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At the Large Hadron Collider (LHC), the interplay between a series of effects, including intrabeam
scattering (IBS), synchrotron radiation, longitudinal beam manipulations, two beam effects (beam-beam,
e-cloud) and machine nonlinearities, can change the population of the core and tails and lead to non-
Gaussian beam distributions, at different periods during the beam cycle. By employing generalized
distribution functions, it can be demonstrated that the modified non-Gaussian beam profiles have an impact
in the beam emittance evolution by itself and thereby to the collider luminosity. This paper focuses on the
estimation of beam distribution modification and the resulting rms beam size due to the combined effect of
IBS and synchrotron radiation by employing a Monte-Carlo simulation code which is able to track 3D
generalized particle distributions (SIRE). The code is first benchmarked over classical semianalytical IBS
theories and then compared with measurements from the LHC at injection and collision energies, including
projections for the High-Luminosity LHC (HL-LHC) high brightness regime. The impact of the
distribution shape on the evolution of the bunch characteristics and machine performance is finally
addressed.
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I. INTRODUCTION

The performance of a high-energy hadron collider such
as the LHC is heavily based on the preservation of the
injected emittances, under the influence of several degrad-
ing mechanisms. In this respect, an emittance evolution
model was constructed including the effects of intrabeam
scattering (IBS), synchrotron radiation, elastic scattering
and luminosity burn-off (while at collision) [1]. This simple
model is based on semianalytical approaches which assume
Gaussian beam distributions, in particular for IBS. The
bunch characteristics evolution predicted by this model
revealed discrepancies, as compared to the measurements,
translated to differences in the luminosity predicted by the
model as compared to the experimental estimations [1–3].
One of the possible reasons for these differences could be
attributed to the fact that the bunch profiles appear to be
non-Gaussian both at injection and collision energies, i.e.,

450 GeVand 6.5 TeV respectively. The aim of this study is
to quantify the impact of the beam distribution shape on the
emittance and luminosity evolution of hadron colliders. In
order to illustrate this, and employing generalized distri-
bution functions, the luminosity of non-Gaussian beams is
determined in a closed form. The generalization of the
luminosity estimate for arbitrary distributions does not only
permit its comparison to the usual Gaussian beam estimate
but also the extension of classical results for the impact of
non-Gaussian beam distributions to the luminosity (see
Sec. II). This motivates the investigation of the emittance
evolution beyond the classical analytical formulas for
modeling IBS, which are based on 3D Gaussian beam
assumptions [4]. In this respect, a Monte Carlo multi-
particle simulation code for IBS and Radiation Effects
(SIRE) [5,6], is employed and compared to LHC data from
Run2. A brief description of the code, and its benchmark-
ing with the existing IBS analytical approaches and
simulations for lepton rings is presented in Sec. III.
Extending previous benchmarking studies for the LHC
with respect to IBS theories [7], a detailed comparison of
the Bjorken-Mtingwa (B-M) IBS theoretical model with the
SIRE code for both injection and collision energies is
presented for the nominal LHC using the batch
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compression merging and splitting (BCMS) [8,9] beam and
the high luminosity LHC (HL-LHC) [10] beam parameters
(Sec. IV). Finally, measured data from the LHC corre-
sponding to non-Gaussian longitudinal beam profiles are
compared with the expectations of the rms emittance
evolution given by the theoretical B-M analytical forma-
lism [4] and the SIRE code (Sec. V).

II. MOTIVATION-IMPACT OF NON-GAUSSIAN
DISTRIBUTIONS ON LUMINOSITY

The performance of a collider is determined by the
luminosity which, for two beams colliding head-on, is
given by [11]:

L ¼ 2N1N2Nbfrev

ZZZZ
∞

−∞
ρ1xðxÞρ1yðyÞρ1sðs − s0Þ

× ρ2xðxÞρ2yðyÞρ2sðsþ s0Þdxdydsds0; ð1Þ

withN1;2 representing the number of particles per bunch for
each beam, Nb the total number of colliding bunches, frev
the revolution frequency and ρ the beam density distribu-
tion functions for each plane and beam.
Based on Eq. (1), assuming Gaussian beams that collide

head-on, the luminosity is expressed as [11]:

LG ¼ N1N2Nbfrev
4πσGx σ

G
y

: ð2Þ

In order to achieve high luminosity, high intensity bunches
and small beam sizes are required. The horizontal and
vertical beam sizes of two colliding Gaussian bunches are
given by:

σGx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21x þ σ22x

2

r
and σGy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21y þ σ22y

2

s
; ð3Þ

where (σ1x, σ1y) and (σ2x, σ2y) are the transverse rms beam
sizes of beam 1 and beam 2, respectively.
Based on the transverse and longitudinal bunch profile

measurements, it has been observed that the particle
distributions in the LHC, both at collision and injection
energies, appear to have shapes that differ from the ones of
a normal distribution [12–14]. At the LHC injection energy,
the emittance evolution is dominated by the IBS effect,
both in the horizontal and in the longitudinal plane, while
no effect is expected in the vertical plane [15] where
dispersion is minor. From Run 2 data, it is observed that in
many cases the transverse bunch profiles appear to be non-
Gaussian during the whole injection plateau [12]. At the
LHC collision energy, the IBS effect is weaker, while
synchrotron radiation damping becomes more pronounced.
The bunch profiles at collisions appear to have non-
Gaussian tails, as well. In fact, during the energy ramp,
the bunches that are blown up longitudinally in order to

avoid instabilities due to the loss of Landau damping [16],
arrive at the start of collisions with a clearly non-Gaussian
shape [14].
By assuming that a particle distribution is Gaussian

when this is not the case, not only the rms beam size may be
underestimated or overestimated, but also its impact on
performance parameters, such as the luminosity. Therefore,
it is important to use appropriate fitting functions (or some
type of interpolation algorithm) on the beam profile in
order to properly address this discrepancy. A generalized
Gaussian function, called the q-Gaussian [17], can be
employed for fitting more accurately bunch profiles with
shapes that differ from the ones of a normal distribution
(see the Appendix A for the properties of this distribution
function). The parameter q describes the weight of the tails
as compared to the core, ranging from light tailed ones for
q < 1 (including the square distribution for q → −∞) and
extending to a heavy tailed ones for q > 1, passing through
the Gaussian distributions in the limit of q → 1. This
distribution is actually a stationary solution of a generalized
Fokker-Plank equation which can cover a full spectrum of
statistical behaviors of dynamical systems, from sub to
super-diffusion Levy-type processes [18].
In view of quantifying the impact of non-Gaussian

distributions, the luminosity is estimated through Eq. (1)
by using the specified probability density functions.
Assuming that the two beams are identical and that they
collide head-on, the luminosity for q-Gaussian distribution
functions in the transverse plane is given by:

LqG ¼ N1N2Nbfrev
4πσqGx σqGy

IqG
x IqG

y ; ð4Þ

for σqGx;y being the rms beam sizes (see Appendix A) in the
transverse plane, for both beams. The factors IqG

x;y which
depend on the parameter q in the respective planes and the
details of the calculation are presented in Appendix B,
together with the validation of the luminosity estimation for
q-Gaussian distributions (shown in Fig. 22). By comparing
this equation to the standard luminosity formula for
Gaussian beams with identical rms sizes, the significance
of the tail population contribution on luminosity can be
established and parametrized through q. This is illustrated
in Fig. 1 where the luminosity variation normalized to the
corresponding one for Gaussian beams (LG) is parame-
trized with the parameter q of the q-Gaussian fitting
function, characterizing the weight of the tails in the
transverse plane, for fixed q-Gaussian rms beam sizes in
all planes, assuming head on collisions (i.e., no dependence
of the luminosity on the longitudinal beam size, see
Appendix B). The bunch profiles corresponding to a light
tailed (q < 1), a Gaussian (q ¼ 1) and a heavy tailed
(q > 1) distribution, having identical beam sizes, are
plotted in Fig. 2. As q (and βqG that is a parameter of
the q-Gaussian probability density function and a real
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positive number—see Appendix A) vary for fixed
q-Gaussian rms beam sizes (based on Eq. (A5) in
Appendix A), the luminosity varies as well with respect
to the one estimated for purely Gaussian beams. Practically,
if the tails of a distribution differ by 10% compared to the
ones of a Gaussian distribution (i.e., q ¼ 0.9 or q ¼ 1.1),
the luminosity value can be overestimated or underesti-
mated by 5%. It is then clear that, for two beams colliding
head-on, the shape of the transverse distributions has
a significant impact to the estimated luminosity, in par-
ticular for the LHC experiments which target a ∼2%
accuracy in their estimates [19]. The impact of non-
Gaussian distributions on the luminosity was firstly dis-
cussed by Hereward [20]. In particular, the luminosity
integrals were calculated for several distributions as the
rectangular and the parabolic which correspond to a
q-Gaussian with q → −∞ and q ¼ 0, respectively.
Assuming that the two beams are identical and that they
collide head-on, these distributions were used as examples
to estimate the discrepancy from the luminosity for
Gaussian densities. This discrepancy is calculated after
solving the Lw that is the integral over the density functions
in one plane, being identical for both beams, as:

