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Detection of faulty beam position monitors using unsupervised learning
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Optics measurements at the LHC are mainly based on turn-by-turn signal from hundreds of beam
position monitors (BPMs). Faulty BPMs produce erroneous signal causing unreliable computation of
optics functions. Therefore, detection of faulty BPMs prior to optics computation is crucial for adequate
optics analysis. Most of the faults can be removed by applying traditional cleaning techniques. However,
optics functions reconstructed from the cleaned turn-by-turn data systematically exhibit a few nonphysical
values which indicate the presence of remaining faulty BPMs. A novel method based on the Isolation
Forest algorithm has been developed and applied in LHC operation, allowing to significantly reduce the
number of undetected faulty BPMs, thus improving the optics measurements. This report summarizes
the operational results and discusses the evaluation of the developed method on simulations, including
extensive studies and optimization of the preexisting cleaning technique and verification of a new method
in terms of coupling measurement. The advantages of the chosen algorithm compared to some other

unsupervised learning techniques are also discussed.
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I. INTRODUCTION

LHC optics measurements are mainly based on the
transverse beam motion recorded by the beam position
monitors (BPMs) around the ring. The optics functions are
computed from the properties of this signal as inferred from
a harmonic analysis [1-3]. The appearance of faulty signals
can have significant impact on the optics computation and
corrections. Several numerical thresholds as well as a
cleaning technique based on singular value decomposition
(SVD) are used in order to remove faulty signals. Since
nonphysical values still can be observed in the optics
functions computed from the cleaned data, it is not
uncommon that additional manual cleaning of harmonic
analysis data is required, followed by repeating the optics
computation. Therefore, the preexisting techniques appear
to be insufficient and alternatives for automatic identifica-
tion of faulty BPMs are required to avoid human inter-
vention and ensure that faulty signal does not corrupt the
optics analysis.

Considering Machine Learning-based identification of
faulty BPMs, application of supervised learning to classify
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the BPM signal appears not appropriate. For the supervised
classification, labeled training data is required. Since no
ground truth is available, only the cleaning results from the
past measurements can be used as labels for good and bad
BPMs. However, this would lead to reproducing the results
of existing techniques, instead of improving the optics
analysis. Since the reasons of BPM failures are partially
unknown, we cannot define rules which would indicate
faulty BPMs that actually cause the erroneous optics
computation. It has to be noted that there is not necessarily
a direct relation between the location where the error is
observed and the actual bad BPMs. Due to the way the
optics is calculated [4,5], a single faulty BPM may cause
erroneous optics calculation at multiple locations, i.e.,
produced errors might appear not directly at the position
of the bad BPM, but propagate to the locations of adjacent
BPMs. The new method should automatically recognize
bad signals in the online provided turn-by-turn data prior to
optics computation, without requiring rules or thresholds
which depend on optics settings or signal properties and
have to be adjusted during operation. In this work we
demonstrate that unsupervised learning successfully meets
these requirements.

A. Unsupervised learning

Unsupervised learning deals with tasks where only input
data is available and the target is to find patterns in the
given data or to extract new information. The ability of
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unsupervised techniques to find hidden patterns in the data
is a powerful tool for faulty BPM identification. The signal
produced by a faulty BPM has different properties com-
pared to normal functioning BPMs. Unsupervised methods
can automatically find relevant data properties and the
differences which indicate anomalous points in the data
provided to the algorithm.

