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This paper describes a novel scheme for correcting the second order (chromatic sextupole) magnet lattice
and its deployment on a fourth generation multibend achromat electron storage ring. The method is
analogous to the well-established linear optics from closed orbits scheme, but uses an off-energy orbit
response matrix to characterize the second order optics of a lattice. The matrix is constructed from the
difference between two orbit response matrices measured at off-nominal energy, and is approximately
linear with chromatic sextupole field strengths. This is utilized in a least squares minimization to find a
model which minimizes the difference between the measured and model off-energy orbit response matrix.
From this model corrections to the chromatic sextupoles of the machine can be calculated. In effect, for the
MAX IV 3 GeV ring, the proposed scheme, NOECO (nonlinear optics from off-energy closed orbits),
brings initial sextupole strength variations between achromats in the order of �8% down to the order of
�1%. The chromatic machine functions were symmetrized, the measured chromaticities approached the
nominal values, and the lifetime of the beam at delivery conditions, with the same level of emittance
coupling, increased to 19 h from 11 h at previously used sextupole settings.
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I. INTRODUCTION

With the introduction of the fourth generation storage
rings the performance of new lattices is being pushed
further than ever before. These new machines require
careful tuning of the nonlinear magnets in order to achieve
the specified lattice momentum acceptance and transverse
dynamic acceptance. It is therefore of general interest to
find effective correction schemes of nonlinear magnets.
Effective in this context means a correction scheme with
sufficient precision to achieve the required performance of
the nonlinear lattice, and that it is sufficiently fast to not
significantly intrude on accelerator study or user experi-
ment time. There are many such potential schemes. A large
number of different studies of nonlinear optics are per-
formed at synchrotron facilities around the world. Many of
these studies are based on extracting information from turn-
by-turn beam positional data after the excitation of betatron
oscillations. From this the amplitude dependent tune shift,
frequency maps, and resonance driving terms can be
calculated. These can be used to construct a more accurate
model of the nonlinear lattice [1,2], or to optimize the
performance of the optics [3]. Although these are powerful

methods they may be limited by the decoherence of the
turn-by-turn data when measuring on a ring operating at
nonzero chromaticity. Since the MAX IV 3 GeV ring
operates at a positive chromaticity the decision was made to
instead make use of the fact that all sextupoles of the ring
are chromatic.
Following the success of the LOCO-scheme [4] (linear

optics from closed orbits) in characterizing and correcting
the linear magnets of the lattice a similar scheme was
developed for characterizing and correcting the chromatic
sextupole magnets based on the same principles. The new
scheme, named NOECO (nonlinear optics from off-energy
closed orbits), is based on the fitting of a lattice model to a
measured off-energy orbit response matrix (OEORM),
consisting of the difference between two orbit response
matrices measured at off-nominal energies symmetrically
around the nominal orbit. In this paper the method will be
described in detail and needs for modifications compared to
the LOCO-scheme will be motivated. The results from an
iterative application of this new scheme to the first multi-
bend achromat (MBA) lattice, realized in the MAX IV
3 GeV storage ring [5], will be shown as well as its effect on
the dynamic acceptance. The work presented here is a
continuation and improvement of the work presented in [6]
which in turn was inspired by the work in [7].
The second section of this paper describes the MAX IV

3 GeV storage ring achromat’s dipole correctors, beam
position monitors (BPMs), sextupoles, and octupoles. In
Sec. III a mathematical description of the scheme is pre-
sented. In Sec. IV computer simulations of the MAX IV
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3 GeV ring reveal what parameters must be chosen for this
particular lattice, but can also serve as an example of how to
apply the scheme to other lattices. Section V presents
measurements and the iterative application of the fitting
results to the MAX IV 3 GeV storage ring, while Sec. VI
presents independent experimental results showing the
effects on the dynamic acceptances of the ring.

II. THE MAX IV 3 GEV STORAGE RING

The MAX IV 3 GeV storage ring has a seven-bend
achromat lattice consisting of 20 optically symmetric
achromats. The linear optics of the ring is periodically
corrected using the LOCO scheme. A more detailed
description of the state of the MAX IV 3 GeV linear
optics at the time of writing, as well as further references on
the MAX IV 3 GeV ring, can be found in [5].

A. BPMs and dipole correctors

Each of the MAX IV 3 GeV ring achromats contain 10
BPMs, and 10 horizontal and 9 vertical dipole correctors
which can be seen in Fig. 1 [8]. In the case of the vertical
correctors the second corrector in Fig. 1 is not present.
The BPM offsets are obtained using the standard quadru-

pole modulation technique in the Matlab middle layer
(MML [9]), the details of which can be found in [5]. The
quadrupole modulation used for the offset measurements is
achieved with trim coils on adjacent sextupoles in all cases
except for the BPMs flanking the straight sections, where
the trim coils are placed on octupoles instead. In order to
avoid saturation effects the main coils are disabled during
offset measurements [5].
All but two BPMs of the ring have a circular geometry

and are symmetric in both the horizontal and vertical plane.
The first and last BPM in the first achromat are slightly
wider in the horizontal plane in order to accommodate for
injection. These BPMs have slightly different gain coef-
ficients than the other BPMs of the ring.