Lwhw2i1=2 ¼ σw

Z
∞

−∞
ρðwÞ2dw; ð5Þ

with w ¼ x, y and for σw being the transverse rms beam
size, since these solutions correspond to the transverse
plane. It was found that [20,21]:

Lwhw2i1=2¼

8>><
>>:
0.2887; for a rectangular distribution

0.2683; for a parabolic distribution
1

2
ffiffi
π

p ¼0.2821; for aGaussian distribution

ð6Þ

In fact, this approach already identified the existence
of a minimum for a light tailed parabolic distribution,
which becomes obvious by employing the q-Gaussian, as
observed in Fig. 3, where Lwhw2i1=2 is plotted versus q for
q < 1, i.e., light tails (left), and q > 1, i.e., heavy tails
(right). The results for q-Gaussian distributions (grey
curves) are in perfect agreement with the case studies
discussed in [20]. This is also true for a rectangular
distribution which corresponds to a q-Gaussian with
q → −∞ and is beyond the range of the left plot of
Fig. 3. For heavy tailed distributions, there is no upper
limit for the constant of Eq. (6), as already inferred by
Hereward [20]. In Fig. 3 (right) the case of a heavy tailed
distribution with q ¼ 1.65 is denoted by a red square. The
extreme case of q → 5=3 corresponds to a q-Gaussian
whose rms size goes to infinity (i.e., Levy distributions, see
Appendix A).
The sensitivity of the luminosity on the distribution as

generalized by employing the q-Gaussian function jus-
tifies the need of carefully studying the evolution of
distributions in hadron colliders. For the LHC, a lumi-
nosity model was constructed [1]. The evolution of the
emittance includes the effects of IBS, synchrotron radi-
ation, elastic scattering, betatron coupling, noise and
burn-off. Although this model has a relative agreement
with respect to the measured luminosities by the experi-
ments (i.e., ATLAS [22] and CMS [23]), there is still
some room for improvement [3]. Indeed, the emittance
evolution for IBS was based on the module of MAD-X
[24] following the B-M theory which assumes Gaussian
beam distributions. The extension of this to non-Gaussian
distributions as observed in the LHC may shed light to
the origin of the remaining discrepancy between the
model and the measurements.

FIG. 1. Parameterization of the luminosity variation, normal-
ized to the corresponding Gaussian luminosity value LG, with the
weight of the transverse distribution tails given by the parameters
qx;y, for a constant q-Gaussian rms beam size.

FIG. 2. The q-Gaussian density distribution function for a
light tailed (blue, q < 1), a Gaussian (black, q ¼ 1) and a heavy
tailed (red, q > 1) bunch profile, having identical q-Gaussian
rms beam sizes.
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III. INTRABEAM SCATTERING THEORIES,
OBSERVATIONS, AND SIMULATIONS

One of the statistical processes causing a spreading of
particles in phase space or a continuous increase of beam
emittance is the small angle multiple Coulomb scattering,
called intrabeam scattering (IBS), which plays an important
role in eþ=e− damping rings, high intensity/low energy
light sources [25] and high intensity hadron [26] and ion
[27] circular machines. The IBS theory for accelerators was
firstly introduced by Piwinski [28] and extended by Martini
[29], establishing a formulation called the standard
Piwinski method. Later, Bjorken and Mtingwa (BM) [4]
used a different approach to describe the effect, taking into
account the strong focusing effect. The modified Piwinski
method [30] that includes the strong focusing effect, was
developed by Bane. Some approximations of these theories
are the high energy one by Bane [30] and the completely
integrated modified Piwinski [31]. A different approach
developed by Lebedev for hadron beams is based on a
Boltzmann type integro-differential equation and includes
betatron coupling [32].
The analytical models that describe the IBS effect [4,33]

assume Gaussian beam distributions. The stationary sol-
ution of the Fokker-Planck equation is a particle distribu-
tion that is Gaussian in the phase space. However, taking
into account the effects of IBS, radiation damping and
quantum excitation but also other diffusive mechanisms
[34], there is no evidence that the distribution remains
Gaussian. Therefore, it is important to develop analytical
formulas and simulation tools that calculate the interplay
between these effects for any distribution.
For the Relativistic Heavy Ion Collider (RHIC), the IBS

growth rates were calculated and benchmarked with exper-
imental data using the distribution function evolution
(based on the Fokker-Planck equations), extending the
usual approach of employing a conventional Gaussian-like
distribution [35]. In this respect, IBS growth rates were

calculated for a bi-gaussian distribution, which was inter-
esting for studying the possibility of using electron cooling
in RHIC [36]. Later, a model which is suitable for IBS
calculations for arbitrary distribution functions and its
comparison to experimental data was presented in [37].
The IBS effect was also studied for high-brightness
electron linac beams which appear to be non-Gaussian,
especially in the longitudinal plane [38]. For low-emittance
high-intensity electron storage rings, the interplay between
intrabeam scattering and wake-field forces is discussed in
[39]. In particular, the calculation of the IBS growth rates
and the estimation of the emittance growth is discussed in
detail in [40], where the importance of knowing the
formation of the distribution tails is underlined, referring
also to the use of Monte-Carlo methods.
In order to simulate the impact of a distribution shape

on the emittance evolution when considering IBS and
radiation effects the SIRE (software for IBS and radiation
effects) [5,6] code was developed by Vivoli and Martini at
CERN. A similar Monte Carlo approach (IBStrack [41])
was implemented also in the collective effects simulation
tool CMAD [42,43]. Both algorithms have as their basis
MOCAC (MOnte CArlo Code), a Monte-Carlo code
developed by Zenkevich and collaborators [44,45], which
calculates the IBS effect for arbitrary distributions, by
representing the beam through a large number of macro-
particles occupying points in the 6-dimensional phase
space. Being an extension of MOCAC, SIRE was devel-
oped to simulate the evolution of the beam particle
distributions, taking into account the effects of IBS,
synchrotron radiation and quantum excitation. For the
evolution of the LHC bunch parameters and the shape
of the bunch profiles presented in this paper, the simu-
lations are performed using SIRE. As the physics and
implementation details of the code are extensively
explained in [6], we only briefly summarizes some of
its key features.

FIG. 3. In order to estimate the divergence of the luminosity for non-Gaussian distributions from the one for Gaussian
densities, the Lwhw2i1=2 [see Eq. (5)] is plotted versus the weight of the tails q, for light tailed (left) and heavy tailed (right)
distributions, i.e., q < 1 and q > 1, respectively. The points corresponding to a parabola and a Gaussian distribution, firstly presented in
[20,21], are plotted.
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A. Software for IBS and radiations effects (SIRE)