Most common clustering techniques based on centroid
search such as K-means [6] appear not to be suitable for
faulty signal detection, since the appearance of outliers
(data points that significantly differ from other observa-
tions) affects the computation of the mean of parameters.
A possible solution is to apply density-based algorithms
which is discussed in Sec. IIl. Several unsupervised
learning algorithms have been explored to improve the
quality of the optics measurements at LHC [7,8], among
others the Isolation Forest (IF) algorithm [9]. It detects data
anomalies using an ensemble of randomized decision trees.
Such decision tree represents a sequence of random splits
which are performed until each single data point is
“isolated.” The principle is illustrated in Fig. 1. The split
is selected randomly between maximum and minimum
values of randomly selected data feature. On average fewer
random splits will be needed to isolate an anomalous data
point. The number of splits represents the path length from
the root to the leaf of a decision tree. Using a single tree
might lead to biased results [10], hence the path lengths are
averaged over a number of trees (forest) in order to measure
the normality of each isolated point. A significant advantage
of the Scikit-Learn [11] implementation of the algorithm
used in this work is that it requires only the number of trees
and the expected proportion of outliers in the provided
dataset (contamination rate) as tuning parameters. IF does
not require any data normalization or rescaling and can be
applied directly on harmonic analysis of BPM signals before
computing the optics functions. This method is fully
integrated into optics measurements at LHC and has been
successfully used during commissioning and machine devel-
opments under different optics settings in 2018.

B. Traditional techniques

Statistical techniques capable of finding independent
physical signal components have found their application in
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FIG. 1. A conceptual illustration of the IF algorithm. An

anomalous point is more likely to be isolated by just one random
split on a randomly selected input feature, compared to three
splits required to isolate each of the core data points.

beam diagnostics and in particular in BPM data analysis in
several facilities [12,13]. Traditional techniques for the
cleaning of turn-by-turn data at the LHC include thresholds
to define anomalously large and low values of the measured
beam position, identification of zero values which replace
unphysical BPM readings, as well as manual cleaning.
A special list of systematically failing BPMs is used in the
dedicated analysis software to exclude these BPMs from
the actual data processing. An approach to identify these
BPMs dynamically is discussed in Sec. V.

Most of the noise and faulty signals can be removed
using these methods, as well as through applying advanced
signal improvements techniques based on SVD. The
singular vectors of a turn-by-turn data matrix containing
the signal of several BPMs correspond to temporal and
spatial modes variations describing the beam motion [14].
SVD-based cleaning allows to identify faulty BPMs and to
reduce the noise in recorded signal. SVD modes with
localized spikes in their spatial vectors indicate faulty
BPMs using so-called SVD cut as threshold to find such
spikes. To globally reduce the noise on all BPM readings,
only a predefined number of strongest singular modes,
defined by the SVD mode setting, remain in the turn-by-
turn data. While the SVD cut value has a direct influence on
the number of BPMs identified as faulty, the SVD mode
setting affects the overall noise level in turn-by-turn signal.
In Sec. III we demonstrate the importance of choosing
appropriate SVD settings and the interplay between IF
which is the main subject of this work, and the SVD
technique with respect to the overall cleaning performance.

The default settings used in LHC operation in 2018 were
originally defined from Relativistic Heavy Ion Collider
(RHIC) turn-by-turn data statistical analysis [14]. Table I
summarizes the SVD settings and numerical thresholds
used as defaults in 2018. Peak thresholds choose the
minimum peak-to-peak signal and maximum value of
the signal to be considered physical. Recording exact 0
in one or several turns indicates a bad BPM since this value
is used to replace unphysical BPM readings. The betatron
tune obtained as the main frequency of the BPM signal can
serve as another indicator for faulty BPMs. The threshold
for the tune deviation from the average value over the entire
set of BPMs defines the limit of tune variability for correct
BPM signals. The operational results of the preexisting
cleaning tools presented in the following section are
obtained using default settings.

TABLE I. Default SVD settings and signal cuts used in 2018.

SVD settings

SVD cut 0.925
SVD modes 12

Signal-based cuts

Min peak-to-peak 10> mm
Max peak value 20 mm
Max tune deviation 1073

Unphysical signal Exact 0
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FIG. 2. The upper left plot represents, for a single BPM, the
tune and amplitude from harmonic analysis that are used together
with noise to amplitude ratio 6,4 as input features for the IF
algorithm. 2D projections of the feature space illustrate the
detection of bad BPMs.

