths of the

various electron chicanes. Lastly, the important function
Hðk̂; rÞ, which is directly related to the Fourier transform of
the space charge interaction function, is defined by
Hðk̂; rÞ ¼ k̂

R∞
0 dττ expð−k̂2τ2=4Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ2 þ 4Þðτ2 þ 4r2Þ

p
.

The only additional clarification necessary is the
following: for a cooler beam current of the form

Ie ¼ Ie;0 expð−z2b=2ðσðeÞz;0Þ2Þ—fixed and centered around

zb ¼ 0, with σðeÞz;0 and Ie;0 being the electron rms bunch

length and peak current, respectively—transforming into
the scaled action-angle variables yields

IeðJ̃;ϕÞ ¼ Ie;0 expð−ðσðhÞz;0=σ
ðeÞ
z;0Þ2J̃cos2ϕÞ: ð14Þ

This function is to be substituted into the formula for the
plasma frequency, yielding an analytical expression for
ΩpðJ̃;ϕÞ.
As far as the diffusion function D̃ðJ̃Þ is concerned, its

definition is

D̃ðJ̃Þ≡ D̄
σ2h;0

¼ 1

π

Z
π

−π
dϕ

τsDηðJ̃;ϕÞ
σ2h;0

sin2ϕ: ð15Þ

Assuming (for simplicity’s sake) that the diffusion coef-
ficient Dη is dominated by the hadron noise, we can
calculate it using Eq. (3) from [11], namely

DðhÞ
η ðJ̃;ϕÞ ¼ 4σ2h;0

πT
IhI2eðJ̃;ϕÞr2hL2

mL2
k

I3Aγ
7reΣ5σ2eσ

2
h;0

×
1

σ2Me

�
2IeðJ̃;ϕÞ

γIA

�M

× q2e;1q
2
e;2…q2e;Mþ1

Z
∞

−∞
dϰϰ2H4ðϰ; rÞ expð−ðq2e;1 þ q2e;2 þ � � � þ q2e;Mþ1Þϰ2Þ

×

�
ϰHðrpϰ; 1Þ

rp

�
M

sin2M
�
rp

ΩpðJ̃;ϕÞLd

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϰHðrpϰ; 1Þ

rp

s �
: ð16Þ

Of course, this approximation neglects effects due to the
shot noise in the electron beam itself, which could—in
fact—be significant when hadron and electron currents are
similar. Including electron noise effects in our analysis
would be straightforward, the main difference being a
modification of the diffusion profile D̃ðJ̃Þ.
One final complication remains to be addressed: the

hadron current Ih ¼ Ihðz; t̃Þ depends on the evolving
distribution function F̄hðJ; t̃Þ and therefore is an unknown
quantity. In general this also makes the diffusion coefficient

DðhÞ
η a function of J̃, ϕ and t̃. However, we can simplify the

problem by assuming that, throughout the evolution proc-
ess (cooling or heating), the hadron current profile stays
centered around z ¼ 0 and remains much broader than the

fixed electron current profile IeðzÞ, σðhÞz;0 ≫ σðeÞz;0 . This allows
us to replace Ihðz; t̃Þ by its value at the location of the
electron beam, Ihð0; t̃Þ, in the equation given above,
which takes this quantity outside the ϕ-integral. Still, we
need to figure out what this peak hadron current is in terms
of t̃. Given that the hadron current profile satisfies
Ihðz; t̃Þ ∝

R∞
−∞ dηFhðz;η; t̃Þ ∝

R∞
−∞ dηF̄h½ðη2 þ z2Þ=2; t̃�, we

can show that

Ihðz; t̃Þ ¼ Ih;0

R
∞
0 dηF̄h½ðη2 þ z2Þ=2; t̃�R

∞
0 dηF̄hðη2=2; 0Þ

¼ Ih;0ξðt̃Þχðz; t̃Þ;