B. Sextupoles

The MAX IV 3 GeV storage ring has a total of five
sextupole families, SD, SDend, SFi, SFo, and SFm (see
Fig. 2 [8]), all of which are chromatic. The magnets
belonging to the same family are connected in series

within each of the 20 achromats. Each circuit of the SD
family consists of 10 magnets connected in series, while the
remaining families consist of 2 magnets in series. The SFi
circuit in achromat 8 is split up for the purpose of BPM
offset measurement experiments. In total, the storage ring
has 101 independent chromatic sextupole circuits, and no
harmonic sextupoles.

C. Octupoles

Unlike the sextupoles of the ring, the octupoles are
connected in series by family across all achromats. The
three octupole families OXX, OXY, and OYY (seen Fig. 2)
are predominantly harmonic, with only the OYY family
located in a dispersive region.
The octupole settings used throughout this paper were

those found through a model-free parameter optimization
of sextupole and octupole settings using the RCDS algo-
rithm [10] (courteously provided by Xiaobiao Huang), with
the goal of increasing the resilience of the stored beam from
a pulsed horizontal kick [11].

III. METHOD

Using a measured orbit response matrix to determine and
correct the quadrupole gradients is a common approach to
correct the linear optics of synchrotrons [4]. A similar
approach is used here to correct the strengths of chromatic
sextupoles. Below follows a short mathematical motivation
and description of the scheme.
At a momentum deviation δ, sextupole fields will give

rise to chromatic gradients according to [12]:

kδ;mðsÞ ¼ −mðsÞηðsÞδ ð1Þ

where mðsÞ is the sextupole field strength and ηðsÞ is the
dispersion function.
The lowest order perturbation term from quadrupoles

and sextupoles experienced by a particle with the momen-
tum deviation δ is

kδ;total ¼ ½kðsÞ −mðsÞηðsÞ�δ ð2Þ

where kðsÞ is the quadrupole field strength.
The betatron function can be written as an expansion

with δ to first order:

β ¼ β0 þ β1δ ð3Þ

FIG. 1. MAX IV 3 GeV storage ring lattice. Magenta crosses
indicate the positions of BPMs, while the blue and orange stripes
are the positions of the dipole correctors. In the case of the
vertical dipole correctors the second corrector in the image is not
present.

FIG. 2. Locations of the sextupoles and octupoles of the MAX
IV 3 GeV storage ring lattice.
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The β1 function will be referred to as the chromatic
functions, the horizontal (vertical) chromatic function is
given by [12]. For simplicity, we have excluded the
curvature perturbation terms, but they are included in the
simulations discussed later in this and the next section
(see [13]):

β1 ¼
dβðsÞ
dδ

¼ þð−Þ
β0ðsÞ

2 sin 2πν0

×
Z

sþL

s
β0ðζÞðkðζÞ −mðζÞηx0ðζÞÞ

× cos ½2ν0ðφ0ðsÞ − φ0ðζÞ þ 2πÞ�dζ ð4Þ

Where β0 is the beta function, ν0 the transverse tune, φ0 the
phase advance, ηx0 the horizontal dispersion function, and
L the circumference of the ring. The above equation holds
for either the horizontal or vertical plane. Note that the
effect from sextupoles depends on the magnitude of the
dispersion at the location of the sextupoles. Harmonic
sextupoles do not affect the chromatic functions.
Inserting Eq. (3) into the formula for the oscillatory

closed orbit performed by a particle experiencing a dipole
kick of magnitude θ, we get:

uðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ0ðsÞ þ β1ðsÞδÞðβ0θ þ β1θδÞ

p
θ

× sin ½ν0φ0ðsÞ − ν0φ0θ� ð5Þ

Here uðsÞ is the transverse displacement of the particle,
either horizontally or vertically. The subscript θ refers to the
function evaluated at the longitudinal position of the dipole
kick. Expanding and keeping only first order terms of δ and
taking the difference between a kick at a positive and a
negative off-energy:

uδðsÞ − u−δðsÞ ¼
" ffiffiffiffiffiffiffiffiffiffiffi

β0ðsÞ
β0θ

s
β1θ þ

ffiffiffiffiffiffiffiffiffiffiffi
β0θ
β0ðsÞ

s
β1ðsÞ

#
δ

× θ sin ½ν0φ0ðsÞ − ν0φ0θ� ð6Þ

Since β0 does not depend on m while β1 is linearly
dependent on m, the oscillatory closed orbit of an off-
momentum particle experiencing a dipole kick is also
linearly dependent on m. By taking the difference between
the closed orbit at þδ and −δ the contribution independent
of momentum is canceled, leaving only the contribution
linearly dependent on the chromatic sextupoles. Higher
order effects, such as those from octupoles are not included
in this derivation, but will be shown to be negligible in
Sec. III A for the specific case of the MAX IV 3 GeV ring.
Additionally, the NOECO-scheme is not able to character-
ize and correct harmonic sextupoles due to them not
contributing a chromatic gradient. Since the MAX IV
3 GeV ring only has chromatic sextupoles this will not
be an issue in the case of this machine.