II. OPERATIONAL RESULTS OF ISOLATION
FOREST APPLICATION

In the LHC there are 523 BPMs per plane and per beam.
The analysis of the results obtained by traditional cleaning
tools from the measurements before 2018 has shown that
around 10% of all BPMs are identified as faulty using these
tools [7]. Due to experience with the systematical obser-
vation of few nonphysical outliers in the reconstructed
optics functions, we assume that only a small fraction of
bad BPMs is remaining in the data, so most of the bad
BPMs are eliminated by existing techniques.

As discussed in the Introduction, IF requires the con-
tamination (expected fraction of anomalous samples) as
input of the algorithm. During beam commissioning and
Machine Development sessions (MD) in 2018 the con-
tamination was set to 1% in the arcs and 2.5% in the
interaction regions (IRs). A higher contamination rate in the
IRs is assumed based on the analysis of previous mea-
surements in [7]. The separation into IRs and arc BPMs is
needed due to the fact that BPM hardware installed in IRs is

IP2 IP3 IP4 IP5 IP6 IP7 P8 IP1

different from the arc sections [15], therefore they have to
be treated separately.

The target is to apply the new cleaning method on the
properties of BPM readings computed by a special har-
monic analysis [16,17]. The parameters that are considered
as significant for bad BPMs identification are the betatron
tune, the amplitude obtained from the FFT scaled by factor
2 with respect to the oscillation amplitude, A, and the noise
to amplitude ratio, o, .4. The latter is defined as

Std(xraw - xclean) ( 1 )

AVN '

where x.,,, and x..,, stand for the BPM data before and
after applying the SVD cleaning, respectively. The standard
deviation of the difference of these two signals,
std(Xaw — Xelean)» Tepresents the BPM noise. N is the
number of turns. Figure 2 illustrates detection of faulty
signals by IF, using the described features as input data.
During commissioning and MDs in 2018, the IF algorithm
was used complementary to the preexisting techniques.
During the evaluation phase of the new introduced tech-
nique, the optics was first computed using the data cleaned
with traditional tools only and then repeated with turn-by-
turned data additionally cleaned with IF. This allowed to
observe the positive impact of the new method on the
quality of optics analysis. Figure 3 shows a comparison
between the f beating reconstructed from the measure-
ments cleaned with the traditional tools only and the
measurements additionally cleaned with IF. It demonstrates
that most of the observed outliers in the optics obtained
from SVD-cleaned data can be prevented by using IF. The
removal of BPMs at the locations where no spike has been
observed did not cause significant data loss.

In order to conclude on the effectiveness of the new
method for online optics analysis, we collected a summary
of the measurements where IF has been used. Figure 4
shows the summary of cleaning results on several mea-
surements in 2018 that are listed in Table II. The BPMs at
the locations of outliers usually need to be manually
analyzed and removed from harmonic analysis of turn-
by-turn data before recomputing the optics. This procedure
requires additional human intervention and still does not
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FIG. 3.
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Comparison between f beating measured from SVD-cleaned data and the data additionally cleaned with IF. The data is

obtained during ion commissioning in 2018. Without applying IF nonphysical spikes appear in $ beating reconstructed from the

BPM signal.
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FIG. 4. Summary on cleaning results based on the number of
outliers (spikes) per plane per beam appearing in computed f
beating and phase advance averaged over ten measurements listed
in Table II.

guarantee that manually removed BPMs are correctly
detected and erroneous measurements do not appear in
the recomputed optics. The statistics on operations data
shows that most of the spikes remaining after SVD and
thresholds-based cleaning could be successfully removed
by IF, without requiring any manual cleaning.