ð17Þ

where

ξðt̃Þ ¼
R∞
0 dηF̄hðη2=2; t̃ÞR∞
0 dηF̄hðη2=2; 0Þ

ð18Þ

is the compression factor for the hadron peak current,

χðz; t̃Þ ¼
R∞
0 dηF̄h½ðη2 þ z2Þ=2; t̃�R∞

0 dηF̄hðη2=2; t̃Þ
; ð19Þ

is the scaled current profile and Ih;0 is the initial value of the
peak current. Using the latter, we find that the time
dependence in the diffusion coefficient factors out, and
we can calculate and tabulate a diffusion function D̃0ðJ̃Þ,
which along with the cooling function ν̃ðJ̃Þ, only depends
on the fixed parameters of the system. Since
Ihð0; t̃Þ ¼ Ih;0ξðt̃Þ, the kinetic equation for F̄hðJ̃; t̃Þ can
be rewritten as
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∂F̄h

∂ t̃ ¼ ∂
∂J̃ ðν̃ðJ̃ÞF̄hÞ þ ξðt̃Þ ∂

∂J̃
�
J̃D̃0ðJ̃Þ

∂F̄h

∂J̃
�
; ð20Þ

which, for a given function ξðt̃Þ, is a form that can be
processed by the built-in PDE solver of Matlab. Of course,
since ξ itself depends on the unknown distribution F̄h, the
numerical solution needs to be implemented in an iterative
fashion: first, the time dependence of the hadron current
profile is neglected, which means that ξðt̃Þ ¼ 1 and Eq. (20)
is solved with this assumption in mind. Using the obtained
solution for F̄h one then calculates ξ as a function of t̃ via
Eq. (18) and accordingly updates the solution of Eq. (20),
repeating this loop until the required degree of convergence
is achieved.
To benchmark this iterative process, it is instructive to

point out that, in the special case with ν̃ðJ̃Þ ¼ ν0J̃ and
D̃0ðJ̃Þ ¼ D0 (where ν0 and D0 are constants), Eq. (20) has
an analytical solution expressed by

F̄hðJ̃; t̃Þ ¼
1

Aðt̃Þ exp
�
−

J̃
Aðt̃Þ

�
; ð21Þ

where

Aðt̃Þ ¼
�
D0

ν0
ð1 − e−3ν0 t̃=2Þ þ e−3ν0 t̃=2

�
2=3

: ð22Þ

Figure 2 shows an illustration of the gradual convergence of
the numerical solution toward its analytical counterpart.
Apart from the distribution function itself, the other metric
used in this example is the compression factor ξ, which can
be shown to be equal to A−1=2 for the analytically tractable
test case under consideration.
Having verified the soundness of the iterative technique,

we consider an MBEC configuration for eRHIC using the
parameter set of Table I. Two amplification sections with a
total length of about 30 m were assumed in this simulation,
along with a 1 nC cooler electron bunch. In Fig. 3 we plot

the actual MBEC cooling/diffusion functions for these
parameters, demonstrating that they are markedly different
than the simple demonstration case discussed earlier.
Indeed the diffusion function is characterized by a sharp
peak around the origin, followed by a much more gradual
decrease with J̃. Moreover, we observe that the cooling
function actually becomes negative for J̃ > 4. As we shall
see later on, this leads to heating of hadrons with relatively
large values of action. The main results of the numerical
solution of the kinetic equation are summarized in Fig. 4.
The upper right sub-plot of this figure shows the temporal
evolution of the hadron peak current Ip ≡ Ihð0; tÞ (blue
curve) and the longitudinal emittance

ϵ≡ hJi ¼
Z

∞

0

dJJF̄hðJ; tÞ; ð23Þ

0 2 4 6
10 -5

100

n=1
n=2
n=3
n=4
Eq.(21)

0 1 2 3
1

1.1

1.2

1.3

1.4
n=1
n=2
n=3
n=4

A-1/2

FIG. 2. Iterative numerical solution (colored plots) versus the analytical solution (dashed lines), for the distribution function (left) and
the ξ-factor (right), assuming a test case with ν0 ¼ 1.0 and D0 ¼ 0.5 (the y-axis of the left plot is logarithmic). Here, n is the integer
iteration index, and adequate convergence is achieved after four iterations.

TABLE I. Parameters of the eRHIC collider with a hypothetical
MBEC cooler.

