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In this paper we present a novel approach to free electron laser (FEL) simulations based on the
decomposition of the electromagnetic field in a finite number of radiation modes. The evolution of each
mode amplitude is simply determined by energy conservation. The code is developed as an expansion of
the general particle tracer framework and adds important capabilities to the suite of well-established
numerical simulations already available to the FEL community. The approach is not based on the period
average approximation and can handle long-wavelength waveguide FELs as it is possible to include the
dispersion effects of the boundaries. Furthermore, it correctly simulates lower charge systems where both
transverse and longitudinal space charge forces play a significant role in the dynamics. For free-space FEL
interactions, a source dependent expansion approximation can be used to limit the number of transverse
modes required to model the field profile and speed up the calculation of the system’s evolution. Three
examples are studied in detail including a single pass FEL amplifier, the high efficiency TESSA266
scenario, and a THz waveguide FEL operating in the zero-slippage regime.
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I. INTRODUCTION

Numerical simulations have played a significant role in
the development of x-ray free electron lasers [1]. As the
theory underlying the free electron lasers (FEL) [2,3] only
admits analytical solutions under strong approximations,
accelerator physicists have over the years developed a well
assorted suite of numerical approaches to better understand
the details of the evolution of charged particles and
electromagnetic fields in their interaction through magnetic
undulators.
There are a large variety of FEL simulation codes and

many good reviews on the subject have been given [4–6].
These range from fast one dimensional models (PERSEO
[7], PERAVE [8]) which help in quick design studies and can
be used to explore time-dependent and non linear effects, to
more complete 3D simulations (GINGER [9], GENESIS 1.3
[10], FAST [11], PUFFIN [12], MINERVA [13]) which include
transverse effects and can simulate wakefields and complex
beam distributions with correlations between the phase
spaces. Each code has been (at least initially) developed to

solve a particular FEL problem, but it has often been the
case that, by comparing and understanding the various
assumptions in each model, insights on the various physical
processes taking place in an FEL system have been gained.
Here we discuss yet another instance of a three dimen-

sional FEL simulation based on the decomposition of the
electromagnetic field in a discrete set of transverse and
frequency modes. In this respect it is more similar to the
family of frequency-based codes like PUFFIN or MINERVA.
The code is built as an expansion of the widely available
general particle tracer code (GPT) for charged particle
simulations [14]. In this sense, it can use a complete set
of already built-in functions for beam transport and inter-
face seamlessly with photoinjector [15] and CSR calcu-
lations [16]. This choice also brings several important
advantages. Similarly to PUFFIN and MINERVA, the calcu-
lation does not resort to period averaging and a full
(simulated or even measured) undulator field map can be
used to track the particles. The effects of the interaction at
the undulator entrance and exit can therefore be correctly
evaluated. Furthermore, GPT functions allow space charge
effects to be naturally incorporated, including the trans-
verse space charge effects that at low beam energy play a
significant role in the beam transport and evolution.
The code can be used to simulate both free-space and

waveguide propagating electromagnetic fields and can take
into account the dispersive properties of the medium. In
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free-space there is some freedom in choosing the basis
for the field expansion, making it possible to take advan-
tage of the source dependent expansion [17,18] algorithm
to reduce the number of modes needed to accurately
describe the field and significantly speed up the calculation,
a capability that also exists in MINERVA.
The paper is organized as follows. We first review the

modal expansion and the equations implemented in the
simulation [19]. We then make three different application
examples. The first one is just a simple seeded FEL
amplifier in vacuum (analyzed both in helical and planar
geometry). The second one applies to the study of the
system in the strong nonlinear regime and refers to the
simulation of the TESSA266 experiment [20]. The final
example is a waveguide THz FEL where the code is used to
correctly simulate the zero-slippage amplification [21].