III. SIMULATING FAULTY BPM SIGNAL
IDENTIFICATION

Since the definition of erroneous values is exclusively
based on the observation of computed optics functions, it is
not possible to conclude about the exact amount of actual
faulty BPMs which are removed and the number of good
BPMs which are wrongly recognized as faulty. The knowl-
edge about actual malfunctioning BPMs currently present
in the machine is not available during the operation.
Therefore, it has to be studied on simulated measurements
with artificially introduced BPM faults, such that cleaning
results can be verified against the ground truth. This avoids
using the number of manually identified outliers remaining

TABLEIIL. List of measurements where IF has been used during
online data analysis in 2018. Beam 1 appears more often in the
statistics just due to the human intervention in the optics analysis
and subjective decision about the need for additional cleaning
with IF.

Date Optics, f* Beam  Corrected
29.05.2018 Commissioning, 90 m 1 No
29.05.2018 Commissioning, 90 m 1 Yes
29.05.2018 Commissioning, 90 m 2 No
12.06.2018 Flat, 60/15 cm 1 No
12.06.2018 Flat, 60/15 cm 1 Yes
22.08.2018 Ton commissioning, 1 m 1 Yes
08.10.2018  Ion commissioning, 50 cm 1 No
08.10.2018  ion commissioning, 50 cm 1 Yes
08.10.2018  Ion commissioning, 50 cm 2 No
08.10.2018  Ion commissioning, 50 cm 2 Yes

in the computed optics functions as a figure of merit for the
validation of applied cleaning methods.

A. Model of faulty BPMs

First, turn-by-turn BPM signals are generated for 6600
turns using ion optics model with f* = 50 cmin IP1, 2 and
5 using MAD-X and a dedicated PYTHON script. Every
BPM is given 0.1 mm Gaussian noise. In the second step,
the signal of some randomly chosen BPMs is artificially
perturbed—these BPMs have to be identified as bad. In real
measurements, the reasons for the appearance of faulty
signal are unknown, but there are specific artifacts which
are known to be related to faulty BPMs. Therefore, we use
these known properties to model a presence of faulty BPMs
in the LHC. It has to be noted that these artifacts do not
describe all possible failures, however in order to verify the
effectiveness of cleaning methods, it should be sufficient to
assign the known failures to a realistic number of BPMs
in the simulations according to the number of observed
anomalies in the measurements data.

The following failure modes are used to introduce BPM
faults: (i) Gaussian noise added to the signal is 0.3 mm,
3 times higher compared to good BPMs; (ii) signal in one
turn is replaced by a random value in range [—20, 20] mm,
such that produced local spike is smaller than the threshold
for the maximal absolute peak value used for simple cuts;
(iii) tune computed from the signal deviates by 10~ from
the rest of the BPMs; (iv) all described failures are present.

The examples of perturbed turn-by-turn signal produced
by the introduction of the listed failure modes are shown in
Fig. 5. In addition to the described failure modes, we also
introduce BPMs with flat zero signal in all turns and zero
signal in ten randomly chosen turns. These two failure
types are trivial to detect and hence not relevant for the
method verification. Nevertheless, we need to include them
to produce more realistic turn-by-turn data simulations.
Considering the number of bad BPMs found by traditional
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FIG. 5. Simulated turn-by-turn data of the bad BPMs compared

to normal unperturbed signal over 6600 turns.
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tools and remaining spikes before applying IF (=30 per
plane per beam as shown in Fig. 4), the ratio of bad BPMs
over the total number of BPMs per plane per beam in 2018
was ~5.5%. Hence, we perturb 5.5% of BPMs in original
simulated turn-by-turn data. All failures, apart from flat zero
signal, are equally distributed over generated BPM signal
with five occurrences and flat zero signal is simulated at two
BPMs, producing 27 bad BPMs per plane in total.

B. Isolation Forest results

First, we perform harmonic analysis on the generated
turn-by-turn data using the traditional cleaning techniques
without changing the default settings. Knowing the actual
bad BPMs and their faults, the unsupervised method can
be evaluated in the combination with traditional tools,
applying IF on harmonic analysis of the SVD cleaned
BPMs data.