Common relativistic factor, γ 293
Proton/electron energy γmhc2=γmec2 [GeV] 275=0.15
Proton/electron rms energy spread,
σh;0=σe

4.6 × 10−4=1 × 10−4

Proton/electron rms bunch length,

σðhÞz;0=σ
ðeÞ
z;0 [cm]

5=0.4

Proton/electron peak current, Ih;0=Ie;0 [A] 23=30
Ring revolution period T [s] 1.3 × 10−5

Modulator and kicker lengths Lm, Lk [m] 50
Amplification stage drift length Ld [m] 15
Number of amplification stages 2
Proton beam horizontal size Σ [μm] 700
x-y proton beam aspect ratio 0.60
e-beam squeeze factor 0.20
Proton/electron chicane strength

RðhÞ
56 =R

ðeÞ
56 [mm]

1.7=5.1
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the latter shown in the brown dashed curve. In fact,
the ratio of ϵ to its initial value ϵ0 ≡ ϵð0Þ can also be
used to extract the rms energy spread σh and bunch length

σðhÞz of the evolving hadron beam via the relation

σh=σh;0 ¼ σðhÞz =σðhÞz;0 ¼ ffiffiffiffiffiffiffiffiffi
ϵ=ϵ0

p
. Thus, a reduction in the

value of the longitudinal emittance is accompanied not
only by cooling (i.e., a decrease in σh) but also by a
corresponding shortening of the hadron bunch, at least in an
rms sense. The latter feature also results in an increase of
the bunch peak current, as is evident from the blue curve.
Of course, this increase in the hadron current leads to

intensified diffusion effects that oppose further cooling,
eventually resulting in a rough stabilization (though not a
steady-state in the exact, mathematical sense of the term).
As defined above, the longitudinal emittance ϵ encom-
passes the entire hadron beam. In practice one may also
wish to redefine the emittance using only that part of the
beam that contains a specified fraction of the total charge.
In our case we have also calculated the emittance for that
portion of the bunch that contains 95% of the proton charge
(solid brown curve). As this modified definition excludes
the tail ends of the beam, the fractional emittance is smaller

0 5 10 15 20 25
-2

0

2

4

6

8
10-9

0

1

2

3

4

5

6

10-9

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

10-9

0

1

2

3

4

5

6

10-9

FIG. 3. Plots of the cooling and diffusion functions versus the scaled synchrotron action J̃ (data for the eRHIC parameter set). The
right subplot focuses on cooling and diffusion for small action values.
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different times (data for the eRHIC parameter set).
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than the one for the entire bunch. Moreover, being a
quantity that largely excludes the tail regions of the
distribution, the 95% emittance is less sensitive than the

total rms emittance with respect to the tail heating effect
discussed below.
Moving counterclockwise, the remaining subfigures of

Fig. 4 show snapshots of the proton distribution function, as
well as the current and local energy spread profiles at
different times. The last quantity is defined by σ�hðz; tÞ2 ∝R∞
0 dηη2F̄hððη2 þ z2Þ=2; tÞ and is used as a measure of the
local value of the energy spread along the bunch. It is
evident that both the proton distribution function and the
current profile exhibit a gradual sharpening trend as a result
of the cooling effect. At the same time, the right lower
subfigure shows that, while the core part of the beam (i.e.,
the one containing most of the current) undergoes cooling,
there is considerable heating at the tail ends of the bunch, a
tendency that becomes more and more pronounced with
time. This tail heating effect explains why, in contrast to the
fractional emittance and peak current (both of which are
roughly stabilized after the first four hours), the total
emittance starts to increase at about that time. In exper-
imental practice this secondary heating effect should be
kept under control since, when coupled with dispersion, it
can generate deleterious beam halos.
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FIG. 5. IBS diffusion term versus the scaled synchrotron action
J̃ at different times (data for the eRHIC parameter set, assuming
both cooling and IBS).
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shown compare and contrast the cases with and without cooling.
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IV. ADDING INTRABEAM SCATTERING

An important source of diffusion in a storage ring is
intrabeam scattering (IBS) arising out of small-angle
Coulomb collisions between the hadrons. In this section,
we seek to incorporate this effect into our formalism in a
simplified, phenomenological fashion. To begin with, we
note that the additional contribution to the diffusion
coefficient due to IBS is proportional to the hadron
current Ih [12]. As a result, this contribution can be
expressed as