II. MODE EXPANSION

In order to self-consistently simulate the interaction
between radiation and electrons, we begin with theMaxwell
wave equation for the complex field amplitude

�
∇2⊥ þ ∂2

∂z2 −
1

c2
∂2

∂t2
�
Eðx⃗; z; tÞ ¼ μ0

∂J⃗ðx⃗; z; tÞ · n̂�

∂t ð1Þ

where n̂ and x⃗ denote the polarization vector and transverse
coordinates, respectively. Defining ẑ as the direction of
propagation, the polarization vector can be written in
complex notation as n̂ ¼ x̂ or n̂ ¼ ðx̂� iŷÞ= ffiffiffi

2
p

for linearly
and circularly polarized light. The polarization vector
formalism is particularly convenient to unify the description
of the planar and helical geometries. The time-averaged
Poynting vector (representing the wave intensity) can be
written in both cases as ϵ0cjEðx⃗; z; tÞj2=2.
If we write the scalar field amplitude in terms of its

z-coordinate spatial Fourier transform

Eðx⃗; z; tÞ ¼ 1

2π

Z
∞

−∞
Êðx⃗; k; tÞeikz−iωtdk; ð2Þ

the left-hand side (LHS) of the equation can be rewritten as

LHS ¼ 1

2π

Z
∞

−∞

�
∇2⊥ − k2 þ ω2=c2 þ 2iω

c2
∂
∂t
�

× Êðx⃗; k; tÞeikz−iωtdk ð3Þ

where we factored out the harmonic time-dependence and
have neglected the second derivative of the slowly varying
field amplitude, i.e., ∂2Eðx⃗; k; tÞ=∂t2 ≪ ω2Eðx⃗; k; tÞ.
The current density on the RHS can be written in

complex notation using the particle positions and velocities

J⃗ðz; tÞ ¼
X
j

qjv⃗jδðx⃗ − x⃗jðtÞÞδðz − zjðtÞÞ; ð4Þ

where v⃗j ¼
ffiffiffi
2

p
Krmsce−ikuzj=γjn̂ represents the particle

velocities in the undulator, Krms ¼ eBrms=mcku is the
root mean square (rms) undulator strength parameter,
λu ¼ 2π=ku is the undulator period, e and m are the charge
and mass of an electron, and γj is the relativistic factor.
Note that in most simulations a macroparticle model is used
where one simulation particle represents multiple actual
electrons in the beam. In this case, the sum in Eq. (4) will
run over the macroparticle index.
Using nested Fourier transforms, we have

RHS ¼ μ0
2π

∂
∂t

�ZZ
∞

−∞
J⃗ðx⃗; z0; tÞe−ikz0dz0eikzdk

�
· n̂�: ð5Þ

The delta function allows easy integration over z0. The time
derivative is straightforward using chain rule with zjðtÞ
after noticing that K and γ have a very slow dependence on
zj (dKdz ≪ ku and dγ

dz ≪ ku) and the transverse velocity is
negligible.

RHS ¼ −iμ0
2π

Z
∞

−∞

X
j

qjcβz;jðku þ kÞðv⃗j · n̂�Þ

× δðx⃗ − x⃗jÞe−ikzjþikzdk: ð6Þ
Combining Eqs. (3) and (6), we can then rewrite Eq. (1)

for the spatial frequency components of the field as�
∇2⊥ − k2 þ ω2

c2
þ 2iω

c2
∂
∂t
�
Êðx⃗; k; tÞ ¼ Sðx⃗; k; tÞ ð7Þ

where the source term is obtained by projecting the current
density onto n̂ as

Sðx⃗; k; tÞ ¼
X
j

− iμ0cqjβz;jðku þ kÞ

× ðv⃗j · n̂�Þδðx⃗ − x⃗jÞe−ikzjþiωt: ð8Þ
Each spatial frequency component of the field can be

further decomposed into an orthogonal mode basis labeled
by index m and normalized such that ∬Θ�

mΘndx⃗ ¼ δmnAm
where Θmðx⃗; k; tÞ is one of the complex mode solutions of
the source-free wave equation [i.e., S ¼ 0 in Eq. (7)] and
Am is a normalization constant.
Inserting Ẽðx⃗; k; tÞ ¼ P

m amðtÞΘmðx⃗; k; tÞ into Eq. (7),
we can multiply both sides of the equation by Θ�

n and
integrate over the transverse coordinates ∬ dx⃗ to obtain the
mode amplitude excitation equation [19]

_am ¼ −
X
j

qj
2ϵ0Am

�
cβz;jðku þ kÞ

ω

�
ðv⃗j · n̂�ÞΘ�

m;je
−ikzjþiωt

ð9Þ
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where Θm;j means evaluating the mth mode at the jth
particle position. As we sum over the particles, only the
spatial frequencies that are nearly resonant with the particle
speeds (βzj ¼ βph ¼ ω=cðkþ kuÞ) will contribute to a net
energy exchange with the field so that the bracketed term
can be approximated as 1.
This mode excitation equation can also be independently

derived from (and is fully consistent with) energy con-
servation. To see this, we write the energy of the system W
using the spatial frequency Fourier transform of the electric
field as