Instead of using the orbit response matrix (ORM), as is
done in the case of linear optics symmetrization, the 2nd
order optics symmtrization uses an off-energy orbit
response matrix (OEORM). The OEORM is measured
by taking the difference between two ORMs measured at
some �δ. The sextupole strengths of the model are altered
until there is an agreement between the model and
measured OEORM. The sextupole values which give the
best agreement can then be used to correct the sextupoles of
the machine.
The software used for modeling and fitting of the

OEORM was Accelerator Toolbox (AT [14]), and
Matlab Middle Layer (MML). The ORM at a momentum
deviation δ from nominal is defined as:

�
xδ
yδ

�
¼ MORM;δ

�
θx

θy

�
ð7Þ

From this the OEORM is defined as:

MOEORM ¼ ðMORM;þδ −MORM;−δÞ
2δ

ð8Þ

or equivalently:

�
xþδ − x−δ
yþδ − y−δ

�
¼ MOEORM2δ

�
θx

θy

�
ð9Þ

The fitting of the model OEORM to the measured data
was done by a least square minimization with the penalty
function:

χ2 ¼
X
ij

E2
ij

¼
X
ij

ðMOEORM;meas;ij −MOEORM;model;ijÞ2
σ2i

ð10Þ

where the data from each BPM is weighted by the
individual BPM noise, σ.
The minimization was done using a Gauss-Newton

method with sextupole strengths, BPM gains, and corrector
kicks as fitting parameters. Both the BPM gains and
corrector kicks modulate the amplitude of the OEORM
signal. In order for the fitting procedure to be able to
separate the effect of the BPM gains and the corrector kicks
the 2nd order dispersion, η1, was added as an extra column
to the OEORM. The 2nd order dispersion is defined
through the expansion of the dispersion function with
respect to a momentum deviation δ:

η ¼ η0 þ η1δþOðδ2Þ ð11Þ

The addition η1 to the fitting procedure is analogous to
the use of the 1st order dispersion of the LOCO fitting
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procedure [4]. The η1 values will depend linearly on the
BPM gains and sextupole strengths, but not on the strength
of the corrector kicks. No parameters affecting the coupling
were included in the fit, thus the off-diagonal quadrants of
the OEORM were not fitted.

A. The Jacobian

The minimization of χ2 [see Eq. (10)] is done by
iteratively solving:

−Eij ¼
∂Eij

∂Kl
ΔKl ð12Þ

for ΔKl, where Kl are the fitting parameters. In order to

save time during the fitting procedure a static Jacobian, ∂Eij

∂Kl
,

was used. This Jacobian was calculated around the nominal
model lattice.
When performing the fitting two different Jacobians

were used. The first was a full sextupole circuit Jacobian, a
ð402 × 380Þ × ð101þ 402þ 380Þ matrix, which allows
each sextupole circuit to be fitted individually. Due to
the fitting procedure being prone to increasing the setpoints
of the SDend and SFm sextupole families against each
other a second Jacobian was also used. This Jacobian was a
ð402 × 380Þ × ð81þ 402þ 380Þ matrix in which the
SDend and SFm sextupole family circuits were treated
as a combined parameter in each achromat. The 402 in the
matrix dimensions is the sum of all horizontal and vertical
BPM readings, 380 is the sum of all horizontal and vertical
dipole corrector magnets, and 101 and 81 are the number of
independent sextupole circuits in the case of fully inde-
pendent circuits and combined SDend—SFm circuits
respectively. BPMs which were not in use in the machine,
due to, e.g., hardware issues, could be excluded from the
fit. Dipole corrector magnets too close to saturation to
apply the desired measurement kick were also excluded.
During the fitting procedure the pseudo inverse of the

Jacobian was calculated using singular value decomposi-
tion (SVD). In the case of either Jacobian, one of the
singular values was excluded. The magnitude of the
excluded singular values can be seen in Fig. 3. Both of

the excluded modes correspond to increasing the vertical
BPM gain while decreasing the vertical dipole corrector
gain or vice versa. The same singularity exists in the
horizontal plane, but can be resolved by including the
horizontal 2nd order dispersion in the fit. In the vertical
plane the 2nd order dispersion is nominally zero and only
affected by coupling terms. Since these are not included in
the fitting procedure the singularity is not resolved. The
excluded modes had no effect on the sextupole circuit
settings, which allows them to be excluded without
affecting the final sextupole settings of the fit. Further
exclusion of singular values will have an effect on the
sextupole settings and thus lead to a solution which is less
representative of the machine on which the OEORM was
measured.
Only sextupoles, BPM gains and dipole corrector mag-

net kicks were part of the fit. The magnitude of the effect
the sextupoles and octupoles of the MAX IV 3 GeV lattice
have on the OEORM can be seen in Table I. From the table
it is clear that the effect of the octupole magnets is several
orders of magnitude smaller than that of the sextupoles.
Thus, the octupoles can be safely excluded from the
OEORM fitting procedure without affecting the final
sextupole settings.

B. The measurement procedure

The data required for the fitting procedure was measured
using the following procedure: (i) The momentum of
the beam was shifted by −δ̄ by changing the master rf
frequency.1 (ii) The dispersion of the energy shifted beam
was measured using a bipolar shift of energy around the
new beam energy. (iii) An ORM was measured at the new
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FIG. 3. Singular values of the full sextupole circuit Jacobian
and the combined SDend—SFm Jacobian. The marked values
were excluded from the fitting procedure.