DIBS ¼
σ2h;0
τIBS

Ih
Ih;0

; ð24Þ

where τIBS is a measure of the IBS timescale. Written in this
form, the above quantity represents the local diffusion
rate due to IBS, which depends on the local current
Ihðz; t̃Þ along the hadron beam. To switch from this local
quantity to its ϕ-averaged counterpart, we follow the
same procedure as before. In particular, the equivalent to
Eq. (15) is

D̃IBSðJ̃; t̃Þ ¼
1

π

Z
π

−π
dϕ

τsDIBSðJ̃;ϕ; t̃Þ
σ2h;0

sin2ϕ; ð25Þ

where DIBSðJ̃;ϕ;t̃Þ→ðσ2h;0=τIBSÞIhð
ffiffiffiffiffi
2J̃

p
cosϕ;t̃Þ. Combin-

ing these relations with the expression of Eq. (17) for the
hadron current ratio, we obtain

D̃IBSðJ̃; t̃Þ¼
2τs
πτIBS

R
π
0 dϕsin

2ϕ
R
∞
0 dη̃F̄hðη̃2=2þ J̃cos2ϕ; t̃ÞR
∞
0 dη̃F̄hðη̃2=2;0Þ

;

ð26Þ

with the total kinetic equation being

∂F̄h

∂ t̃ ¼ ∂
∂J̃ ðν̃ðJ̃ÞF̄hÞþ

∂
∂J̃

�
J̃fξðt̃ÞD̃0ðJ̃ÞþD̃IBSðJ̃; t̃Þg

∂F̄h

∂J̃
�
:

ð27Þ

Just like Eq. (20) the above equation can also be solved
numerically in an iterative way.
With the updated model in place, we solve the kinetic

equation for the eRHIC parameters assuming an IBS
timescale of about 1h (which roughly matches the initial
cooling rate). The results of our simulation run are
summarized in Figs. 5–7. In the first of these three figures
we plot the IBS diffusion term as a function of the action at
different times, establishing that it is much less sharply-
peaked than the original diffusion term D̃0ðJ̃Þ (though
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FIG. 7. Upper panel: hadron current profiles at selected times during the cooling process. Lower panel: hadron local energy spread
profiles at the same times. As in Fig. 6, we include data with and without cooling.
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comparison with Fig. 3 also shows that their peak values
are of the same order of magnitude). This, of course, is just
another manifestation of the fact that the bunch length of
the cooler electron beam is much shorter than that of the
hadron beam. As far as Figs. 6–7 are concerned, the left-
hand side subplots refer to the full case with cooling and
IBS, while their right-hand side counterparts correspond to
a scenario where IBS is not mitigated by any cooling.
Moreover, in Fig. 6 we are concerned with the evolution of
the longitudinal emittance and peak current of the proton
beam as it is being circulated through the MBEC lattice
(also including snapshots of the distribution function),
whereas Fig. 7 shows how the proton current and local
energy spread profiles change with time.
For the full case (cooling and IBS) we note that a rapid

increase of the peak current by almost a factor of two within
two hours is followed by a long plateau and an eventual
slight decrease. At the same time, the core longitudinal
emittance (defined for the part of the beam with 95% of the
total charge) eventually drops to about 40% of its starting
value, while the full emittance starts growing steadily after
an early reduction, eventually surpassing its initial value
after five hours (an indicator of tail heating). Reflecting the
above trends, the proton current profile becomes sharper
with time (though not quite as sharp as in Fig. 4), while the
cooling of the core part of the beam is again accompanied
by heating of the tail regions. Because of the additional
amount of diffusion due to intrabeam scattering the
stabilized values for the peak current and core emittance
are (respectively) smaller and larger compared to the case
with no IBS. On the other hand, the contrast with the results
that include only IBS is striking. Without cooling, both
values of the emittance grow with time, with the peak
current decreasing and the proton bunch becoming steadily
broader. As expected, unmitigated IBS leads to heating all
along the proton bunch, though not at a uniform rate (the
heating being more intense near the current peak). Overall,
this preliminary, qualitative result appears to support the
notion that MBEC can effectively counteract IBS in order
to preserve the necessary beam quality for a typical eRHIC
configuration, at least as far as the core part of the bunch is
concerned. Lastly, we should note that the tail heating
effect can cause issues with beam lifetime. Indeed, a
numerical calculation shows that as much as 7% of the
bunch population is knocked out of the cooling region
(J̃ < 4) after 5 h. A more detailed analysis would be
required in order to accurately link this effect to possible
beam loss due to halo formation.