W ¼ 1

2

ϵ0
2π

Z X
m

jamj2Amdk: ð10Þ

After differentiating, we find

dW
dt

¼
Z X

m

a�m
2π

�
_am

ϵ0Am

2

�
dkþ c:c: ð11Þ

The rate of change in the electromagnetic energy is the
negative of the work done on the particles,X
j

F⃗j ·v⃗j ¼ −
X
j

qjℜðEðx⃗; z; tÞn̂Þ ·ℜðv⃗jÞ

¼
X
j

qj
4
ðE�ðx⃗; z; tÞn̂� · v⃗jÞ þ c:c: ð12Þ

¼
Z X

m

a�m
2π

�X
j

qj
4
Θ�

m;je
−ikzjþiωtðn̂� · v⃗jÞ

�
dk

þ c:c: ð13Þ

where terms that do not satisfy the resonant condition
average to zero in the particle sum. Equating the coef-
ficients of a�m leads to

_am ¼ −
X
j

qj
2ϵ0Am

ðv⃗j · n̂�ÞΘ�
m;je

−ikzjþiωt ð14Þ

which matches our previous calculation in (9). In other
words, the evolution of the amplitude of each electromag-
netic mode in the system can be simply calculated by
adding the energy changes induced by that mode on the
particles.

A. GPT numerical implementation

In order to extend the capabilities of GPT to self-
consistently calculate the interaction with the radiation
modes in the undulator, we based our development on the
built-in function that computes the interaction with the
modes of a gaussian optical resonator [22].
In the numerical model, the continuous integral of (2) is

approximated using a discrete basis of spatial frequency
modes

E⃗ðx⃗; z; tÞ ¼
X
q

ðuq þ ivqÞΘqðx⃗; k; tÞeikqz−iωqtn̂ ð15Þ

where the sum over index q includes both spatial frequen-
cies and transverse modes. With respect to the previous
section, uq and vq now represent the actual electric field
amplitudes and have absorbed the user-defined mode
separation interval Δk and the 1=2π from the Fourier
transform. Consequently, the source term in Eq. (7) also
gains an additional factor of Δk=2π.
In the input file, the user can specify the number of

modes and the spatial frequency interval for the simulation.
That choice of interval and associated spectral resolution
should be taken judiciously to include the resonant fre-
quency of the system and to correctly simulate the radiation
bandwidth. Since the latter depends on various factors
including the gain parameter, the length of the undulator,
and the electron bunch length, it is always advisable to
check the results for consistency and convergence as the
number of modes and their separation is varied.
The choice of the spatial frequency interval defines the

distance in the z-dimension L ¼ 2π=Δk over which peri-
odic boundary conditions are applied for the field. The
frequencies ωq are determined from the longitudinal wave
numbers using the mode dispersion relation given by ωq ¼
ckq in free space or ω2

q ¼ ðk2mn þ k2qÞc2 in a waveguide.
Writing the complex mode amplitude as Θq ¼ Tqeiψq ,

we can then express the x and y component of the
electromagnetic field at time t at the particle locations as

Exðx⃗j; zj; tÞ ¼
X
q

Tqðuq cosϕq − vq sinϕqÞjn̂ · x⃗j

Eyðx⃗j; zj; tÞ ¼ −
X
q

Tqðuq sinϕq þ vq cosϕqÞjn̂ · y⃗j

B⃗ ¼ 1

ωq
k̂q × E⃗ ð16Þ

where ϕq ¼ kqzj − ωqtþ ψq.
From these fields, the electromagnetic forces acting on

the particles are computed at each time step. Particle
velocities and positions are then used to self-consistently
calculate the evolution of the amplitudes of each mode (uq
and vq) according to Eq. (9).
It is also possible to run the code in single frequency

mode. In this case, the field is assumed to be perfectly
periodic, with only one spatial frequency term in Eq. (15)
and the time-averaged sum (now only running over the
transverse modes) ϵ0π

Δk
P

qðu2q þ v2qÞAq corresponds to the
total radiation field power.