TABLE I. The effect of each magnet family on the OEORM.
The value is calculated by taking the absolute sum of the circuits
contribution to the Jacobian. The effect of the octupoles are
several orders of magnitude smaller than that of the sextupoles
and can therefore safely be excluded from the fitting procedure.
The SFi circuits in achromat 8 are treated separately since they
each consist of one magnet instead of two.

Sextupole family Absolute sum Normalized

SD 2.1683 m3 1
SDend 0.2981 m3 0.1375
SFi 0.7733 m3 0.3566
SFi (achromat 8) 0.4436 m3 0.2046
SFo 0.4700 m3 0.2167
SFm 0.4904 m3 0.2262
OXX 4.7470 × 10−5 m4 2.1893 × 10−5 m
OXY 5.1799 × 10−5 m4 2.3889 × 10−5 m
OYY 1.0085 × 10−5 m4 4.6512 × 10−6 m

1Care has to be taken with regard to the energy dependence of
the momentum compaction factor. In the case of the MAX IV
3 GeV ring, simulations have shown this effect to be negligible.
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beam energy. (iv) The BPM noise was measured at the
new beam energy.2 (v) For a bipolar OEORMmeasurement
the above steps were repeated at an equal positive energy
shift δ̄ from nominal. (vi) The 2nd order dispersion was
constructed by taking the difference between the two
measured dispersions and normalizing by 2δ̄.3 (vii) The
OEORM was constructed by taking the difference between
the two measured ORMs and normalizing by 2δ̄.
The BPM noise was measured at both energies as it

eliminates a potential source of error without significantly
increasing the measurement time.

C. Correction scheme

From the model fitted to the measured OEORM a vector
of sextupole circuit strengths can be extracted. Using this
vector, and the goal values of the circuits, a correction
factor for the sextupole settings of the machine at the time
of measurement can be calculated according to:

mmachine;new ¼ mgoal

mfitted
mmachine;old ð13Þ

where mmachine;old and mmachine;new are the old and new
sextupole settings respectively, mfitted is the sextupole
strengths found by the fit, and mgoal are the goal sextupole
settings.
Due to factors such as unknown sextupole error sources

being attributed to the sextupole magnets and model
discrepancies a single iteration of measuring, fitting, and
correction will likely not be sufficient for convergence of
the sextupole settings. Instead, the process will need to be
iterative: applying the new sextupole settings, and repeating
the measurement and fitting procedure from there. The
choice was made to cycle the magnets when applying the
new sextupole settings in order to not stray from the known
measured hysteresis curve.

IV. SIMULATIONS

A. Linearity of the OEORM with δ̄ and θ

The linearity of the OEORM with sextupole strength
depends on the magnitude of the energy-shift, δ̄, used when
measuring the OEORM. In order to find an optimal energy-
shift the linearity of the OEORM with sextupole strengths
was investigated for a number of different energy shifts. For
each magnitude of the energy-shift the off-energy orbit
response (OEOR) was simulated for 10 equally spaced
sextupole strengths, corresponding to ∼10% of the total
sextupole range. A linear fit was done to the OEOR

dependence on sextupole settings, the residual of which
can be seen in Fig. 4. The smaller this residual is the more
linear with sextupole strengths is the OEORM at that
particular energy-shift. When adding a normally distributed
BPM noise of σ ¼ 0.4 μm, corresponding to the BPM
noise at 3 mA, 3 Hz BW, it becomes clear that the nonlinear
contribution from the increase in energy-shift is drowned
out by the BPM noise. For example, at δ̄ ≈ 2.5% the RMS
residual for the SFi family of sextupoles is 2.5 nm
compared to the residual of 0.4 μm from the BPM noise.
In order to decrease the effect of the BPM noise, and thus
increasing the linearity of the OEORM, the energy-shift
should be as large as possible while still allowing an ORM
measurement.
The same investigation was performed for the dipole

corrector delta, θ, used when measuring the OEORM. It
was found that the nonlinear contribution from the increase
of θ was several orders of magnitude smaller than the
contribution from BPM noise, within the range of available
θs. Additionally, an increase of θ leads to a greater decrease
of the BPM noise contribution than the increase from
nonlinearities. In order to minimize the RMS residual of the
fit the corrector delta should be as large as possible.
However, this would exclude many correctors due to
saturation. A compromise had to be found, where the
dipole corrector modulation is sufficiently large without
saturating too many correctors.

B. Optics characterization

The NOECO scheme’s ability to extract the 2nd order
optics from a measured OEORM was tested by simulating
the OEORM of a lattice with certain errors, and then fitting
the lattice model to the simulated OEORM. The simula-
tions were run in AT and MML. This environment was the
same environment used when fitting measurements of
the machine. How accurately the fit was able to recreate
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FIG. 4. RMS residuals of a linear fit to the OEOR dependence
on a ∼10% sextupole change vs used energy-shift. The simulated
BPM noise is normally distributed with σ ¼ 0.40 μm. The
nonlinear contribution of the BPM noise dominates, making it
beneficial to choose as large an energy-shift as possible.

2This was done by taking the RMS of the BPM beam position
over 180 s after removing the linear component of the drift in
position.