Statistical analysis of operational data presented in II
shows that around 15 bad BPMs remain after using
traditional cleaning tools and 12 bad BPMs are removed,
thus the contamination should be set to 15/(523-12) »
0.029. To study the influence of the contamination param-
eter on the optics computation, we use simulations to run IF
multiple times increasing the contamination number from 0
to 0.15 stepwise. Figure 6 illustrates the trade-off between
eliminating bad BPMs and removing good BPMs as a side
effect. In order to find an optimal contamination factor, we
have to define an acceptable maximum number of missing
good BPMs which does not cause negative effects on optics
analysis. In Fig. 6 we observe a sharp increase of the
number of detected bad BPMs and slow increase of
removed good BPMs. After the contamination factor
reaches 0.02, the trend changes and the rise of the number
of removed good BPMs becomes steeper than the increase
of detected bad BPMs. After the contamination number
reaches 0.04, there is no significant increase in the number
of removed bad BPMs anymore. Based on the obtained
results we conclude that the optimal contamination factor
lies between 0.02 and 0.04 as expected, if the data is

== Bad BPMs after SVD and IF
= Bad BPMs removed by IF
= (Good BPMs removed by IF

60

40
20
. %:
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

contamination

FIG. 6. Adjustment of contamination factor of the IF algorithm.
The target is to keep the number of bad BPMs remaining after
applying SVD and IF low, while avoiding a significant number of
good BPMs to be wrongly identified as bad.

TABLE III. Number of faulty BPMs detected by SVD together
with combination of thresholds compared to number of BPMs
detected after additionally applying IF on cleaned data. The
results are obtained using SVD default cut value 0.925 and IF
contamination factor set to 0.02. The numbers are averaged over
20 simulated measurements. The basic zero cut failures are not
included into comparison.

Failure SVD IF Not detected
Higher noise 0 3+1 1+1
Random values 1+1 240 1+1
Tune deviation 0 241 241
All failures present 1£1 3+1 0

previously cleaned by SVD using the default parameter
settings. Considering the different failure modes, Table III
shows that under the default settings, IF complements the
traditional techniques exactly in the cases where they are
insufficient.

C. Exploring SVD settings

The simulated data with artificially introduced bad
BPMs has also been used to explore if the change of
SVD cut threshold can improve the detection of faulty
signals. The change in cleaning results with respect to SVD
cut values presented in Fig. 7 shows that the optimal SVD
cut threshold range is [0.3, 0.5], noting equal results for 0.4
and 0.3 values. Bigger values lead to an increase in the
number of remaining bad BPMs, which has been demon-
strated not only in simulations, but also in LHC measure-
ments in relation to the new failure mode described in V.
Lowering the threshold to values smaller than 0.3 leads to
an increase in the number of good BPMs wrongly identified
as bad. The change of SVD cut from its default value 0.925
requires also the change of the IF contamination factor.
Since less faulty BPMs will appear in the data, lower
contamination factor should be needed. So, we repeat the
scan of IF contamination factor on the data cleaned with
SVD using the lowest optimal cut value 0.3 in order to
compare it with IF performance under the default SVD

30
Il Remaining bad BPMs
25 I Removed bad BPMs
I Removed good BPMs
20
15
10
5
0

01 02 03 04 05 06 07 08 09 1.0
SVD cut threshold

FIG. 7. Number of removed and remaining bad BPMs after
applying SVD depending on SVD cut value.
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FIG. 8. Adjustment of contamination factor of the IF algorithm

after changing the SVD cut to its lowest optimal value 0.3.

settings. Figure 8 demonstrates how the cleaning result
changes with the increase of contamination factor. In case
the SVD cut s set to 0.3, the IF contamination factor should
be within the range [0.01, 0.015] since further increase
results in a bigger number of good BPMs wrongly removed
by the algorithm. We repeat the study on the detection of
particular failures using the obtained optimal settings for
both, SVD and IF, namely SVD cut of 0.3 and contami-
nation of 0.01. The averaged results for each of the
introduced failure modes are summarized in Table IV.
The final result considering the full set of failures is
presented in Fig. 9.