For the IBS calculations, SIRE [5,6] uses the classical
Rutherford cross section, which is closer to the Piwinski
formalism [33]. It uses as input the optics functions at
different locations of the lattice in order to determine the
trajectories of the particles in phase space. Instead of using
the 6 coordinates for position and momentum, the two
Courant-Snyder and longitudinal invariants and the 3
phases (betatron and synchrotron) are used. For a linear
ring, the 3 invariants are conserved between points around
the lattice and can only be changed by the effects of IBS,
synchrotron radiation and quantum excitation, while the
phases are chosen randomly at each given point of the
lattice. The time steps for which the IBS and radiation
effects are called should be specified such that they are
larger than the revolution time and smaller than the
damping/growth times. Dividing the total time by the time
steps shows how frequently the IBS, synchrotron radiation
and quantum excitation routines are called. The quantum
excitation is implemented by adding to the 6 coordinates of
each macroparticle a Gaussian random noise component.
Depending on the elapsed time, the synchrotron radia-

tion damping acts on the invariants of the macroparticles as
an exponential decrement. The routine introduced for this
reason is called after the calculation of the IBS effect at
each iteration. Using small iteration time steps dt (which
are much smaller than the damping times and for which the
emittances change adiabatically), the evolution of the
transverse emittance and energy spread due to the effects
of IBS and synchrotron radiation can be obtained by
solving the coupled differential equations:

dϵx;y
dt

¼ −2ðϵx;y − ϵx;y0Þ
τx;y

þ 2ϵx;y
Tx;y

;

dσp
dt

¼ −ðσp − σp0Þ
τp

þ σp
Tp

; ð7Þ

with ϵx;y0 and σp0 being the zero current (without the effect
of IBS) equilibrium transverse emittances and energy
spread, respectively. The τx;y, τp are the synchrotron
radiation damping times and Tx;y, Tp the IBS growth times.
The algorithm SIRE uses to calculate IBS is similar to

that implemented in MOCAC, where the beam is repre-
sented by a large number of macroparticles occupying
points in the 6-dimensional phase space. The default
distribution defined in SIRE by using a random number
generator, is the Gaussian and is given in action angle
variables. In order to introduce a different distribution, the
proper random deviates should be generated or the action
angle variables of all macroparticles for the desired dis-
tribution should be provided. After specifying the total
beam population and the number of macroparticles, the
initial distribution can be tracked. IBS depends strongly on
beam brightness, whereas synchrotron radiation is

independent, thereby radiation damping is uniform through
the whole beam distribution. In this respect, the core of
the distribution is blown-up by IBS (in particular in the
horizontal and longitudinal plane), whereas the tails are
getting reduced. This is exactly what is demonstrated with
the simulation results presented in the following section,
where the core of the distributions appears to blow up in such
a way that it covers up the tails, resulting in distributions that
become light tailed. The particle distribution in all planes can
be saved as often as requested during the simulation time.
Currently, the output file gives the evolution of the emittance
in all planes for the specified time steps.
After providing the beam distribution and the optics

along a lattice, the beam is geometrically divided according
to the specified number of cells for each plane. The
macroparticles are assigned to each cell according to their
geometrical position. For each lattice point defined in the
optics file, the 3 phases of each macroparticle are randomly
chosen and the position and momentum of the macro-
particles are calculated. Based on the classical Rutherford
cross section, intrabeam collisions between pairs of macro-
particles are calculated in each cell. The momentum of
particles is changed due to scattering. The number of
macroparticles and cells, i.e., the number of collisions each
macroparticle experiences, is chosen so as to give accurate
results for a reasonable computational time. The scattering
angles for each collision are determined. In order to get the
mean value of the emittance and momentum deviation
changes for all particles, we have to integrate over the phase
space volume of betatron coordinates, momentum devia-
tions and azimuthal positions of the interacting particles.
The beam distribution is then updated based on the new
invariants of the macroparticles. For a specified number of
time steps which practically shows how frequently the IBS
and synchrotron radiation routines are called, the beam
distribution is updated and the rms beam emittances are
recomputed, giving finally as output the emittance evolu-
tion in time. The simulation proceeds to the next lattice
point and continues until the end time is reached.
A lattice compression technique named “lattice recur-

rences” has been implemented to speed up the calculations
[5]. Since the increase of the invariants due to IBS is linear
to the first order in the traveling time along an element,
the IBS kicks with optics functions differing less than a
specified precision value are considered equivalent. For the
corresponding group of elements, the IBS effect is evalu-
ated only once, resulting to a reduction of the computa-
tional time.

B. The logarithmic Coulomb factor

The IBS growth times have a complicated dependence
on the beam properties, due to the coupling of the three
planes through dispersion. Some of these properties are the
bunch charge and energy, the beam optics and the equi-
librium rms horizontal, vertical emittances and the energy
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spread. The IBS growth times depend also on a logarithmic
Coulomb factor which is used to include the contribution of
events having a very large and very small impact parameter.
The typical way of computing a log factor overemphasizes
the importance of the very small impact parameter events,
for which the tails of the steady-state bunch distributions
are non-Gaussian. In the high energy approximation by
Bane [25], in order to describe the size of the core of the
bunch, the Coulomb log factor is calculated as was first
proposed by Raubenheimer [46], i.e., based on a boundary
between the contribution to the core and the tails. In B-M,
Bane and CIMP methods, the Coulomb factor is defined as
the ratio of the maximum rmax to the minimum rmin impact
parameter in the collision of two particles in the bunch, that
is ðlogÞ≡ lnðrmax=rminÞ. For typical flat beams, the rmax is
taken to be equal to the vertical beam size σy, while rmin is
taken to be rmin ¼ r0βx=ðγ2ϵxÞ, with r0 being the classical
particle radius. Then, the Coulomb factor can be written as:

ðlogÞ ¼ ln

�
γ2ϵx

ffiffiffiffiffiffiffiffiffi
βyϵy

p
r0βx

�
: ð8Þ

The formalism by Piwinski always seems to underestimate
the IBS effect with respect to the other theoretical models.
What diversifies Piwinski’s method, is the different defi-
nition of the Coulomb factor. In that approach, the
maximum impact parameter which is typically taken as
the vertical beam size appears. In the high energy limit,
with d being the maximum impact parameter, the Coulomb
ðlogÞ for Piwinski can be written as [47]:

ðlogÞ ¼ ln

�
dσ2x
4r0a2

�
; ð9Þ

where a ¼ σx
γ

ffiffiffiffi
βx
ϵx

q
. Comparing the ðlogÞ factors of Eq. (8)

and (9), we find that condition d ¼ 4σy in order for the
Piwinski approach agreeing with the other models. SIRE
uses the “binary collision map” algorithm, conceived by
Zenkevich, which allows to reduce the effects of the

continuous time dynamical IBS system to a discrete time
map in momentum space. For the binary collision events,
the maximum impact parameter is taken as the beam height.

C. Benchmarking of IBS theoretical model with SIRE

The performance of hadron machines is limited by the
IBS effect causing emittance growth. For lepton machines
such as future linear collider damping rings, new generation
light sources and B-factories, the IBS effect can also be
predominant. It is thus important to study the IBS theories
in the presence of synchrotron radiation and quantum
excitation and benchmark the existing theoretical models
and tracking codes with experimental data. In this way, the
codes limitations can be identified so that to apply the
necessary improvements in order to get better predictions
for a machine’s operation.
A benchmarking of the IBS theoretical models with

Monte-Carlo codes is presented in [48] for lepton rings.
The comparison between different theoretical models and
SIRE is discussed for the Compact Linear Collider (CLIC)
damping ring (DR) [49], having ultralow emittances which
are strongly dominated by IBS, in the presence of synchro-
tron radiation and quantum excitation. Results of this
comparison are presented in Fig. 4, for one turn of the
DR lattice. Due to the fact that in SIRE the generation of
the distribution is based on a random number generator, the
tracking simulations were performed several times, result-
ing in the one standard deviation error bars (plotted in
green). The classical formalism of Piwinski (red colored)
and SIRE are in perfect agreement, as was expected, since
SIRE uses the classical Rutherford cross section which is
closer to the Piwinski formalism. The Bjorken-Mtingwa
(black colored) and Bane (magenta colored) formalisms
overestimate the effect compared to Piwinski method
mainly due to a mismatch of the Coulomb factor used in
the different approaches [see Eq. (9)].
The IBS theoretical models have been studied in detail

and benchmarked with experimental data also for hadron
beams over the years [26,27]. A comparison of the LHC

FIG. 4. One turn comparison for the horizontal (left) and vertical (middle) emittance and energy spread (right) between the tracking
code SIRE and the theoretical models Bjorken-Mtingwa (B-M), Piwinski and Bane for the CLIC DR lattice.
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data with simulations performed with SIRE is discussed in
[7,13]. In this paper, the SIRE simulations, as well as the
benchmarking with the B-M formalism and experimental
data are discussed in detail for the LHC and the High
Luminosity LHC (HL-LHC) [10].