B. Curved parallel plate waveguide

The geometry of the interaction to be simulated deter-
mines the choice of the mode basis Θm and the associated
dispersion relation. An important application of our new
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code is the study of the evolution of an FEL system in a
waveguide. The dispersive properties in the waveguide can
not be easily modeled in conventional FEL codes which
adopt a time-dependent (slice) model for the description of
the radiation. For this case we can expand the field in the
complete set of orthonormal modes for the particular
waveguide cross section under study. Here we focus on
the TE modes of a curved parallel plate waveguide [21]
where the fields can be written in terms of the longitudinal
component of the magnetic field Hz. The first two TE
modes are shown in Fig. 1.
The transverse wave number kmn for the modes in the

waveguide is written as

kmn ¼
1

b

�
nπ þ ð2mþ 1Þtan−1 bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Rb − b2
p

�
ð17Þ

where b is the separation and R is the radius of curvature of
the waveguide. The confocal case (i.e., R ¼ b) minimizes
diffraction losses and is typically employed in practice [23],
but in the numerical model these parameters can be chosen
by the user separately.
The dispersion relation is then expressed as

kzðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

c2
− k2mn

s
: ð18Þ

Analytical expressions for the field Em;nðr⊥Þ in the guide
can be found in [23] and [24]. The longitudinal field Φmn,
corresponding to Hz for TE modes and Ez for TM modes
can be written in terms of Hermite polynomials Hem as

Φmn ¼
e− β2mnx2

αmnðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αmnðyÞ4

p Hem

�
2βmnxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αmnðyÞ

p �
e�ikzz

�
cos

sin

�

×

�
kmnyþ

2β4mnyx2

kmnαmnðyÞ
−
�
mþ 1

2

�
arctan

2β2mny
kmn

�
ð19Þ

where

αmnðyÞ ¼ 1þ 4
β4mny2

k2mn

βmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rb − b2

p
s

: ð20Þ

The transverse field components are then calculated as

Eðx;yÞ ¼
−i
k2mn

�
kz

∂Ez

∂ðx; yÞ � ωμ
∂Hz

∂ðy; xÞ
�
: ð21Þ

The effective mode area

Amn ¼
R jEmnðr⊥Þj2dr⊥

jEpeakj2
ð22Þ

is hard-coded in the software.

C. Free space propagation source dependent expansion

Another important case is where the waveguide bounda-
ries are removed or very far away so that one can use
free-space modes to describe the radiation field. Either
Laguerre-Gaussian or Hermite-Gaussian modes can be used
depending on the symmetry of the problem. Assuming
azimuthal symmetry (i.e., r2 ¼ jx⃗j2), we start by writing the
complex scalar field amplitude as a sum of different spatial
frequency Laguerre-Gaussian modes,

Eðx⃗; z; tÞ ¼
X
n;m

an;mðtÞΘn:mðr; tÞeiknz−iωnt ð23Þ

where we explicitly show that the sum index runs over the
different spatial frequencies (n) and the transverse mode
numbers (m). Themodal basis for the field expansion can be
written as

Θn;mðr; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ αnðtÞ2
p Lm

�
2r2

wnðtÞ2
�
e−r

2=wnðtÞ2

× eiαnðtÞr2=wnðtÞ2−ið2mþ1ÞψnðtÞ ð24Þ

where Lm is the Laguerre polynomial of order m, wn
and αn indicate the waist size and the curvature of the
phase fronts for the mode having spatial frequency kn,
and ψnðtÞ ¼ arctan αnðtÞ. In the case that no electron
beam is present and the radiation is freely diffracting,

wnðtÞ ¼ w0;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2t2=z2r;n

q
and αnðtÞ ¼ ct=zr;n with the

implicit frequency dependence in zr;n ¼ knw2
0;n=2, the

Rayleigh range of the nth-mode. The mode area normali-
zation constants are

An;m ¼ πw2
0;n=2: ð25Þ

The effectiveness of the Laguerre-Gaussian mode expan-
sion depends critically on the choice of the waist size and
location, and in the absence of any prior knowledge or extra

FIG. 1. TE10 and TE11 y-component of the electric field for a
curved parallel plate waveguide. The TE10 mode is the one that
has the largest FEL coupling to extract energy from a relativistic
electron beam.
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information, the simulation should include a large number
of transverse modes in order to accurately model the
radiation field.
In many cases, as for example when the FEL is seeded

with an external laser and the radiation transverse profile is
mainly dominated by one or a few modes, it is a good
approximation to truncate the sum to only include a small
number of terms. To further minimize this number (and
proportionally speed up the computational time), it is
possible to take advantage of the source dependent expan-
sion originally developed for the FEL framework by
Sprangle et al. [17] where the waist size and location of
the expansion are adjusted along the interaction.
Following the original work in [17] (recently revisited

by Baxevanis et al. [18]), after plugging Eq. (23) into the
inhomogeneous wave equation, we obtain a coupled
system of differential equations for the mode amplitudes
in terms of the projections of the source term onto the
mode basis.