The presented result shows that the simulations quali-
tatively reproduce experiment observations, such that we
could obtain an understanding of unsupervised learning as
a method for faulty BPMs identification. We also inves-
tigated the interplay between previously available cleaning
techniques and the introduced IF algorithm, demonstrating
the advantage of applying IF prior to optics computation,
instead of using SVD only to identify BPM faults. The
number of bad BPMs remaining in the data can be reduced
by factor 2 to less than 1% performing anomaly detection
with IF on SVD-cleaned data. Both methods, SVD and IF,
can be used complementary noting the importance of
adapting the thresholds accordingly.

D. Comparison to clustering

Prior to the integration of the IF algorithm into optics
measurements, we have considered several clustering

TABLE IV. Cleaning results applying the SVD cut optimal
value 0.3 and adjusting the IF contamination factor to 0.01. The
results differ from the cleaning using the default setting for all
introduced failure modes.

Failure SVD IF Not detected
Higher noise 5 0 0
Random values 241 1+1 241
Tune deviation 0 3+1 2+1
All failures present 5 0 0

I Bad BPMs
I Remaining bad BPMs after SVD
I Remaining bad BPMs after IF

25

20

15

10

0

FIG. 9. Averaged results of faulty BPMs detection on 20
simulated measurements using IF contamination factor 0.01
and SVD cut 0.3.

techniques as possible solutions to improve the cleaning
results. These techniques have been tested together with
IF on the harmonic analysis of LHC turn-by-turn measure-
ments obtained in the past. One of the investigated
approaches is a density-based DBSCAN algorithm [18]
which views clusters as areas of high density separated by
areas of low density. The method finds core points which
build a cluster center, assigns neighboring points to this
cluster and considers as anomalies the points which do not
belong to any cluster. A core point is defined by the
minimum number of points within a distance. Hence, there
are the following parameters to be defined: minimum
number of samples in the neighborhood of a core point,
the distance to the neighbors and the metric to be used to
compute the distance. The results of applying DBSCAN
to bad BPM detection demonstrated improvements on data
cleaning [19], however a significant amount of outliers
remained present in the measured optics functions. Another
technique which has been applied to the LHC turn-by-turn
data is the local outlier factor (LOF). This factor indicates
the local deviation of density of a given sample with respect
to its nearest neighbors [20]. LOF measures how isolated an
object is with respect to the surrounding neighborhood,
which is very similar to the IF algorithm. However, apart
from the contamination rate, LOF requires the number of
neighboring data points and the definition of a metric to
compute the distance between the points in order to find
the nearest neighbors. Since the structure of the measure-
ments data can vary significantly depending on the BPM
location and machine settings, a general valid definition of
the distance and number of neighbors to build a cluster
becomes problematic.

In order to examine the performance and suitability of
each method for faulty BPM detection, we carry out the
previously described simulation procedure. The parameters
of clustering techniques have been defined empirically
during the application on LHC data. The distance between
the points to define a cluster in DBSCAN is set to 0.7, LOF
contamination is 0.05. Both methods use the Euclidean
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DBSCAN LOF IF

FIG. 10. The comparison is carried out on 20 simulations for
each plane, the results are averaged. Each bar represents the
number of BPMs removed by the method. The dark fraction
corresponds to the number of removed BPMs that are actually bad.

metric to compute the distance and the minimum of 70
neighbors to build a cluster. SVD and thresholds based
cleaning have been applied prior to clustering using the
default values described in Sec. I B. Figure 10 summarizes
the obtained result. The comparison shows nearly identical
performance of LOF and IF algorithms on simulated BPM
signal. Applying different methods on LHC measurements,
we observe that the optics reconstructed from the data
cleaned with IF contains fewer unphysical outliers com-
pared to the other two methods. Moreover, due to a smaller
number of settings, IF allows simpler tuning of the cleaning
algorithm and more general application. Therefore, it is
preferred as an alternative cleaning tool for faulty BPMs
detection at the LHC.