IV. SIMULATIONS PERFORMED
WITH SIRE FOR THE LHC

In order to understand the evolution of the bunch
characteristics, based on the bunch profile observations,
it is important to study the interplay between IBS and
radiation effects (synchrotron radiation and quantum exci-
tation) during the full LHC cycle. This is done using SIRE
for two cases which are important for the current and future
machine performance; the nominal BCMS [8,9] and the
HL-LHC [10] parameters. Despite some blow-up in the
LHC during the ramp, it is observed that the BCMS beam
gives an increase in peak luminosity of around 20%. The
HL-LHC is the major LHC upgrade aiming to increase
integrated luminosity by at least a factor of 10 compared to
the nominal LHC design value (from 300 to 3000 fb−1). In
order to achieve that, the bunch population needs to be
increased and the transverse beam size at the collision
points has to be lowered.
Apart from the IBS and synchrotron radiation which are

the dominant effects for the emittance evolution in the
LHC, a combination of other diffusion mechanisms, like
the beam-beam effect, electron-cloud, noise (due to the
power converters, the transverse damper, the crab cavities,
etc.), and other nonlinearities cause emittance growth and/
or particle losses [50]. Despite the fact that these mech-
anisms are not included in SIRE, it is possible to add
empirically (i.e., based on observations) their contribution.
Practically, there is the option of adding or complementing
the variation of the bunch parameters in time. In fact, the
simulation studies presented in this paper for the LHC are

focused on the 3σ range of the particle distributions and
therefore, mechanisms which concern the far tail regime are
not taken into account as they are more important for the
lifetime of the beam then on distribution evolution.

A. Reduced lattice

As mentioned earlier, one of the inputs required by
SIRE are the optical functions along the ring. As the LHC
is a very long accelerator of about 27 km, with a very
large number of elements in the sequence (more than
11000), SIRE requires an extremely long computational
time to track the distribution for all the elements along the
ring. Aiming to reduce the computational time, a study
was first performed in order to identify the optimal
minimum number of critical IBS kicks around the lattice,
without affecting the overall effect. The IBS growth rates
were firstly calculated for the full optics of the LHC,
using the IBS module of the Methodical Accelerator
Design code (MAD-X) [24] which is based on the
Bjorken-Mtingwa formalism. Figure 5 shows the IBS
growth rates in the longitudinal (green), the horizontal
(blue) and the vertical (magenta) plane. Taking into
account the strong IBS kicks along the ring, various
lattices with a reduced number of elements, including the
case of the smooth lattice approximation, were tested.
Then, using the IBS module of MAD-X, the emittance
evolution was calculated for several sets of beam param-
eters to assure that the choice of the elements is valid for a
wide range of regimes, for which the IBS impact may be
weaker or stronger. Finally, the optimal lattice chosen
consists of only 92 elements whose positions are denoted
by red dashed lines in Fig. 5.
Figure 6 shows the emittance (left) and the bunch length

(right) growth during 30 min at injection energy, for the
nominal BCMS beams, with initial emittance and 4σ bunch
length that are respectively ϵx0 ¼ 1.5 μmrad and σs0¼1 ns,
having a bunch population of 1.2 × 1011 protons. The black

FIG. 5. The IBS growth rates along the LHC in all three planes: longitudinal (green), the horizontal (blue), and the vertical (magenta).
The IBS kicks that are noted with red dashed lines, represent the positions of the 92 elements that compose the reduced lattice.
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solid line refers to the case of the full lattice, while the red
dashed one to the reduced lattice with the 92 elements. The
magenta dotted line corresponds to the case of the smooth
lattice approximation for which a lattice with a unique
element, having the optics that represent in the best possible
way the mean optics of the full lattice, is considered. The
agreement of the full and the reduced lattice is very good in
all planes. On the other hand, by using the smooth lattice
approximation the IBS effect is slightly underestimated, in
particular, in the longitudinal plane. In the next, since the
results for the reduced and the full lattice agree also in
SIRE, the reduced lattice is used as an input for the
simulation code. After choosing the optimal number of
cells and macroparticles, the computational time in the case
of the reduced lattice is almost 20 times shorter than the one
of the full LHC lattice.

B. Convergence studies

For a specified set of input beam parameters, various
scans should be performed for different combinations of
number of macroparticles and cells in order to find the
optimal values which provide a fast tracking and at the
same time, guarantee that the scattering process leads to
accurate results. In these terms, in order to avoid having a

very small number of macroparticles per cell, the total
number of cells is calculated based on the optimal
minimum number of macroparticles per cell. For nx, ny,
nz being the number of cells in the horizontal, vertical
and longitudinal plane, respectively, it is assumed that in
the transverse plane there is a correlation between the
number of cells ratio and the beam sizes ratio, meaning
that nx=ny ¼ σx=σy. Therefore, for nmp being the total
number of macroparticles, the number of macroparticles
per cell is:

nmp=cell ¼
nmp

nxnynz
¼ nmp

n2xðσyσxÞnz
: ð10Þ

A scanning of the total number of cells is performed for
an example set of beam parameters to be used as an input
for tracking. Based on Eq. (10), by keeping the total
number of macroparticles constant, the different combina-
tions of cell numbers determines the number of macro-
particles per cell. Figure 7 (left) shows the dependence of
the emittance variation (ratio of final versus initial value) in
the horizontal (blue) and longitudinal (green) plane on the
number of macroparticles per cell, for a specified time

FIG. 6. The growth of the horizontal emittance (left) and bunch length (right) due to IBS, as computed by MAD-X with the Bjorken-
Mtingwa formalism, in a time period of 30 min at injection, when considering the full lattice (black solid line), the reduced lattice (red
dashed line) and the smooth lattice approximation- mean optics (magenta dotted line).

FIG. 7. The dependence of the horizontal (blue) and longitudinal (green) emittance variation on the number of macroparticles per cell
(left), on the number of cells in the longitudinal plane (middle) and in the horizontal plane (right), for a specific time period.
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duration. The value of the number of macroparticles per cell
after which the variation of the emittances in both planes
remains constant is chosen as the optimal minimum value.
After specifying this value, a scanning is performed for a
fixed number of macroparticles, in order to choose the
number of cells to be used, firstly in the longitudinal plane.
Then, the number of cells in the horizontal plane can be

calculated using Eq. (10), when knowing the ratio of the
beam sizes in the transverse plane.1 In Fig. 7, the depend-
ence of the emittances variation is plotted versus the
number of cells in the longitudinal (middle) and horizontal
(right) plane, for a specific time duration. It can be noticed
that the variation of the emittances remains constant after a
certain number of cells in the longitudinal and horizontal
plane that is, for the example set of beam parameters, 350
and 13 cells, respectively. Finally, the number of cells in the
vertical plane can be calculated by ny ¼ nx=ðσx=σyÞ.

C. Benchmarking of SIRE
with the B-M IBS theoretical model

SIRE has the advantage to accept any type of distribution
as an input. If requested, it also gives as output the
distribution at any stage of the tracking. In order to
benchmark the code with the analytical formulation of
B-M for the LHC, a Gaussian distribution was tracked for
two sets of bunch parameters which are summarized in
Table I for both the injection (450 GeV) and collision
energy (6.5 TeV). The first case corresponds to the nominal
BCMS [8,9] LHC beams, having a significantly lower
transverse beam size with respect to the nominal production
scheme. The second case corresponds to the HL-LHC
[10,51] parameters, for which the bunch population is very
high. The input optics functions used for tracking corre-
spond to the ones of the aforementioned reduced lattice.

1. At the LHC injection energy (450 GeV)

The evolution of the horizontal emittance (left), the
vertical emittance (middle) and energy spread (right) after
1 h at injection energy (450 GeV), where the IBS effect is
dominant, are presented in Fig. 8 for the nominal BCMS
case and in Fig. 9 for the HL-LHC parameters. The red and
the blue lines correspond to the analytical calculations of

the MAD-X [52] IBS routine (based on the B-M formal-
ism) and to the SIRE results, respectively. Due to the fact
that in SIRE the generation of the distribution is based on a
random number generator, the tracking simulations were
performed several times, resulting in the two standard
deviation spread that are plotted in light blue. Table II
summarizes the IBS growth of the transverse emittances
and energy spread, for the nominal BCMS and HL-LHC
parameters, as computed by the SIRE code and the B-M
analytical formalism in MAD-X.
In the horizontal and longitudinal plane the IBS effect is

dominant, while in the vertical plane, it is minor. Even
though the SIRE simulation algorithm and the B-M
analytical formalism make use of different approaches to
calculate the IBS effect (SIRE uses the classical Rutherford
cross section which is closer to the Piwinski formalism),
they seem to agree very well during the 1 h time at injection
energy. In the longitudinal plane, there is a small difference
observed for longer time spans. Such differences can be
explained by the fact that SIRE reshapes the beam
distributions, in a self-consistent way, after each collisional
process, while the B-M IBS formalism assumes Gaussian
beam distributions throughout the calculation.
The variation of the initially Gaussian particle distribu-

tions within 1 h at injection energy is shown in logarithmic
scale in Fig. 10 and Fig. 11 for the nominal BCMS and the
HL-LHC case, respectively. The initial and final (after 1 h)
distributions in the horizontal (left), vertical (middle) and
longitudinal (right) plane, are denoted by blue and red stars,
respectively. They are fitted with the Gaussian (dashed line)
and the q-Gaussian (solid line) functions. The q-Gaussian
function allows to fit the full distribution, core and tail at the
same time, providing also an rms size in a simple closed
form, as shown in Eq. (A5), in Appendix A. The root mean
square error (RMSE) is used as an error estimate between
the fitted parameters of the distribution functions and the
simulated ones. The fitting results of the initial and final
distributions are presented in Table III for the nominal
BCMS case and in Table IV for the HL-LHC case.
As was expected from the results shown in Figs. 8–9

concerning the IBS growth, the horizontal and longitudinal
rms beam sizes get larger as time evolves, while the vertical
one does not change. The vertical distributions remain
Gaussian since q ≈ 1. For both the nominal and the HL-
LHC case, the q parameter of the horizontal and longi-
tudinal distributions is decreased. As discussed in Sec. III,

TABLE I. Nominal (BCMS) and HL-LHC parameters, at injection energy (450 GeV) and at collision energy
(6.5 TeV).