Fm;n ¼
c2

ωnπw2
0;n

Z
SðrÞΘ�

mðrÞdx⃗

Using the definition of S from (8), it is possible to write the
source projection moments Fm;n in terms of sums over the
particle (or macroparticle) coordinates.
We can then solve for how wn and αn should vary in

order to truncate the system at the desired order. For
example, neglecting all m ≥ 1 we get

∂un
∂t ¼ Gnðαnun − vnÞ þ ðunBI;n þ vnBR;nÞ þ F0I;n

∂vn
∂t ¼ Gnðun þ αnvnÞ þ ðvnBI;n − unBR;nÞ − F0R;n

∂αn
∂t ¼ 2ð1þ α2nÞc2

ωw2
n

þ 2BR;n − 2αnBI;n

∂wn

∂t ¼ 2c2αn
ωnwn

− wnBI;n ð26Þ

where Gn ¼ 2
1þα2n

ðBR;n − αnBI;nÞ. Bn represents the cor-

rection to the mode waist and radius induced by the source
and can be written as

Bn ¼ F1ne−2iψn=an: ð27Þ

A closer inspection to Eq. (26c,d)indicates that c=jBnj
is a distance which sets the scale for the variation of the
mode radius. In multifrequency simulations, the modes
with small initial amplitudes cause the magnitude of Bn
to diverge. This is taken care of by setting a user-defined
input parameter Lthresh which limits the spot size variation
along the interaction by setting Bn ¼ 0 whenever
c=jBnj < Lthresh.

The equations for radiation evolution are then self-
consistently solved with the GPT equations of motion for
the macroparticles.
The general equations for complex mode evolution and

Bn with M spatial modes are

_an;m ¼ ½BI;n þ αnGn þ ið2mþ 1ÞðGn − BR;nÞ�an;m
þ imBne2iψnan;m−1

þ iðmþ 1ÞB�
ne−2iψnan;mþ1 − iFm;n

an;m≥M ¼ 0 ⇒ Bn ¼
FM;ne−2iψn

Man;M−1
: ð28Þ

Higher ordermodes with small initial amplitudes are initially
considered perturbations to theGaussianmode such that (27)
still holds. Once the approximation ja1j=ja0j ≪ 1 breaks
down (≈.01), the correct definition of Bn from (28) can be
used without divergence or significant numerical noise. In
practice, errors from the perturbative approximation are
negligible since it is accurate far into the linear regime.

D. Quiet start

In multifrequency simulations where many longitudinal
wave numbers and corresponding frequencies are used to
simulate the field along a finite length bunch, it is critical to
pay attention to the details associated with loading the
particle coordinates in the simulation. Because it is
common to have a much smaller number of macroparticles
than real number of electrons, the noise in the bunching
source term can be unacceptably high, causing unphysical
growth of the field along the undulator.
This problem is common and well discussed in the vast

literature of simulations for FELs [25,26]. While there are a
number of possible solutions, our situation is slightly
complicated as we need to ensure that the intrinsic bunch-
ing is and remains very small for all of the discrete
frequencies in the simulation. This first requires equally
distributing particles in the z-coordinate over a length
L ¼ 2π=Δk. For example in Fig. 2 we show the input
phase space when the simulation spans a bandwidth of 3%
around the central wavelength of 266 nm. In this case, the
beam longitudinal profile (a Gaussian with rms bunch
length 30 μm) is initialized by assigning a different charge
weight to each macroparticle. When shot-noise effects are
desired, each macroparticle’s position is shifted by a small
dz according to well-described algorithms [27,28] to
achieve the correct statistics.
In addition, it is important to make sure that the noise

from other coordinates would not contribute to a growth
of the bunching as the beam propagates in the absence
of an interaction. This is taken care of by mirroring the
energy, transverse coordinates, and momenta over a
large number of 5D phase space bins. The number of
bins (typically larger than 32) should be chosen such
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that bunching in the absence of an interaction remains
small for all the discrete frequencies included in the
simulations.