IV. FAULTY BPM DETECTION IN THE
PRESENCE OF LOCAL COUPLING

Betatron coupling drives the appearance of oscillations
in the horizontal plane with the vertical tune and vice versa.
Strong local coupling sources must be corrected to avoid
luminosity loss [21] or its propagation to the rest of the
machine, therefore it has to be ensured that cleaning tools
do not have a negative impact on the computation of local
coupling. The coupling is measured in terms of its
resonance driving terms (RDTSs), f90; and fio10 [22,23].
Since these RDTs are calculated from the spectrum of
cleaned BPM signal, the settings of the cleaning tools affect
the coupling computation. As the local coupling informa-
tion is contained in secondary lines of only few BPM
spectra, using a small number of modes in SVD cleaning
causes coupling information to be discarded as noise.
Considering IF cleaning, the BPMs whose signal contains
the information about local coupling might be removed
completely based on the difference from the rest of BPMs.
In the following we present the ability of IF to distinguish

local coupling related signal from faulty BPMs along with
the optimization of SVD mode number with respect to local
coupling. To simulate faulty BPM detection in the presence
of local coupling, we first perform MAD-X tracking using
ion optics from 2018 with f* =50 cm. In order to
introduce a local coupling bump, the integrated field
strength of the skew quadrupoles around IP2 are changed
by £0.001 m~!. We also introduce a small global 3 beating
(1%) in order to get more realistic optics from the simulated
signal. Produced tracking simulations are then converted
into turn-by-turn measurements in order to introduce BPM
faults as described in III. In this case we ensure that no fault
is assigned to the BPMs at the location of coupling bump
(BPMSW.1R2.B1, BPMSW.1L2.B1). In the following, we
address the influence of SVD mode setting on coupling
computation and keep SVD cut and IF at default values
previously used in operation. The default SVD mode
number used for the LHC in 2018 is 12. However, when
reconstructing foo; and f1g;o from SVD-cleaned data, the
presence of local coupling can be observed only by
increasing SVD mode to 18 as shown in Fig. 11. To
reproduce the actual expected value of simulated coupling
around IP2 at least 22 SVD modes are needed. Further
increase of SVD modes still produces correct fiyy; and
fio10 values, however it affects the phase computation
negatively since the measurement becomes more noisy.
Therefore, increasing the default value of SVD modes up
to 22 could help to gain more information about local
coupling without significant increase of noise in the
computed phase. The scan of this parameter with respect
to the number of removed BPMs performed on simulations
is shown in Fig. 12. Starting from 16 modes, the number of
identified bad BPMs increases, while keeping the number
of wrongly removed good BPMs constant. Conclusively,
the number of SVD modes used in turn-by-turn data
analysis should be increased in order to achieve more
reliable coupling computation without causing negative

. A A

= 0.0275 —— Horizontal A, a 0.15
A Vertical

g 4 |fio01 o

110.0270 0.10.5
@ 4 |fo10l 3
g =]
s S
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SVD mode

FIG. 11. Trade-off between correct computation of the expected

coupling at the location of introduced skew quadrupole field error
and increase of the noise in the measured phase advance errors
AP eas-mod defined as rms between measured and model phase
advances. The right scale shows the computed values of f;qo
and f9;0 depending on the number of SVD modes used in
SVD cleaning.
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FIG. 12. The relation between BPM cleaning results and the
change of the number of SVD modes used in analysis.

effects on signal noise cleaning and faulty BPMs detection.
Figure 13 demonstrates the result of additional cleaning
with IF compared to the optics obtained from data cleaned
with traditional techniques only. The local coupling can be
observed after application of IF since BPMSW.1R2.B1 and
BPMSW.1L2.B1 are correctly identified as nonanomalies.
At the same time, the outliers in f beating produced by the
simulated faulty BPM signal are eliminated.