Injection energy Collision energy

IBS growths LHC (BCMS) HL-LHC LHC (BCMS) HL-LHC

ϵx;y [μm rad] 1.5 2.0 2.5 2.5
4σ bunch length [ns] 1.0 1.2 1.0 1.2
Bunch population [1011] 1.2 2.3 1.1 2.2

1Here it is assumed that the ratio of the transverse beam sizes is
initially σx=σy ¼ 1.
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this can be explained by the fact that, due to IBS, the core of
the distributions is blown up in such a way that it covers up
the initially Gaussian tails of the input distributions, which
remain less affected. In the longitudinal plane the decrease
in q is more significant for the HL-LHC case. This indicates
that the stronger IBS is, the more the core is blown up.
Since for a light tailed distribution (q < 1) the Gaussian fit
overestimates the rms value, the resulted beam sizes are
slightly larger than in the case of the q-Gaussian fit.
Comparing the RMSE values of the two fitting functions
for the final non-Gaussian bunch profiles shows that
the q-Gaussian fit is better, in particular for the horizontal
plane.

2. At the LHC collision energy (6.5 TeV)

Since at collision energy IBS becomes weaker and
synchrotron radiation starts playing an important role, it
is the interplay between these effects that determines the
evolution of the bunch characteristics. In this respect, for
the benchmarking of the B-M IBS theoretical model with
SIRE at collision energy, apart from the IBS, the radiation
effects (synchrotron radiation and quantum excitation) are
also taken into account. It should be mentioned that for
the results presented in the following plots the intensity is
assumed to be constant (which is actually true for the few
noncolliding bunches, during physics fills).
Figure 12 shows the horizontal emittance (left), the

vertical emittance (middle) and energy spread (right)
evolution after 10 h at collision energy for the nominal
BCMS case, while Fig. 13 shows the evolutions for the
HL-LHC parameters. The red and the blue lines correspond
to the analytical calculations of the MAD-X [52] IBS
routine (based on the B-M formalism) and to the SIRE
results, respectively. The two standard deviation error bars
for the simulation results are plotted in light blue. Table V
summarizes the variation of the transverse emittances and
energy spread during 10 h at the collision energy of the

FIG. 8. The growth of the horizontal (left) and vertical (middle) emittance and energy spread (right) due to IBS, in a time period of 1 h
at the injection energy of the LHC (450 GeV) for the nominal parameters, as computed by the SIRE code (blue line) and the Bjorken-
Mtingwa analytical formalism in MAD-X (red line).

FIG. 9. The growth of the horizontal (left) and vertical (middle) emittance and energy spread (right) due to IBS, in a time period of 1 h
at the injection energy of the LHC (450 GeV) for the HL-LHC parameters, as computed by the SIRE (blue line) and the Bjorken-
Mtingwa analytical formalism in MAD-X (red line).

TABLE II. IBS growths of the transverse emittances and energy
spread during 1 h at injection energy (450 GeV).

Nominal (BCMS) HL-LHC

IBS growths MAD-X SIRE MAD-X SIRE

dϵx=ϵx0 [%] 24.6 24.1 20.1 19.6
dϵy=ϵy0 [%] 0.2 0.4 0.2 0.3
dσl=σl0 [%] 21.4 20.8 16.8 16.2
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FIG. 10. The initial and final (after 1 h) distributions in the horizontal (left), vertical (middle) and longitudinal (right) plane, for the
nominal BCMS bunch parameters at injection energy (450 GeV), are denoted by blue and red stars, respectively. They are fitted with the
Gaussian (dashed line) and the q-Gaussian (solid line) functions.

FIG. 11. The initial and final (after 1 h) distributions in the horizontal (left), vertical (middle) and longitudinal (right) plane, for the
HL-LHC bunch parameters at injection energy (450 GeV), are denoted by blue and red stars, respectively. They are fitted with the
Gaussian (dashed line) and the q-Gaussian (solid line) functions.

TABLE III. Initial and final (after 1 h) fit results for the horizontal, vertical, and longitudinal bunch profiles shown in Fig. 10, for the
nominal BCMS parameters case at injection energy (450 GeV).

Horizontal distribution Vertical distribution Longitudinal distribution

Fit parameters Initial Final Initial Final Initial Final

Gaussian σrms � 10−3 0.19 [mm] 0.22 [mm] 0.19 [mm] 0.19 [mm] 0.25 [ns] 0.33 [ns]
RMSE [10−3] 1 14 1 1 1 10

q-Gaussian σrms � 10−3 0.19 [mm] 0.21 [mm] 0.19 [mm] 0.19 [mm] 0.25 [ns] 0.32 [ns]
q� dq 1.024� 0.003 0.893� 0.002 0.970� 0.007 0.967� 0.006 0.992� 0.002 0.941� 0.001

RMSE [10−3] 1 1 1 1 1 6

TABLE IV. Initial and final (after 1 h) fitting results for the horizontal, vertical, and longitudinal bunch profiles shown in Fig. 11, for
the HL-LHC parameters case at injection energy (450 GeV).

Horizontal distribution Vertical distribution Longitudinal distribution

Fit parameters Initial Final Initial Final Initial Final

Gaussian σrms � 10−3 0.22 [mm] 0.25 [mm] 0.22 [mm] 0.22 [mm] 0.30 [ns] 0.37 [ns]
RMSE [10−3] 1 14 1 1 3 13

q-Gaussian σrms � 10−3 0.22 [mm] 0.24 [mm] 0.22 [mm] 0.22 [mm] 0.30 [ns] 0.36 [ns]
q� dq 0.992� 0.003 0.891� 0.004 0.995� 0.003 0.987� 0.003 1.019� 0.005 0.885� 0.001

RMSE [10−3] 1 1 1 1 3 4
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LHC, for the nominal BCMS and HL-LHC parameters, as
computed by the SIRE code and the B-M analytical
formalism in MAD-X.
After a few hours at collisions, the B-M analytical

formalism and the simulations start differentiating. In order
to understand whether these differences are explained by
the fact that SIRE reshapes the beam distributions after
each collisional process and the B-M IBS formalism
assumes always Gaussian beam distributions, the bunch
parameters given by SIRE at 5 h are used as input for the
IBS and synchrotron radiation calculations in MAD-X
(Gaussian bunches). The red dotted lines in Fig. 12 and

Fig. 13 represent the results of these tests. Even if giving as
input to MAD-X exactly the same bunch parameters as in
SIRE, there is clear divergence of the MAD-X results (red
dotted lines) with SIRE right after the 5 h at collisions. This
divergence is much larger than the one observed during the
first hours at collisions. After 5 h at collision energy, the
beam in SIRE has been reshaped enough so that IBS and
radiation processes act differently as compared to Gaussian
MAD-X distributions. Consequently, the differences
observed between the B-M analytical formalism and the
simulations are expected because MAD-X assumes always
Gaussian distribution, in contrast to SIRE that takes into
account the variation of the bunch shape throughout the
calculation.
Due to the fact that the IBS effect is minor in the vertical

plane, the strong synchrotron radiation damping mecha-
nism leads to a clear reduction of the vertical emittance.
However, the variation of the horizontal emittance and
energy spread is determined by the interplay of IBS growth
with synchrotron radiation damping. For the nominal
BCMS parameters, these variations are very small after
10 h at collision energy (Table V). For the HL-LHC case,

FIG. 12. The evolution of the horizontal (left) and vertical (middle) emittance and energy spread (right) due to IBS and radiation
effects, in a time period of 10 h at the collision energy of the LHC (6.5 TeV) for the nominal BCMS parameters, as computed by the
SIRE code (blue line) and the Bjorken-Mtingwa analytical formalism in MAD-X (red line).