V. SUMMARY

In this paper we have developed a formalism that covers
the long-term ion beam evolution in microbunched electron
cooling, including the key effects of synchrotron oscilla-
tions and intra-beam scattering (IBS). A kinetic equation is
derived for the ion distribution function, which can be

solved numerically in an iterative fashion. This approach
has been benchmarked with a simplified test case that
yields an analytical solution for the distribution function.
We have used the resulting numerical algorithm to study a
hypothetical MBEC cooler for the parameters of eRHIC.
The main conclusion is that the cooling of the longitudinal
phase space of the proton beam is accompanied by a bunch
compression effect, along with a corresponding peak
current boost. Additionally, while the core part of the
compressed bunch (which contains the bulk of the charge)
undergoes substantial cooling, this benefit can sometimes
be accompanied by appreciable heating of the tail ends of
the beam. At any rate, the available degree of cooling from
MBEC appears, overall, to be sufficient to counteract the
natural emittance growth due to IBS, an observation with
potentially significant practical implications. Our analysis
has disregarded transverse cooling for simplicity’s sake,
although an extension to incorporate that effect, along with
synchro-betatron coupling, is possible. The same is true of
shot noise effects in the electron beam, which—though
neglected here—can also be included in our 1D frame-
work.
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APPENDIX A: COOLING TERM IN THE
KINETIC EQUATION

In view of Eq. (6), we start from the expressions for the
derivatives with respect to J and ϕ:

∂
∂J ¼ 1ffiffiffiffiffi

2J
p cosϕ

∂
∂zþ

1ffiffiffiffiffi
2J

p sinϕ
∂
∂η ;

∂
∂ϕ ¼ −

ffiffiffiffiffi
2J

p
sinϕ

∂
∂zþ

ffiffiffiffiffi
2J

p
cosϕ

∂
∂η : ðA1Þ

From these equations, we deduce that

η
∂Fh

∂z − z
∂Fh

∂η ¼ −
∂Fh

∂ϕ : ðA2Þ

We can also find the derivative with respect to η that is
needed on the right-hand side of the cooling equation. For
this case, we find

∂
∂η ¼

ffiffiffiffiffi
2J

p
sinϕ

∂
∂J þ

1ffiffiffiffiffi
2J

p cosϕ
∂
∂ϕ : ðA3Þ

Neglecting the diffusion term for the moment, the kinetic
equation takes the form
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∂Fh

∂t −
∂Fh

∂ϕ ¼ 1

2

� ffiffiffiffiffi
2J

p
sinϕ

∂
∂J þ

1ffiffiffiffiffi
2J

p cosϕ
∂
∂ϕ

�
fνð

ffiffiffiffiffi
2J

p
cosϕ;

ffiffiffiffiffi
2J

p
sinϕÞFhg: ðA4Þ

We now average this equation over ϕ by applying the operator ð2πÞ−1 R π
−π dϕ… to both sides of the equation. This

annihilates the second term on the left-hand side. Let us consider the first term on the right hand side, namely

1

2

1

2π

Z
π

−π
dϕ

ffiffiffiffiffi
2J

p
sinϕ

∂
∂J fνð

ffiffiffiffiffi
2J

p
cosϕ;

ffiffiffiffiffi
2J

p
sinϕÞFhg

¼ 1

2

1

2π

∂
∂J

Z
π

−π
dϕ

ffiffiffiffiffi
2J

p
sinϕνð

ffiffiffiffiffi
2J

p
cosϕ;

ffiffiffiffiffi
2J

p
sinϕÞFh −

1

2

1

2π

Z
π

−π
dϕ

1ffiffiffiffiffi
2J

p sinϕνð
ffiffiffiffiffi
2J

p
cosϕ;