V. DETECTING UNKNOWN FAILURE MODE
IN EXPERIMENTAL DATA

It has been observed in operational measurements
that some BPMs repetitively caused erroneous optics
calculations. These BPMs (23L6.B1, 16R3.B1, 22R8.B1,
15R8.B1) have been manually analyzed in regards of
betatron tune domain and phase shifts aiming to identify
signal properties which can serve as indicators for fault
detection [24,25]. In the past, such indicators could not
be found, and these BPMs were simply removed from the
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FIG. 13.
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FIG. 14. Examples of the faulty BPM signal spectra in the
vertical plane (blue) compared to the spectra of normal func-
tioning BPMs (orange). The measurement is performed on beam
1, p* =65 cm.

data prior to data processing. Recently, these four BPMs
together with three further BPMs (25L5.B1, 10R6.B1,
YB.4R8.B1) [26] are found to exhibit an identical pattern
in the spectra with sidebands around the tune frequency line
[27]. Figure 14 shows examples of the signal related to the
described pattern. The reason of the recently discovered
failure mode still remains to be understood. We demon-
strate that BPMs related to this failure mode can be
identified using the combination of preexisting cleaning
tools and IF, without observing the BPM signal spectra
a priori. The seven listed BPMs can be detected using
either specific settings of SVD clean or by applying IF in
addition to SVD clean with arbitrary settings. This is
crucial for successful automatic data cleaning since even
a careful manual inspection did not guarantee full elimi-
nation of faulty BPMs in the computed optics functions.

In total there are seven BPMs found to have the
described spectra pattern, however the presence of each
of these BPMs causes multiple outliers in the computed
optics as shown in Fig. 15. SVD is incapable of identifying
this failure, unless reducing SVD cut to 0.6 which,
however, cleans only 20% of affected BPMs. Removing
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de Py Py
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Application of IF on SVD cleaned data reduced the number of outliers in beta beating (left) so the simulated bad BPMs are

detected correctly. At the same time the introduced coupling bump in IP2 is still present (right), showing that the signal at the location of
the coupling bump (BPMSW.1R2.B1, BPMSW.1L2.B1) where f;yy; and f ;o reach their maximum values is not classified as anomaly

as expected.
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FIG. 15. In case the optics is computed from the data addi-

tionally cleaned by IF, the appearance of nearly all unphysical
outliers is prevented.

all seven BPMs is possible only by using SVD cut 0.3
which agrees with the optimal range for this setting
obtained from simulations described in the previous sec-
tion. Independently of SVD settings, applying IF helps
to clean 90% of these BPMs. The presented showcase
demonstrates the advantage of combining traditional clean-
ing tools with unsupervised learning and the ability of
presented techniques, given the optimal settings obtained
from extensive simulation studies, to identify BPM faults
without providing manually identified rules and to detect
even a priori unseen failure pattern.

VI. CONCLUSION

IF successfully detected faulty BPMs during LHC
operation and MDs in 2018 where this was previously
done via tedious human intervention. Extensive studies and
simulations presented here show that indeed the previously
existing techniques cannot perform as efficiently as in
combination with IF. Also, we demonstrated that meas-
urement of important observables such as local coupling
requires increasing the number of SVD modes above the
default value of 12. IF does not influence negatively the
local coupling measurement.

Considering a more general application, the developed
cleaning approach can be potentially used in other accel-
erators, performing IF on a given set of signal properties
suitable to a particular accelerator type. The choice of
contamination rate has to be carefully estimated according
to the available BPM infrastructure, by the means of
statistical analysis of historical data or simulating BPM
failures as demonstrated in this work.

The improved understanding of the combination of SVD
cleaning and IF algorithm obtained in the presented study
will further benefit future measurements during run III of
the LHC.
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