FIG. 13. The evolution of the horizontal (left) and vertical (middle) emittance and energy spread (right) due to IBS and radiation
effects, in a time period of 10 h at the collision energy of the LHC (7 TeV) for the HL-LHC parameters, as computed by the SIRE (blue
line) and the Bjorken-Mtingwa analytical formalism in MAD-X (red line).

TABLE V. Variation of the transverse emittances and energy
spread during 10 h at FT energy.

Nominal (BCMS) HL-LHC

IBS growths MAD-X SIRE MAD-X SIRE

dϵx=ϵx0 [%] −0.1 −1.4 7.4 5.0
dϵy=ϵy0 [%] −26.2 −26.1 −31.4 −31.2
dσl=σl0 [%] −0.1 −2.6 −12.6 −14.7
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having the same initial horizontal emittance but the double
bunch population compared to the nominal BCMS param-
eters (Table I), the IBS effect prevails over synchrotron
radiation in the horizontal plane after almost 3 h [Fig. 13
(left)]. As can be seen in Fig. 13 (right) this in not the case
for the longitudinal plane, for which the initial bunch length
of 1.2 ns compared to the 1 ns in the nominal case, renders
IBS weaker than synchrotron radiation and, results in the
decrease of the energy spread.
The evolution of the initially Gaussian (in all planes)

particle distributions within 10 h at collision energy is
shown in logarithmic scale in Fig. 14 and Fig. 15 for the

nominal BCMS and the HL-LHC case, respectively. The
initial and final (after 10 h) distributions in the horizontal
(left), vertical (middle) and longitudinal (right) plane, are
denoted by blue and red stars, respectively. They are fitted
with the Gaussian (dashed line) and the q-Gaussian (solid
line) functions. The fitting results of the initial and final
distributions are presented in Table VI for the nominal
BCMS case and in Table VII for the HL-LHC case. The
RMSE values of the two fitting functions show that when
the final bunch profiles are strongly non-Gaussian, the
q-Gaussian fitting results should be considered. In this
respect, the evolution of the particle distributions in all

FIG. 14. The initial and final (after 10 h) distributions in the horizontal (left), vertical (middle), and longitudinal (right) plane, for the
nominal BCMS bunch parameters at collision energy (6.5 TeV), are denoted by blue and red stars, respectively. They are fitted with the
Gaussian (dashed line) and the q-Gaussian (solid line) functions.

FIG. 15. The initial and final (after 10 h) distributions in the horizontal (left), vertical (middle), and longitudinal (right) plane, for the
HL-LHC bunch parameters at collision energy (7 TeV), are denoted by blue and red stars, respectively. They are fitted with the Gaussian
(dashed line) and the q-Gaussian (solid line) functions.

TABLE VI. Initial and final (after 10 h) fit results for the horizontal, vertical, and longitudinal bunch profiles shown in Fig. 14, for the
nominal BCMS parameters case at collision energy (6.5 TeV).

Horizontal distribution Vertical distribution Longitudinal distribution

Fit parameters Initial Final Initial Final Initial Final

Gaussian σrms � 10−4 0.064 [mm] 0.067 [mm] 0.064 [mm] 0.056 [mm] 0.25 [ns] 0.26 [ns]
RMSE [10−3] 1 25 1 1 1 30

q-Gaussian σrms � 10−4 0.064 [mm] 0.064 [mm] 0.064 [mm] 0.055 [mm] 0.25 [ns] 0.24 [ns]
q� dq 1.004� 0.003 0.856� 0.005 0.982� 0.004 0.971� 0.004 1.007� 0.004 0.830� 0.006

RMSE [10−3] 1 1 1 1 1 1
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planes for the nominal BCMS and HL-LHC cases is
discussed based on the q-Gaussian results.
The horizontal beam sizes do not change after 10 h at

collision energy because the blow up caused by IBS is
balanced out by the synchrotron radiation damping.
However, there is a transformation of the horizontal
distributions’ shape for which the tails become less popu-
lated (q < 1). In the longitudinal plane both the beam size
and the q parameter are reduced, meaning that synchrotron
radiation prevails over IBS and the core is blown up due to
IBS giving underpopulated tails. In the vertical plane, the
dominant synchrotron radiation damping results in a
smaller beam size without changing much the formation
of the tails, so the distribution remains Gaussian.

V. BUNCH PROFILE MEASUREMENTS
IN THE LHC

The transverse diagnostic instruments for measuring
the bunch profiles in the LHC are the betatron matching
monitor [53], the beam gas ionization (BGI) monitor [54],
the beam gas vertex (BGV) monitor, the beam wire
scanners (WS) [55], and the beam synchrotron light
monitor (BSRT) [56]. Compatibly with high intensity
and high energy operation, the BSRT is the only instrument
offering noninvasive, continuous, and bunch-by-bunch
measurements of the LHC beams. The BSRT is calibrated
with respect to the WS during dedicated low beam intensity
runs.2 The LHC is equipped with two synchrotron radiation
monitors (one per beam) used to characterize the transverse
and longitudinal beam distributions. Due to the significant
diffraction patterns at the tails of the BSRT transverse
distributions there is no clear picture about the shape of the
tails and so, they are often assumed to be Gaussian.
A parameter that is generally used to measure the

longitudinal emittance in circular accelerators is the bunch
length. The bunch length is given by the projection of the
distribution function on the phase axis, which is known as

the bunch profile or line density. It is operationally
measured by the LHC beam quality monitor (BQM)
[57] which uses a wall current monitor pick-up (WCM)
[58] to acquire the longitudinal profiles. Additionally, the
longitudinal synchrotron radiation monitor (BSRL) [59],
which uses the same synchrotron light source as the BSRT,
continuously measures the longitudinal distribution of
charges in the beams. The scopes connected to the
WCM pick-ups can acquire longitudinal bunch profiles
of both beams during a full LHC cycle.
There is a filtering procedure to remove background

noise in all the measured profiles. There is also an
automatic gain which deals with the dynamic range of
the monitors in order to avoid mainly saturation, but in the
case of the LHC, all the measurements are done within very
similar beam parameters and thereby, monitor settings. In
addition, the measurements at the LHC injection energy
(450 GeV) are very well calibrated with other emittance
monitors, the ones using synchrotron light against tradi-
tional wire-scanners. In order to remove any further “noise”
effect, in particular in the tails of the distributions, such as
optical diffraction, fast Fourier transform algorithms for
filtering and 3 sigma cuts were also applied to the data [60].

A. Comparison between experimental data,
the SIRE, and the B-M analytical formalism,

at the LHC collision energy (6.5 TeV)

The longitudinal bunch manipulations performed during
the ramp to avoid instabilities due to the loss of Landau
damping [16], produce bunches that arrive at collision
energy with a clearly non-Gaussian longitudinal shape. In
addition, the transfer functions of the pickups and cables
were measured and are used for deconvolution [61],
resulting in some cases in tails which are asymmetric or
have ripples. By assuming that these profiles are Gaussian
may lead in underestimating or overestimating the actual
bunch length. For the studies presented in this paper, these
profiles are fitted using the q-Gaussian function. An
example showing the evolution of the q parameter for
the longitudinal profile of a bunch train during 11.5 h at
collisions (6.5 TeV) in the LHC is presented in Fig. 16. It is
clear that with such q parameter values, corresponding to

TABLE VII. Initial and final (after 10 h) fitting results for the horizontal, vertical, and longitudinal bunch profiles shown in Fig. 15, for
the HL-LHC parameters case at collision energy (7 TeV).

Horizontal distribution Vertical distribution Longitudinal distribution

Fit parameters Initial Final Initial Final Initial Final

Gaussian σrms � 10−4 0.062 [mm] 0.067 [mm] 0.062 [mm] 0.052 [mm] 0.30 [ns] 0.28 [ns]
RMSE [10−3] 1 27 2 2 2 17

q-Gaussian σrms � 10−4 0.062 [mm] 0.063 [mm] 0.062 [mm] 0.052 [mm] 0.30 [ns] 0.27 [ns]
q� dq 1.005� 0.004 0.852� 0.004 0.991� 0.005 0.977� 0.005 0.990� 0.003 0.825� 0.001

RMSE [10−3] 1 1 1 1 1 1

2The WS can measure the emittance throughout the full LHC
machine cycle including the energy ramp, provided that the total
intensity in the machine is limited to 240 nominal bunches at
450 GeV and 12 nominal bunches at 6.5 TeV.