III. EXAMPLES

We limit this discussion to three examples that highlight
the main features of our approach, even though it is
expected that the new code can be successfully applied
to a variety of other situations. The first case considered
is a classical single-pass FEL seeded amplifier which
will enable a quantitative comparison with the semiana-
lytical M. Xie formulas [29] as well as with a traditional
period-average code like GENESIS for both planar and
helical geometries. The second example is relevant to
the TESSA266 experiment being planned at the LEA
beamline at the APS linac in Argonne National
Laboratory aiming at very high conversion efficiency at
266 nm [20]. This case serves to illustrate the capability of
using a 3D magnetic field map for a fairly complicated
segmented tapered undulator. The code compares well
with a traditional FEL code like GENESIS, even deep in
the nonlinear regime. The details of the beam transport
(injection, entrance and exit sections, and especially undu-
lator break sections) can only be included in GENESIS by
using a linear beam transport approximation. GPT follows
the evolution of the beam distribution along the beamline
using field maps for all the magnetic elements (undulators,
quadrupoles and phase shifter dipoles) and calculates
energy exchange using the self-consistent interaction with
the free-space modes. The results allow us to quantitatively
include the effects of the entrance and exit sections (which
add an effective 0.5 periods of interaction on each side of
the undulator) and the trajectories after the prebuncher and
in between the undulators.

The final example is a waveguide THz FEL where
GPT-FEL is used to correctly simulate the zero-slippage
amplification. In this configuration, the strong dispersive
properties of the guide affect the interaction which takes
place in the zero-slippage regime. This scenario highlights
a unique capability of our code which would be particularly
challenging to simulate with traditional FEL codes.

A. FEL amplifier

The parameters for this example are reported in Table I
and somewhat arbitrarily chosen to be similar to an
untapered version of the TESSA266 experiment discussed
below. The main differences are that a 200 period long
undulator (with no break-section) is used for this example
and the input seed power is lowered to 10 kW. An analytical
model for the undulator magnetic field is used. The beam is

-400 -200 0 200 400

z(nm)
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FIG. 2. Left: longitudinal phase space distribution with quiet loading for time-independent (i.e., single frequency) simulation. Right:
longitudinal phase space distribution for multifrequency simulation. Particles are color coded by their charge weight. The projection
onto the z-axis shows the Gaussian current profile.

TABLE I. Parameters for the 266 nm FEL amplifier simulation.

Electron beam

Energy 375.5 MeV
Energy spread 0.1%
RMS bunch length 20 μm
ϵn;x; ϵn;y 2 mm · mrad
Ipeak 1 kA
σx, σy 72.5 μm
Radiation
λ1 266 nm
Input power 10 kW
Rayleigh length 1.41 m
Waist location 0 m
Undulator
Krms 2.82
λu 0.032 m
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transversely matched to the undulator natural focusing
(equally distributed in the horizontal and vertical plane)
so that its rms spot size remains nearly constant along the
interaction. The main goal of this example is to benchmark
GPT-FEL against the fitting formulas for the 3D gain length
of an untapered FEL amplifier and compare with a conven-
tional FEL code like GENESIS. We also used this example to
evaluate the performance of the single mode SDE approxi-
mation versus a simulation with n ¼ 11 azimuthally
symmetric Laguerre Gaussian SDE modes to decompose
the electromagnetic field. GPT-FEL took 1.5 minutes to
simulate 76800 particles on an 8 processor for the single
SDE mode and 5 minutes for 11 SDE modes.

The time-independent, single frequency results for the
planar and helical geometries are shown in Fig. 3 and
compared with GENESIS1.3. When using multiple spatial
modes, the gain lengths in the planar and helical case are in
good agreement (within 10%) of the semianalytical and
numerical model predictions. The radiation spot sizes

defined by σ2r ¼ 1
2

R
r2jEj2d2xR
jEj2d2x also closely follow the pre-

diction. Note that while a single SDE mode is able to
achieve qualitative results up to and near saturation, a larger
number of spatial modes is required to correctly simulate
the evolution of the radiation profile after saturation.