ffiffiffiffiffi
2J

p
sinϕÞFh: ðA5Þ

Next, we consider the last term on the right-hand side of Eq. (A4), that is

1

2

1

2π

Z
π

−π
dϕ

1ffiffiffiffiffi
2J

p cosϕ
∂
∂ϕ fνð

ffiffiffiffiffi
2J

p
cosϕ;

ffiffiffiffiffi
2J

p
sinϕÞFhg ¼ 1

2

1

2π

Z
π

−π
dϕ

1ffiffiffiffiffi
2J

p sinϕνð
ffiffiffiffiffi
2J

p
cosϕ;

ffiffiffiffiffi
2J

p
sinϕÞFh: ðA6Þ

We see that Eq. (A6) cancels the last term in Eq. (A5). What is left is just the first term in Eq. (A5) and the kinetic equation
becomes

∂F̄h

∂ t̃ ¼ 1

2

1

2π

∂
∂J

� ffiffiffiffiffi
2J

p Z
π

−π
dϕ sinϕνð

ffiffiffiffiffi
2J

p
cosϕ;

ffiffiffiffiffi
2J

p
sinϕÞFh

�
; ðA7Þ

where F̄hðJ; t̃Þ ¼ ð2πÞ−1 R π
−π Fhdϕ is the averaged distribution function. In the limit when ωs ≫ 1=tc—where tc is the

cooling time—the synchrotron motion makes the distribution function almost independent of ϕ, so in this equation we can
replace Fh by F̄h on the right-hand side. The resulting equation is

∂F̄h

∂ t̃ ¼ 1ffiffiffi
2

p ∂
∂J ð

ffiffiffi
J

p
ν̄ðJÞF̄hÞ; ðA8Þ

where

ν̄ðJÞ ¼ 1

2π

Z
π

−π
dϕνð

ffiffiffiffiffi
2J

p
cosϕ;

ffiffiffiffiffi
2J

p
sinϕÞ sinϕ: ðA9Þ

Equation (A8) conserves the total number of particles. If integrated with weight J, it yields the rate of cooling for the
average value of J.

APPENDIX B: DIFFUSION TERM IN THE KINETIC EQUATION

Next, we would like to repeat the derivation if we include a standard diffusion term of the form

DðzÞ ∂
2Fh

∂η2 : ðB1Þ

To start with, we have the relations

∂
∂J D ¼ D0ffiffiffiffiffi

2J
p cosϕ;

∂
∂ϕD ¼ −D0 ffiffiffiffiffi

2J
p

sinϕ; ðB2Þ

where the prime denotes differentiation with respect to the single argument (in this case, z). First, in view of Eq. (A3), we
write the right-hand side of Eq. (B1) as

D

� ffiffiffiffiffi
2J

p
sinϕ

∂
∂J þ

1ffiffiffiffiffi
2J

p cosϕ
∂
∂ϕ

�� ffiffiffiffiffi
2J

p
sinϕ

∂Fh

∂J þ 1ffiffiffiffiffi
2J

p cosϕ
∂Fh

∂ϕ
�
: ðB3Þ

There will be 3 terms here and we need to average them over ϕ. The first one is when we take the first term from the first
bracket and the first term from the second one, yielding
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I1 ¼ D
ffiffiffiffiffi
2J

p
sinϕ

∂
∂J

� ffiffiffiffiffi
2J

p
sinϕ

∂Fh

∂J
�

¼ 2
∂
∂J JDsin2ϕ

∂Fh

∂J −
ffiffiffiffiffi
2J

p
sin2ϕ

∂Fh

∂J
∂
∂J ½D

ffiffiffiffiffi
2J

p
�

¼ 2
∂
∂J

�
DJsin2ϕ

∂Fh

∂J
�
−

ffiffiffiffiffi
2J

p
sin2ϕ

∂Fh

∂J
�∂D
∂J

ffiffiffiffiffi
2J

p
þD

1ffiffiffiffiffi
2J

p
�

¼ 2
∂
∂J

�
DJsin2ϕ

∂Fh

∂J
�
−

ffiffiffiffiffi
2J

p
sin2ϕ

∂Fh

∂J
�
D0 cosϕþD

1ffiffiffiffiffi
2J

p
�
: ðB4Þ

The second term is when we take the first term in the first bracket of Eq. (B3) and apply it to the second term in the second
bracket. The end result is