S. PAPADOPOULOU et al. PHYS. REV. ACCEL. BEAMS 23, 101004 (2020)

101004-14



non-Gaussian tails, the rms beam size cannot be accurately
estimated by using the Gaussian function. The increase of
the q parameter means that the longitudinal distributions

with the underpopulated tails (q < 1) at the start of
collisions, become more Gaussian (q → 1) as time evolves.
This is a general statement that can be made for the
longitudinal distribution observed at the collision energy
of the LHC.
Figure 16 shows measured longitudinal profiles for

colliding bunches where the evolution (the reduction) of
the bunch intensity is present. Since IBS is getting weaker
and synchrotron radiation dominates, for these bunches that
arrive at the start of collisions with light tails, the q value
increases and the rms size decreases with time. For the
simulation results shown in Table VI the trend is different
because they are conducted with a constant bunch intensity.
These simulations were undertaken for evaluating the
combined effect of IBS and synchrotron radiation to the
beam distribution, without any other mechanism present
(beam-beam, etc.), starting from a purely Gaussian one.
They indeed show that the q value decreases with time in all
planes. Specifically, in the longitudinal plane, the simu-
lations show that q value decreases by approximately
1.7%=h. In fact, this trend agrees with what is observed
in the LHC for the non-colliding bunches (having constant
intensity) in the longitudinal plane, where it is measured
that there is a 1.5%=h reduction of the q value.
The evolution of the longitudinal particle distribution of

a single bunch that is picked out of the train of bunches is
shown in Fig. 17 for the time period of 11.5 h. The initial
bunch profile (plotted in blue) is fitted with the Gaussian
and the q-Gaussian functions that give different rms beam
sizes because of the dependence of the standard deviation
on the q parameter (Eq. (A5). The fitting results are used to
generate a Gaussian and a q-Gaussian distribution to be
tracked in SIRE in order to compare the experimental
observations with the results of the code.
In Fig. 18, the initial (at the start of collisions) and the

final (after 11.5 h) longitudinal bunch profiles, as observed
in the LHC (left) and as calculated by SIRE (right) for an
initially q-Gaussian simulated profile, are denoted by blue

FIG. 16. The evolution of the q parameter during 11.5 h at
collisions (6.5 TeV), for a train of bunches in the
longitudinal plane.

FIG. 17. The evolution of a longitudinal bunch profile during
11.5 h at collisions (6.5 TeV).

FIG. 18. The initial (at the start of collisions) and the final (after 11.5 h) longitudinal bunch profiles as observed in the LHC (left) and
as calculated by the SIRE (right), in logarithmic scale, are denoted by blue and red stars, respectively. They are fitted with the Gaussian
(dashed line) and the q-Gaussian (solid line) functions.
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and red stars, respectively. They are plotted in logarithmic
scale and they are fitted with the Gaussian (dashed line) and
the q-Gaussian (solid line) functions. The reduction of the
bunch population with time due to burn-off and the extra
(on top of IBS) transverse emittance blow-up observed in
the machine, are taken into account for the simulation. The
transverse distributions are assumed to be Gaussian, since
at collisions the shape of their tails is not clear due to
diffraction. The fitting results are presented in Table VIII.
Even if there seems to be no change at the tails of the
simulated distribution, in reality the profiles become more
Gaussian. Within 11.5 h at collisions, the rms beam size of
the measured bunch profile and of the corresponding
tracked distribution is reduced by 21% and by 19%,
respectively. This shows a very good agreement between
the experimental data and the simulations performed
with SIRE.
Figure 19 shows in logarithmic scale the initial (blue

stars) and the final (red stars) horizontal (left) and vertical
(right) bunch profiles as calculated by SIRE, fitted with the
Gaussian (dashed line) and the q-Gaussian (solid line)
functions. As can be seen in Table IX, the simulations
showed no change in the transverse beam sizes and that is
because the extra (on top of IBS) transverse emittance
blow-up is included. The effect of IBS together with the

extra blow-up assumed, widens the core of the horizontal
bunch in such a way that the q parameter is decreased by
around 10% within these 11.5 h. Since IBS is negligible in
the vertical plane, the fact that the vertical bunch profile
remains Gaussian indicates that the interplay between the
synchrotron radiation damping and the extra blow-up do
not change the tails of the distribution.
The 4σ-bunch length evolution when assuming

Gaussian (left) and q-Gaussian (right) initial distributions
is shown in Fig. 20. The blue line corresponds to the SIRE
calculations and the red line to the results given by the IBS
module of MAD-X [24] which is based on the analytical
formulation of B-M and always assumes Gaussian distri-
butions. The bunch length evolution, together with the two
standard deviation error-bars, when fitting the data with the
Gaussian and the q-Gaussian functions is represented by a
black and a grey line, respectively. The bunch length values
differ for the two distribution functions used due to the fact
that, for a light tailed distribution the rms value is
overestimated by fitting a Gaussian. When assuming a
Gaussian distribution, the bunch length evolution calcu-
lated by the code gets closer to the measured data. For the
q-Gaussian case the agreement between data and simu-
lations is excellent. This is a remarkable result, taking into
account the fact that no assumptions are being made in the

TABLE VIII. Fitting results for the initial (at the start of collisions) and the final (after 11.5 h) longitudinal bunch
distribution shown in Fig. 18, as was observed in the LHC and as was calculated by the SIRE code.

Initial (t ¼ 0) Final (t ¼ 11.5 h)

Fit parameters DATA SIRE DATA SIRE

Gaussian σrms � dσrms [ns] 0.299� 0.003 0.297� 0.002 0.233� 0.002 0.237� 0.002
RMSE [10−3] 22 19 18 20

q-Gaussian σrms � dσrms [ns] 0.286� 0.004 0.290� 0.001 0.227� 0.002 0.235� 0.001
q� dq 0.88� 0.03 0.85� 0.01 0.93� 0.03 0.86� 0.01

RMSE [10−3] 10 3 10 4

FIG. 19. The initial (at the start of collisions) and the final (after 11.5 h) horizontal (left) and vertical (right) bunch profiles as
calculated by the SIRE, in logarithmic scale, are denoted by blue and red stars, respectively. They are fitted with the Gaussian (dashed
line) and the q-Gaussian (solid line) functions.
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simulations apart from identical initial conditions with
respect to the experimental ones. In agreement with the
results presented in the previous section, the divergence
between the SIRE and the MAD-X for longer time spans is
something to be expected since the distribution shape in
SIRE is updated, while in MAD-X it remains Gaussian.
In Sec. II the impact of non-Gaussian beam distributions

on the luminosity was discussed. In the case of the LHC,
we can only be confident about the impact of the longi-
tudinal distributions, as the transverse bunch profile mea-
surements are limited by diffraction patterns in the far tail
regime. As an example, the luminosity discrepancy is
calculated for the case of a Gaussian (q ¼ 1) and a light
tailed q-Gaussian with q ¼ 0.88 (based on longitudinal
bunch profiles observations), which correspond to 1.20 ns
and 1.14 ns bunch length (see Fig. 20), respectively.
Keeping the rest of the beam parameters fixed, the
Gaussian distribution gives a luminosity that is 3.5% lower
compared to one in the case of the light tailed distribution.
In fact, this is a systematic error beyond the luminosity
precision target of 1% required by the experiments and it
was communicated to them in order to be employed for a
more accurate luminosity estimate.
At collisions, the divergence between the luminosity

model [1] and the measured luminosity by the experiments
becomes more pronounced as time evolves [3]. Actually,
the predicted luminosity by the model is always larger
compared to the measured one by the end of collisions.

As calculated by SIRE, the weight of the horizontal bunch
profile tails is decreased in time (see Table IX) and as
explained in Sec. II, for lighter tails and a constant beam
size, the luminosity is expected to become lower. It is then
clear that by taking into account the luminosity change due
to the variation of the transverse distribution tails, the
model predictions can be significantly improved.

VI. SUMMARY AND OUTLOOK

In the LHC, the interplay between a series of effects can
lead to distributions with non-Gaussian tails. Since the rms
value of a distribution can be underestimated or overesti-
mated by using a simple Gaussian function, the use of
appropriate fitting functions to accurately estimate the beam
size and the behavior of the tails is necessary. The impact of
non-Gaussian distribution shapes on the estimated luminos-
ity is discussed. One of the next steps is to improve the
luminosity model, that is currently based on Gaussian
distributions, by taking into account the actual shape of
the bunch profiles. In this way, it is possible to get more
accurate luminosity predictions. Already, for the operational
scenario of the high luminosity LHC upgrade [51], a non-
Gaussian bunch length estimation is being considered.
The way IBS and radiation effects act depends on

the shape of the bunch profiles. Aiming to quantify the
impact of the distribution’s shape on the emittance evolu-
tion, a multiparticle tracking code called SIRE, is used.