FIG. 3. A comparison of GPT-FEL running with single frequency SDE versus GENESIS1.3. (a) The Ming Xie predicted gain length for
the planar amplifier is 0.287 m. The simulated gain length for a single SDE spatial mode is 16% larger. Running with 11 SDE spatial
modes reduces the difference to 5.9%. (b) The predicted gain length for the helical amplifier is 0.224 m. Simulating 1 and 11 SDE modes
leads to differences of 15% and 8.2%, respectively.

FIG. 4. GPT-FEL results for 31 frequencies, each with a single gaussian transverse mode. (a) Waterfall plot of normalized power.
(b) Spectrum at P ¼ 0.1 GW for different thresholds on SDE interaction.Δ is the ratio of Lthresh to the theoretical gain length. Numerical
errors occur when Δ ⪅ 1 because noise in the small amplitude, higher order modes quickly excite significant changes in the mode
parameters. This suggests Lthresh should be an order of magnitude larger than the theoretical gain length for convergent results.
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The multifrequency simulation used an SDE Gaussian
mode for 31 spatial frequencies with a 6% bandwidth
to simulate 128,000 particles in 23 minutes. The user-
defined parameter Lthresh limits the spot size variation along
the undulator. Figure 4(a) shows a waterfall plot in the
electron beam frame normalized at each z position to display
the relative velocity of the radiation wave packet, which is
close to the beam velocity in the exponential regime
and becomes superluminal in the non linear regime [30].
In Fig. 4(b), the spectrum just before saturation is shown as a
function of Lthresh normalized to the gain length. If an
increased spectral resolution is required, computation time
scales linearly with number of tracked modes.
SDE modes can reduce the number of spatial modes

neededwhen a strong seed or strong bunching is present. On
the other hand, if the amplification starts from shot noise
seeding, simulations should be performed using a larger

number of non-SDE modes as the transverse mode is not
predefined. Figure 5 shows results for a helical FEL
amplifier with no external seed power using 91 frequencies
and 31 spatial modes. As expected, the pulse temporal
profile after amplification exhibits a sequence of temporal
spikes of characteristic length equal to the FEL cooperation
lengthwhich in our case isLcop ¼ Lg � λ=λw ¼ 2.5 μm.The
evolution of the energy (power integrated along the pulse)
and the spectrum bandwidth are also consistent with SASE
FEL theory [31].

B. TESSA266

In this next example we take advantage of the GPT

functions to track the electron beam in the fairly complex
transport line of the TESSA 266 experiment. The beamline
includes a short, 8 period undulator followed by a 3 dipole
chicane to convert the imprinted energy modulation into

FIG. 5. Results from shot noise amplifier simulation with undulator entrance at Z ¼ 0.1 m. (a) On axis field profile at Z ¼ 3 m
showing the characteristic spike structure. (b) Peak power and relative RMS spectral bandwidth.

FIG. 6. Particle bunching and phase space at Z ¼ 2.8 m (after first undulator) for the TESSA beamline.
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microbunching. Quadrupole doublets match the beam trans-
versely into the focusing channel of each 0.96meter, strongly
tapered undulator section. A small dipole is placed between
the second quadrupole doublet so that the three magnets can
be used as a phase shifter between the undulator sections.
The GPT transport functions are used to set up the

trajectory and the beam optics prior of turning on the seed
and the FEL interaction module. Our time-independent
simulation of the TESSA266 beamline includes 21 higher
order spatial modes to ensure an accurate modeling of the
radiation profile. A 1 GW peak power input radiation pulse
is focused at the entrance of the tapered undulator to a waist
of 0.3 mm. The simulation is compared with GENESIS

results, but it should be noted that GPT-FEL uses full 3D
magnetic field maps for the undulators as well as for the
dipoles and quadrupoles in the system. The magnetic field
in the chicane dipoles is fine tuned to maximize the

bunching and simultaneously optimize the injection phase
of the beamlets relative to the radiation phase at the
entrance of the tapered undulator. In GENESIS, both the
R56 and phase shifts are applied post facto to the beam
distribution at the entrance of the tapered undulator,
explaining the large difference in the bunching factor
evolution in Fig. 6(a). In practice, the phase shifter between
the tapered undulator sections had to be reoptimized to
account for the additional slippage incurred by the beam
when passing in the entrance and exit section of the
wigglers. This is accomplished by horizontally shifting
the quadrupoles in opposite directions to steer the beam and
tuning the magnetic field amplitude of the dipole to recover
a straight trajectory while maximizing the energy exchange
in the second undulator. Figures 7 and 8 show the energy
exchange and beam trajectory in the undulators.