3In the case of the MAX IV 3 GeV ring 3rd and higher order
dispersion is a negligible contribution to this measurement.
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the simulated lattice with errors was determined by looking
at the agreement of the chromatic functions.
Since sextupole errors fromother sources, e.g.,misaligned

octupoles, will be attributed to the sextupole magnets the
fitting procedure needs a few iterations to converge. The
nonlinear component of the MAX IV 3 GeV storage ring
OEORMwith regard to sextupole circuit strength was found
to be relatively small (see Secs. IVA). As a result, the
Jacobian is relatively unchanged with sextupole settings,
making the static Jacobian a decent approximation when
fitting, with the only sacrifice being slower convergence.

1. Sextupole errors by circuit

Initial simulation tests were performed by introducing
sextupole errors by circuit to the nominal lattice. The errors
were normally distributed with σ ¼ 4%, and a cutoff at 2σ.
A normally distributed transversal alignment error was
added to all magnets with σ ¼ 25 μm and a cutoff at 2σ,
and a normally distributed BPM noise with σ ¼ 0.40 μm
was added to the simulated OEORM to represent the BPM
noise at a beam current of 3 mA. The simulation was run for
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TABLE II. RMS of the chromaticity and chromatic function
error of the 10 error seeds.
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FIG. 7. Introduced sextupole magnet errors and found sextu-
pole circuit settings from a single error seed. The error bars are
the standard deviation of 10 error seeds. The found settings do not
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despite this the fit is able to reproduce the chromatic functions
(see Fig. 8).
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10 different error seeds. For each seed the model was fitted
to the simulated OEORM with the strength of all sextupole
circuits, BPM gains, and dipole corrector magnet kick
strengths as fitting parameters. The OEORMs were simu-
lated at a bipolar energy-shift of δ̄ ≈ 0.16% from nominal,
which proved to give sufficient signal-to-noise ratio. Each
case was fitted for 5 iterations which was enough for good
convergence. In Fig. 5 the introduced and identified
sextupole strengths of a single error seed can be seen,
along with an error-bar calculated from all 10 error seeds.
The method can clearly identify the sextupole circuit errors.
The fit was also able to recreate the initial model

chromatic functions as well as the chromaticities with a
high degree of accuracy (see Fig. 6 and Table II).

2. Sextupole errors by magnet

The sextupole circuit errors represent a power supply
outputting the wrong current. The machine might also have
circuit independent sextupole errors, e.g., from a partially
short-circuited magnet or manufacturing errors. These were

represented in the model as normally distributed sextupole
magnet (as opposed to circuit) strength errors with the same
variance and cutoff as the circuit errors. The fitting
procedure is still done by circuits in order to reduce the
number of fitting parameters. When allowing the fit to be
done by individual sextupole magnets there are too many
unknown chromatic gradients between each BPM and
dipole corrector, resulting in a large number of singularities
and unrealistic suggested sextupole corrections. When
fitting by circuit, the magnet errors are clearly outside
the parameter space of the fitting procedure, thus it cannot
clearly identify the errors as in the case of the circuit errors.
This can be seen in Fig. 7 where the found settings do not
directly correspond to the introduced errors. Despite this
the fit is able to reproduce the chromatic functions and the
chromaticities (see Fig. 8 and Table II). Comparing the two
situations it is clear that the fit to the circuits errors is more
accurate, which is not surprising since the circuits errors are
fully within the parameter space of a correction by circuit.
Additionally, the chromatic function beating introduced by
the magnet errors is a factor of ∼2 larger than those
introduced by the circuit errors. The method finds the
sextupole circuit settings which closest approximates the
effect of the introduced sextupole magnet errors. These are
strong indications that a fit by sextupole circuit is sufficient
even in the case of individual magnet errors.

V. MEASUREMENTS

The following measurements were performed on the
MAX IV 3 GeV storage ring. Each OEORM measurement
takes approximately twice as long as a single ORM
measurement, with some extra time requirements from
the additional orbit correction. The measurement time
scales with the number of dipole corrector magnets,
BPM readback time, and dipole corrector ramp time. For
example, a full OEORM took 2 h to measure on the MAX
IV 3 GeV storage ring without any attempts to optimize the
measurement time.
Initial measurements were a proof of principle in which a

number of sextupole errors were intentionally introduced to
the lattice. These were identified using the NOECO
scheme. The later measurements were a symmetrization
of the sextupole strengths of the ring through iterative
application of the correction scheme. These measurements
can be seen as the sextupole equivalent of correcting the
quadrupole fields in the ring using the iterative application
of the LOCO scheme.