TABLE IX. Fitting results for the initial (at the start of collisions) and the final (after 11.5 h) transverse bunch
distributions shown in Fig. 19, as was calculated using the SIRE code.

Horizontal distribution Vertical distribution

Fit parameters Initial Final Initial Final

q-Gaussian σrms � 10−4 ½mm� 0.076 0.076 0.076 0.076
q� dq 0.990� 0.004 0.893� 0.005 0.992� 0.003 0.983� 0.003

RMSE [10−3] 3 3 3 3

FIG. 20. The bunch length (4σ) evolution during several hours in collisions, as computed by the SIRE code (blue), the B-M analytical
formalism (red) and as measured by the longitudinal profile monitors when assuming a Gaussian (left) and a q-Gaussian (right)
distribution.
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The benchmarking of the B-M analytical formalism with
SIRE showed a very good agreement for the first couple of
hours at the injection (450 GeV) and collision (6.5 TeV)
energies of the LHC, even if they make use of different
approaches to calculate the IBS effect. The differences
observed for longer time-spans are expected, since in SIRE
the particle distributions are updated, while MAD-X
always assumes Gaussian distributions. The results
obtained from the simulations encourage the idea of using
the code for tracking distributions coming from experi-
mental data, in order to study the impact of the distributions
shape on the evolution of the bunch characteristics.
Specifically, the tracking is performed using the observed
longitudinal beam distributions for which the measure-
ments at the LHC collision energy are accurate enough,
assuming that the transverse profiles are Gaussian. After
the comparison with experimental data, the fact that SIRE
takes into account the change of the particle distribution
showed that it is a very useful tool for estimating the actual
bunch parameters evolution in the machine. The contribu-
tion of effects such as betatron coupling, noise and
electron-cloud, to the emittance growth are planned to
be included in the simulation code, in order to complement
the existing semianalytical emittance evolution model.

APPENDIX A: THE Q-GAUSSIAN
DISTRIBUTION FUNCTION

The q-Gaussian [17] which is used to describe more
accurately bunch profiles with tails that differ from the ones
of a normal distribution, has a probability density function
given by:

fðxÞ ¼
ffiffiffiffiffiffiffiffi
βqG

p
Cq

eqð−βqGx2Þ: ðA1Þ

The q-exponential function is given by:

eqðxÞ¼

8>><
>>:
expðxÞ; if q¼1

ð1þð1−qÞxÞ 1
1−q; if q≠1 and ð1þð1−qÞxÞ>0

0; if q≠1 and ð1þð1−qÞxÞ≤0

:

ðA2Þ

The parameter q describes the weight of the tails, in the
sense that the larger its value, the heavier the tails become,
as presented in Fig. 21. In the limit of q → 1, the normal
distribution is obtained. The distribution is characterized
as “light” tailed when q < 1 and as “heavy” tailed when
q > 1. The normalization factor Cq differs for specific
ranges of the q parameter and it is written as:

Cq ¼

8>>>>><
>>>>>:

2
ffiffi
π

p

ð3−qÞ
ffiffiffiffiffiffi
1−q

p Γð 1
1−qÞ

Γð 3−q
2ð1−qÞÞ

; for −∞ < q < 1

ffiffiffi
π

p
; for q ¼ 1ffiffi
π

pffiffiffiffiffiffi
q−1

p Γð 3−q
2ðq−1ÞÞ

Γð 1
q−1Þ

; for 1 < q < 3

: ðA3Þ

The parameter βqG is a real positive number. As the normal
distribution, the q-Gaussian is an even function taking its
maximum at x ¼ 0, where

fð0Þ ¼
ffiffiffiffiffiffiffiffi
βqG

p
Cq

: ðA4Þ

For a certain q value, the higher is the value of βqG, the
larger is the maximum of the probability density function,
as can be observed in Fig. 21. The standard deviation
which also differs for specific ranges of the q parameter, is
given by:

σqG ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

βqGð5−3qÞ
q

; for q < 5=3

∞; for 5=3 ≤ q < 2

undefined; for 2 ≤ q < 3

: ðA5Þ

In the heavy tail regimes, the distribution is equivalent to
the Student’s t-distribution with a direct mapping between
q and the degrees of freedom ν [Eq. (A6)]. Statistically the
q-Gaussian is a scaled reparametrization of the Student’s
t-distribution [62] for which the parameter ν is constrained
to be a positive integer related to the sample size. The
advantage of the q-Gaussian function is that, by introducing
the parameters q and βqG, a generalization of the Student’s
t-distribution to negative and noninteger degrees of free-
dom is possible, where:

q ¼ νþ 3

νþ 1
with βqG ¼ 1

3 − q
: ðA6ÞFIG. 21. The q-Gaussian distribution function for different q

and βqG values.
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APPENDIX B: LUMINOSITY CALCULATION
FOR Q-GAUSSIAN DENSITY DISTRIBUTION

FUNCTIONS

Using Eq. (A1) as the probability density functions,
the general luminosity formula in Eq. (1) is solved for
q-Gaussian distributions in all planes. For the two beams
being identical, integrating firstly over s and s0:

IqGs ¼
ZZ

∞

−∞
ρ1sðs − s0Þρ2sðsþ s0Þdsds0; ðB1Þ

and then, integrating over x and y:

IqGxy ¼
ZZ

∞

−∞
ρ1xðxÞρ1yðyÞρ2xðxÞρ2yðyÞdxdy

¼
ZZ

∞

−∞
ρxðxÞ2ρyðyÞ2dxdy; ðB2Þ

keeping in mind that for w ¼ x, y, s it is:

w ∈
�
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βqGð1 − qÞ
p

�
; for −∞ < qw < 1

w ∈ ð−∞;∞Þ; for 1 ≤ qw < 3; ðB3Þ

the solutions of these integrals are found to be:

IqGs ¼ 1; ðB4Þ
and

IqGx;y ¼

8>>>>><
>>>>>:

βqGx;y
C2
qx;y

ffiffi
π

p
Γð−3þqx;y

−1þqx;y
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βqGx;yð1−qx;yÞ
p

Γð 3qx;y−7
2ð−1þqx;yÞÞ

; for −∞ < qx;y < 1

βqGx;y
C2
qx;y

ffiffi
π

p
Γð −qx;yþ5

2ð−1þqx;yÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βqGx;yð−1þqx;yÞ

p
Γð 2

−1þqx;y
Þ
; for 1 ≤ qx;y < 3

;

ðB5Þ

for IqGx IqGy ¼ IqGxy and, for βqGxy and Cqxy being the beta
parameters and the normalization factors in the transverse
plane. After some simplifications, using also Eq. (A3) and
Eq. (A5), it is found that the luminosity for q-Gaussian
distribution functions depends on the IqG

x;y [see Eq. (4)]
which are defined as:

IqG
x;y ¼

8>><
>>:

ð2þ1=kÞ2
2
ffiffiffiffiffiffiffiffi
3þ2k

p Γð1þ2kÞΓð1=2þkÞ2
Γð3=2þ2kÞΓðkÞ2 ; for −∞ < qx;y < 1

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð3þ2kÞ

p Γð−1=2−2kÞΓð−kÞ2
Γð−2kÞΓð−1=2−kÞ2 ; for 1 ≤ qx;y <

5
3

;

ðB6Þ

for k ¼ 1
1−qx;y

. As for the Gaussian case [Eq. (2)], the

luminosity for q-Gaussian beams colliding head-on does
not depend on the longitudinal beam size.

In Fig. 22, the variation of the luminosity is plotted with
respect to the transverse beam size for the q-Gaussian case
(LqG) with q ¼ 1 (i.e., normal distribution shape) and the
Gaussian case (LG). Basically, the transverse beam sizes in
Eq. (2) and Eq. (4) are being varied equivalently and the
resulted luminosity changes are found using these two
equations. The excellent agreement demonstrates that in the
limit of q → 1, the luminosity estimation for q-Gaussian
distributions [given in Eq. (4)] allows to obtain the exact
same result as for Gaussian distributions. By keeping the q
parameter constant (here q ¼ 1) and varying the beam size,
the βqG parameter also varies.
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