C. Zero slippage THz FEL

A final example to showcase the capabilities of the new
GPT-FEL code is the simulation of a THz FEL operating in
the zero-slippage regime [32]. The size of the waveguide is
chosen in order to match the group velocity of the radiation
with the electron beam longitudinal velocity inside the
undulator. This increases the bandwidth of the resonant
interaction and extracts a significant amount of energy from
very short electron beams. This regime has been used
previously in researching long wavelength FELs [33–35].

GPT-FEL correctly simulates the waveguide dispersive
properties as shown in Fig. 9 by plotting the electric field at
the entrance and exit of the 1 meter long waveguide system
in the absence of strong interaction (i.e., for very low
charge beams).
The parameters of this example are summarized in

Table II. We have chosen a planar undulator geometry
with equally distributed focusing in the horizontal and

FIG. 7. Energy exchange in the first two tapered undulators of
the TESSA beamline.

FIG. 8. Trajectory and electron beam and radiation spot size (inset) along the TESSA Beamline.
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vertical plane. In this case, the largest coupling is obtained
with the TE10 mode profile of the curved parallel plate
waveguide. The beam is initialized at the entrance of the
simulation with a large bunching factor (0.5) while we set
the amplitude of the initial input seed to zero.
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FIG. 9. GPT time-dependent simulation temporal field profile at
the entrance and at the exit of the 1 m long waveguide. The shift
in the peak corresponds to the group velocity difference from the
speed of light which is matched to the electron beam longitudinal
velocity in the undulator in the zero-slippage regime. Helical
geometry. Radiation spectrum and temporal profile of the pulse
along the undulator. Final longitudinal phase space.
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FIG. 10. (a) THz pulse energy along the undulator. (b) THz waveform at the undulator exit. (c) THz spectrum. (d) Longitudinal phase
space of electron beam.

TABLE II. Parameters for high efficiency THz amplifier.

Electron beam

Energy 10.2 MeV
Energy spread 1.25%
Bunch length 2000 μm
Ipeak 60 A
ϵn;x; ϵn;y 5 mm · mrad
σx, σy 120 μm

Undulator and waveguide

Krms 1.556
λu 0.032 m
b 1.9 mm
R 1.9 mm
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There are two main advantages of using the waveguide in
this system. First, the waveguide maintains a constant
radiation cross section along the interaction, avoiding
diffraction effects. Second the waveguide’s dispersive
properties enable a zero slippage interaction. This large
bandwidth interaction can drive the FEL with a much
shorter beam because the slippage effects are effectively
minimized and the radiation continues to interact and
exchange energy with the particles even after a large
number of periods. The simulation results are shown in
Fig. 10 where the THz electric field waveform and the
electron beam longitudinal phase space are shown to be
temporally overlapping at the end of the undulator. Note
that the system evolves in the nonlinear regime from the
beginning as the electron beam enters the undulator with a
very large bunching at the 1 THz resonant frequency
induced by modulating the photocathode drive laser
[36]. The undulator is linearly tapered starting from its
half way point with a relative change in normalized vector
potential K of 30%/m to avoid saturation effects due to
particles falling off the resonance curve. The efficiency of
conversion is above 10% in this example.

IV. CONCLUSIONS AND OUTLOOK

A new approach for FEL simulations has been presented.
The characteristic features are the decomposition of the
field in a set of spatial and frequency modes and the
integration with the GPT numerical integration engine
which allows access and compatibility with a large number
of beam transport designs and functions. There are a
number of research opportunities which go beyond the
scope of this paper but will be the subject of future studies,
including a detailed study of the effects of the transverse
space charge forces and an upgrade to include higher
harmonic interactions. Because GPT-FEL does not imple-
ment period averaging, computational speed limits are a
concern. Parallelization of the code has decreased simu-
lation times by a factor of 2 on our 8-core machine, but can
lead to more significant reductions on clusters, increasing
the number of macroparticles and (spatial and frequency)
modes that can be simulated. GPT-FEL is not expected to
replace traditional approaches to FEL numerical simula-
tions, but is intended to be a research tool to explore the
interaction of relativistic electrons and electromagnetic
waves in undulator systems in regimes where the approx-
imations of standard FEL codes are questionable. The
application of GPT-FEL to dispersive systems allows for
exploration of novel interaction regimes like the tapered
waveguide THz FEL.
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