A. Initial measurements

The viability of the method was tested by investigating
its ability to detect known sextupole errors in the machine.
The known errors consisted of reducing the current of five
different sextupole circuits by 20%, 15%, 10%, 5%, and
2% from nominal settings. An OEORM measurement was
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performed on the machine before and after applying the
changes to the five sextupole circuits. A bipolar momentum
shift of δ̄ ≈ 1.6% and a dipole corrector kick of ∼0.05 mrad
was used for the measurement. The energy-shift was
increased, compared to the simulations, which was shown
in Sec. III to increase the signal to noise ratio. The increase
drowned out the signal from a thermal drift discussed later
in this section. Since this energy-shift constitutes a large
beam displacement the BPM readings were linearized
using the procedure found in [15]. The difference between
the measured and model OEORM before and after the
fitting procedure can be seen in Fig. 9.
From the fits to the data measured before and after

introducing the sextupole circuit errors, two sets of sextu-
pole settings were found. The difference between the two
settings can be seen in Fig. 10. All of the introduced errors
could be identified by the fit, but a spread of errors not
corresponding to the introduced errors can also be seen.
The chromaticity of the machine before and after

introducing the five reductions to some sextupole circuits,
along with the chromaticity of the models fitted to the
measured data of the two sextupole settings, can be seen in
Table III. The fitted model appears to be able to reproduce
the measured chromaticity with decent accuracy.
TheBPMgains and dipole correctormagnet kick strengths

were also part of the fitting procedure. The fitted gains and
kicks are able to identify larger gain discrepancies, e.g., the
BPMs in the beginning and the end of the first achromat.
These have a different gain due to having a different geometry
compared to the remainingBPMs in the ring. The foundBPM
gains and corrector kicks can be seen in Fig. 11.
The accuracy of the fits to a measured OEORM was

limited by a thermal drift of the beam position after magnet
cycling. The issue was initially resolved by waiting for the
machine to thermalize. Since sufficient thermalization took
several hours to achieve the signal from the thermal drift
was instead drowned out by increasing the energy-shift
used to measured the OEORM. Additionally, periodic orbit
correction was added to the OEORM measurement pro-
cedure. This reduces the effect of thermal drifts as well as
corrector magnet hysteresis.

B. Iterative symmetrization

The magnitude of the sextupole corrections requested by
the fits in Sec. VA was outside the range of the SDend

FIG. 9. Difference between measured and model OEORM
before (top) and after (bottom) fitting the model. The BPMs
and dipole correctors are plotted in the order horizontal followed
by vertical.
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FIG. 10. Identified and introduced change in sextupole circuit
strengths. The fitting procedure is able to identify all introduced
errors, but a spread of errors not corresponding to the introduced
errors can also be seen.

TABLE III. Measured chromaticity and chromaticity of model
fitted to measured OEORM. “Before errors” refers to the machine
at nominal sextupole settings, while “After errors” refers to the
reductions described in Sec. VA.

Measured ξx=ξy Fitted ξx=ξy

Before errors þ1.1200=þ 0.8531 þ1.0169=þ 0.9889
After errors þ0.5342=þ 1.3590 þ0.5047=þ 1.6117
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family of sextupoles. The large setpoint change was due to
the fitting procedure lacking measurement points (consist-
ing of BPMs and dipole corrector magnets) between the
SDend and SFm magnets. This resulted in the method
increasing the strengths of the SDend and adjacent SFm
sextupoles against each other. The singularity meant that
large set point changes could be done to the SDend and

SFm families without significantly affecting the OEORM
residual. The issue was resolved by combining the SDend
and SFm circuits for each achromat in the fitting procedure.
Prior to the iterative symmetrization the sextupole

settings were returned to the theoretically nominal values
according to the magnet calibration data. The linear optics
were corrected using the LOCO algorithm. The OEORM
was measured with a bipolar momentum shift of δ̄ ≈ 1.6%,
and a bipolar orbit response from a kick of ∼0.05 mrad.
The BPM readings were once again linearized using the
procedure found in [15].
The initial chromaticity and the resulting chromaticity

as each iteration of corrections was applied to the machine
can be seen in Table IV. Figure 12 shows the identified
difference in sextupole strength from nominal for each
iteration. It is clear that the sextupole strength identified
from the OEORM converges to the nominal settings. After
only two iterations the measured chromaticity converged to
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FIG. 13. Chromatic functions of the ring with each iteration of
corrections. The chromatic functions were extracted from the
fitted model.
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the goal of þ1=þ 1 and the fitting procedure no longer
identifies any large differences in the sextupole strengths
from nominal. From the convergence of the chromaticity it
appears that the iterative application of the procedure
results in a higher accuracy in the predicted chromaticity
than the single measurements shown in Sec. VA. This is
likely due to the static Jacobian becoming more relevant as
the 2nd order optics of the machine approaches nominal.
From the fitted models it is possible to extract the

chromatic functions. As the sextupoles converge to the

symmetrized settings the chromatic functions converge
to the nominal model values (see Fig. 13). It is worth noting
that the convergence of the chromatic functions only
proves that the fitting procedure is self-consistent. It is still
possible that there is a chromatic function error due to the
scheme not being able to perfectly reproduce the machine
functions (as seen in Sec. IV). However, the predicted
chromaticity values of the final iteration in Table IV match
the measured very well. This is an indication that the
chromatic functions are also well matched.
The convergence of the iteration process can also be

investigated by looking at the difference between the
measured and the nominal OEORM before and after the
application of the correction. In Fig. 14 a reduction of
the OEORM error by a factor of 5 can be seen. Some
systematic errors in both the horizontal and the vertical plane
of the matrix can still be seen.