I2 ¼ D
ffiffiffiffiffi
2J

p
sinϕ cosϕ

∂
∂J

�
1ffiffiffiffiffi
2J

p ∂Fh

∂ϕ
�

¼ D
ffiffiffiffiffi
2J

p
sinϕ cosϕ

∂
∂ϕ

∂
∂J

�
Fhffiffiffiffiffi
2J

p
�

→ −
ffiffiffiffiffi
2J

p ∂
∂J

�
Fhffiffiffiffiffi
2J

p
� ∂
∂ϕ ðD sinϕ cosϕÞ

¼
�
Fh

2J
−
∂Fh

∂J
�
½−D0 ffiffiffiffiffi

2J
p

sin2ϕ cosϕþDcos2ϕ −Dsin2ϕ�; ðB5Þ

where the arrow indicates a transformation that takes into account the averaging over ϕ.
The third term is when we apply the second term in the first bracket of Eq. (B3) to the second bracket, which yields

I3 ¼ D
1ffiffiffiffiffi
2J

p cosϕ
∂
∂ϕ

� ffiffiffiffiffi
2J

p
sinϕ

∂
∂J þ

1ffiffiffiffiffi
2J

p cosϕ
∂
∂ϕ

�
Fh → −

1ffiffiffiffiffi
2J

p
� ffiffiffiffiffi

2J
p

sinϕ
∂Fh

∂J þ 1ffiffiffiffiffi
2J

p cosϕ
∂Fh

∂ϕ
� ∂
∂ϕ ðD cosϕÞ

¼ −
1ffiffiffiffiffi
2J

p
� ffiffiffiffiffi

2J
p

sinϕ
∂Fh

∂J þ 1ffiffiffiffiffi
2J

p cosϕ
∂Fh

∂ϕ
�
½−D0 ffiffiffiffiffi

2J
p

sinϕ cosϕ−D sinϕ�: ðB6Þ

We now add up all terms contained in I1, I2, and I3, the result being

2
∂
∂J

�
DJsin2ϕ

∂Fh

∂J
�
þ Fh

2J
½−D0 ffiffiffiffiffi

2J
p

sin2ϕ cosϕþDcos2ϕ −Dsin2ϕ� − ∂Fh

∂J ½−D0 ffiffiffiffiffi
2J

p
sin2ϕ cosϕþDcos2ϕ�

þ
�
1

2J
cosϕ

∂Fh

∂ϕ D0 ffiffiffiffiffi
2J

p
sinϕ cosϕ

�
þD sinϕ

�
sinϕ

∂Fh

∂J þ 1

2J
cosϕ

∂Fh

∂ϕ
�
: ðB7Þ

We can discard the terms that contain ∂Fh=∂ϕ—as this term vanishes when we replace Fh → F̄h. Hence we are left with

2
∂
∂J

�
DJsin2ϕ

∂Fh

∂J
�
þFh

2J
½−D0 ffiffiffiffiffi

2J
p

sin2ϕcosϕþDcos2ϕ−Dsin2ϕ�−∂Fh

∂J ½−D0 ffiffiffiffiffi
2J

p
sin2ϕcosϕþDcos2ϕ−Dsin2ϕ�: ðB8Þ

The expression in square brackets is equal to a total angle derivative, namely

∂
∂ϕ ðD sinϕ cosϕÞ; ðB9Þ

so when we replace Fh → F̄h and integrate over ϕ, this term disappears and we obtain only the first term in Eq. (B8). To
recapitulate, ϕ-averaging the original diffusion term yields the contribution

∂
∂J

�
D̄ðJÞJ ∂F̄h

∂J
�
; ðB10Þ

to the right-hand side of the kinetic equation, where

D̄ðJÞ ¼ 1

π

Z
π

−π
dϕDð

ffiffiffiffiffi
2J

p
cosϕÞsin2ϕ: ðB11Þ
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