VI. EFFECT ON DYNAMIC APERTURE

The sextupole settings found in the iterative process of
Sec. V B were applied to the ring. These settings will be
referred to as the post-symmetrization settings. Their effect
on the ring’s dynamic aperture was investigated using three
different independent measurements, namely: lifetime-
scraper, pinger, and momentum acceptance measurements.
A lattice with the same dipole, quadrupole, and octupole
settings, but with sextupoles set at their design value
according to their measured magnetic field excitation
curves, is used as a reference lattice when comparing
and evaluating the effect on the dynamic aperture. These
settings will be referred to as the presymmetrization
settings. Due to the reference lattice, the presymmetrization
settings, having higher coupling it had a larger vertical
emittance by a factor of ∼5 compared to the post-symmet-
rization lattice. Once the emittance coupling of the new
settings had been increased to the level of the previously
used settings the lifetime at delivery was ∼19 h, compared
to ∼11 h for the previously used sextupole settings.

A. Lifetime-scraper measurements

Lifetime-scraper measurements were performed by mon-
itoring the beam lifetime, τ, and current, I, while moving
either a horizontal or vertical scraper closer to the beam
centre. The distance from the beam center at which the
scraper starts affecting the lifetime · current product, I · τ, is
used as a proxy for the dynamic aperture, either horizon-
tally or vertically. This product was used, as opposed to
the lifetime directly, to compensate for the current lost
during the measurements. The position where the scraper
starts affecting I · τ was calculated by finding the first
scraper position where the I · τ is statistically smaller than
the initial value with a 95% confidence interval. A beam
current of 3 mAwas used during the measurement. A short

FIG. 14. Difference between measured and nominal OEORM
before (top) and after (bottom) applying the sextupole symmet-
rization to the ring.

TABLE IV. Measured chromaticity and chromaticity of model
fitted to measured OEORM. The chromaticity converges to the
goal values of þ1=þ 1 after two iterations.

Measured ξx=ξy Fitted ξx=ξy

0th iteration þ0.9233=þ 3.2345 þ0.7873=þ 3.2507
1st iteration þ1.2167=þ 0.8254 þ1.1884=þ 0.9677
2nd iteration þ1.0089=þ 0.9722 þ0.9963=þ 0.9948
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bunch train was used to ensure that the lifetime was low
enough to be measured both accurately and quickly.
The post-symmetrization settings resulted in an increase

in the horizontal dynamic aperture from 5.9� 0.2 mm to
7.3� 0.2 mm, and in the vertical from 2.5� 0.2 mm to
2.7� 0.2 mm (see Fig. 15). The corresponding transverse
acceptance values are 3.7� 0.1 mm mrad and 5.6�
0.2 mm mrad horizontally, and 1.6� 0.2 mm mrad and
1.9� 0.2 mm mrad vertically. It is possible that the hori-
zontal scraper limits the momentum acceptance as well as
the horizontal acceptance, since a scraper at a nondispersive
section can still catch a Touschek scattered particle. If this
were the case, the scraper measurement would show that
the post-symmetrization sextupole settings result in an
increase in momentum acceptance. In order to more
directly measure the acceptances additional dipole pinger
and rf momentum variation measurements were performed.

B. Pinger measurements

The horizontal and vertical dipole pinger magnets of the
MAX IV 3 GeV storage ring were used to measure

the transverse acceptance of the beam while using either
the post-symmetrization sextupole settings or the presym-
metrization settings. A stored beam of 3 mA was kicked
in one plane with an iteratively increasing kick strength
until at least 1% of the stored beam is lost with each kick. A
short bunch train was used in order to ensure that all
bunches see the same dipole kick amplitude. The value of
the maximum kick was taken as the limit of the beam kick
resilience in that plane. The 1% limit was chosen in order to
save time during the measurement, and avoid frequent
beam injections.
The resulting transverse acceptances calculated from the

kick resiliences of the two different sextupole settings can be
seen in Table V. The horizontal acceptance was increased by
the post-symmetrization sextupole settings,while thevertical
was decreased. Since only a 1% beam loss was allowed
during the measurement these values are a lower limit of the
actual transverse acceptances, but are still useful for meas-
uring changes in acceptance. In order to get a more precise
acceptance measurement a beam loss of 50%would be more
appropriate. A good explanation to why the vertical scraper
and pinger measurements give different results is yet to be
found. However, this ambiguity will have a minor influence,
since during user delivery the vertical physical acceptance is
limited to 1 mm mrad by the IDs.

C. Momentum acceptance measurements

The momentum acceptances of the two lattices were
measured by monitoring the lifetime while changing the
accelerating voltage of the cavities. A short bunch train was
used to reduce multibunch effects. The beam was kept
stable throughout the measurement. From OPA [16] a
theoretical lifetime-accelerating voltage curve depending
only on the rf-acceptance was calculated. The accelerating
voltage could be transformed into momentum acceptance
via the synchrotron frequency which was also measured
during the experiment. When any part of the studied lattices
start to limit the momentum acceptance, the corresponding
measured lifetime will start to deviate from the theoretical
lifetime. As more parts of the lattice limits the momentum
acceptance the curves will diverge more. In Fig. 16 the ratio
between the measured and the theoretical Touschek lifetime
can be seen. At our delivery rf momentum acceptance of
5.4%, the Touschek lifetime increased a factor of 2, due to
the improved lattice momentum acceptance.
The improvement of the momentum acceptance can also

be seen from the models fitted to the initial and final

FIG. 15. I · τ versus horizontal (top) and vertical (bottom)
scraper distance from beam center. “Presymmetrization” refers to
sextupole settings based solely on rotating coil calibration curves,
while “post-symmetrization” refers to the sextupole settings
found in Sec. V B. The post-symmetrization settings resulted
in an increase in the horizontal dynamic aperture. The measure-
ments were done at a beam current of 3 mA, and a short bunch
train. The difference in lifetime was due to the lower vertical
emittance from a lower coupling in the post-symmetrization
lattice.

TABLE V. Measured horizontal and vertical acceptance of the
presymmetrization and post-symmetrization sextupole settings.

Ax [mmmrad] Ay [mmmrad]

Presymmetrization 2.1� 0.1 2.1� 0.1
Post-symmetrization 3.9� 0.1 1.2� 0.1
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OEORM measurements. The momentum acceptance limit
was probed by simulating a particle with a certain energy
deviation δ for 2064 turns, corresponding to >4 full
synchrotron periods. Losing the particle indicates the
limit of the acceptance. From the results of the simulation
(see Fig. 17) it is clear that the increase in momentum
acceptance is present also in the model.

VII. CONCLUSIONS

The novel NOECO scheme, described in this paper, was
applied on the MAX IV 3 GeV storage ring lattice. The
scheme symmetrized the chromatic functions and sextupole
settings through fitting of a lattice model to measured off-
energy orbit response matrices. It was able to qualitatively
and quantitatively, down to single percent level, identify
sextupole errors intentionally introduced to the lattice.
Through iterative corrections the method was also able
to converge on a new set of sextupole settings, which in
turn resulted in the chromaticity converging to the goal
values. The new sextupole setting proved to be an improve-
ment of ∼30 − 40% with regards to horizontal dynamic

acceptance, as measured by the pinger acceptance meas-
urement. The settings also showed a factor of 2 increase of
the Touschek lifetime at the operating rf acceptance of the
ring. The new sextupole settings are currently in use during
delivery at the MAX IV 3 GeV storage ring. The emittance
coupling of the new optics has been increased to the level
previously used during delivery. The resulting lifetime of
the new settings at delivery conditions is ∼19 h, compared
to ∼11 h for the previously used sextupole settings.
The fitting and symmetrization of the MAX IV 3 GeV

sextupoles was done by magnet circuit, rather than by
individual magnets. This was due to there being several
individual sextupoles between the measurement points
(BPMs and dipole correctors) of the MAX IV 3 GeV ring
lattice. The NOECO scheme was not able to separate these
individual gradients as these singularities instead had a
tendency to increase the strength of adjacent gradients
against each other. This resulted in unrealistic sextupole
settings which were too large to be implemented. The same
issue arose when fitting by circuits as the SDend and SFm
sextupoles lack a measurement point between each other.
This was resolved by combining the SDend and SFm
families, at which point the sextupole circuits were suffi-
cient fitting parameters to symmetrize the 2nd order lattice.
The accuracy of the NOECO scheme, when applied to

the MAX IV 3 GeV storage ring, was limited by the
thermal drift of the machine after magnet cycling, and by
BPM noise. The effect of the thermal drift could be reduced
without waiting for thermalization by increasing the
energy-shift at which the OEORMs are measured. The
effect was also decreased by correcting the beam position
periodically throughout the measurement. In the case of the
MAX IV 3 GeV storage ring this was a sufficient reduction
to unwanted signals during the measurement. Since noise
and drifts are machine dependent the optimal energy-shift
and amount of orbit correction will be different for each
machine.
Harmonic sextupoles are completely transparent to the

NOECO scheme and are thus not able to be symmetrized
by the scheme. This is not an issue in the MAX IV 3 GeV
ring as all its sextupoles are chromatic. If the scheme is to
be used on a lattice with harmonic sextupoles it will need to
be complemented with other methods. Higher order mag-
nets, such as octupoles, have a minuscule effect on the
OEORM and could therefore safely be excluded from the
fitting procedure without affecting the final sextupole
symmetrization. The octupole magnets of the MAX IV
3 GeV storage ring play an important role in the amplitude
dependent tune-shift and the transverse dynamic accep-
tance of the ring. However, the choice was made to limit
this paper to sextupoles in order to investigate one order of
nonlinear magnets at a time. Since the octupole magnets of
the MAX IV 3 GeV storage ring are powered globally they
constitute a very limited parameter space, and are planned
to be characterized and corrected through the amplitude
dependent tune-shift.
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momentum acceptance of the MAX IV 3 GeV ring during
delivery. At this acceptance value the symmetrization increased
the Touschek lifetime by a factor of 2.

FIG. 17. Number of survived turns for a particle with momen-
tum deviation δ propagating in the model fitted to the pre- and
post-symmetrization OEORM measurements. A momentum
acceptance increase of ∼50% can be seen. The simulation was
run for 2064 turns.
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The novel NOECO scheme has the potential to be used
for the symmetrization of the chromatic sextupoles of not
only the MAX IV 3 GeV storage ring but for many other
fourth generation storage rings, provided that the BPM and
dipole corrector magnet layout sufficiently samples the
chromatic sextupole lattice. The method provides a struc-
tured approach to identifying all chromatic sextupole
gradients of the ring from a single measurement which
is no more time consuming than two ORM measurements.
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