
 

Resistive-wall wake for nonrelativistic beams revisited
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In this paper, we derive the longitudinal and transverse resistive wall impedance for a beam traveling in a
round pipe with v < c. We argue that from the general formulas for the impedance obtained from the
solution of the Maxwell equations one has to subtract the space charge component. After such subtraction,
we find that the classical expressions for the impedance derived in the ultrarelativistic limit are also
applicable for long bunches even when they are nonrelativistic—in contrast to the conclusion of
Zimmermann and Oide [Phys. Rev. Accel. Beams 7, 044201 (2004)]. We also calculate the resistive
wall Green-function wake for v < c at small distances and show that the jump at the origin in the
longitudinal wake and in the derivative of the transverse wake are smeared out and the wake propagates in
front of the source charge.
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I. INTRODUCTION

Resistive wall (RW) wakefield plays an important, often
dominant, role in modern accelerators, especially in those
with a small transverse size of the vacuum chamber.
Calculations of this wake go back to the 1960s [1] and,
in the relativistic limit, γ → ∞ (γ is the Lorentz factor), the
results are well established and covered in textbooks [2,3].
For nonrelativistic particles, the derivation has been revised
relatively recently in a number or publications, with the
most thorough work reported in Refs. [4,5]. The authors of
Ref. [5] (to which we will refer as ZO in what follows) note
however that their results do not fully agree with an earlier
paper [4].
Upon thorough examination of Ref. [5], we found that

ZO results are not fully satisfactory. The authors made an
expansion of the impedance and derived corrections to the
infinite-γ Green-function wake. However, these corrections
scale as jzj−7=2 for the longitudinal and jzj−5=2 for the
transverse wake, where z is the distance between the source
and the test particles. In applications, this wake should be
used in a convolution integral with the bunch distribution,
but it leads to expressions that diverge as z → 0, so these
corrections do not make sense.1 When, in the last section of

the paper, the authors apply these results to four practical
cases, they conclude that “the deviations from the classical
ultrarelativistic expression can amount to 1 or 2 orders of
magnitude.” In the present paper, we arrive at the opposite
conclusion—in all four cases the results of the nonrelativ-
istic wake is very close to the relativistic one.
While our calculations follow close those of ZO, the

crucial element where we diverge is the understanding that
a formally calculated impedance contains not only a
contribution from the resistive wall, but also from the
space charge. We define the space charge part as the
impedance in the same pipe in the limit of perfect
conductivity. We then subtract this impedance from the
full expression to obtain the resistive wall part. A similar
approach has been advocated in the literature [6] for
somewhat different problem of the impedance of a short
resistive wall insert. Naturally, the so defined RW imped-
ance vanishes in the limit of perfect conductivity.
We use the Gaussian system of units throughout this

paper. To convert our expressions for the impedance and
wake to the MKS system they should be multiplied by the
factor Z0c=4π; in the case of the conductivity, the cgs value
is divided by the factor Z0c=4π.

II. LONGITUDINAL IMPEDANCE

Following ZO, we consider a beam pipe of radius b with
the beam charge line density λb, traveling at the center of
the beam pipe with frequency ω ¼ kv and velocity v < c,

λbe−iωtþikz; ð1Þ

where z is the longitudinal coordinate along the axis of the
pipe. Solving Maxwell’s equations in the cylindrical
coordinate system r, θ, z, we find the magnetic and the
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1The longitudinal Green-function wake in the limit γ ¼ ∞
scales as jzj−3=2 and also formally diverges at z → 0. There exists
however a proof that shows how to remove this divergence by
integration by parts. No such proof is given by ZO as to how to
treat nonintegrable wakes in their paper.
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longitudinal electric fields in the pipe (all the fields depend
on z and t as e−iωtþikz, so we drop this factor from the
expressions below),

Bθ ¼ −cpkrI1ðkrrÞ þ cqkrK1ðkrrÞ;

Ez ¼ −
iω
β2γ2

½pI0ðkrrÞ þ qK0ðkrrÞ�; ð2Þ

where q ¼ 2λbv=c2 and kr ¼ ω=cβγ. The parameter p is
this equation will be found from the boundary condition on
the wall.
In contrast to ZO, where the authors solve the Maxwell

equations inside the metal wall of the pipe and then take the
limit of the skin depth much smaller than the pipe radius,
we arrive at the same result using the Leontovich boundary
condition on the wall [7],

Ez ¼ −ζBθ; ð3Þ

with

ζ ¼ ð1 − iÞ
ffiffiffiffiffiffiffiffi
ω

8πσ

r
¼ 1

2
ð1 − iÞω

c
δskin; ð4Þ

where σ is the metal conductivity (here, and in what
follows, we assume positive frequencies, ω > 0), and the
skin depth δskin ¼ cð2πσωÞ−1=2. We emphasize here that
using the Leontovich boundary condition we limit our
analysis by the requirement δskin ≪ b, which is well
satisfied in many practical applications. Substituting
Eqs. (2) into (3) and solving it for p gives

p ¼ q
cζkrK1ðkrbÞ − iωK0ðkrbÞ=β2γ2
cζkrI1ðkrbÞ þ iωI0ðkrbÞ=β2γ2

: ð5Þ

To calculate the longitudinal impedance, Zk ¼ −Ez=λbv,
we need to take the longitudinal field on the axis, r ¼ 0. In
doing so, we discard the second term in the expression (2)
for Ez, which is the electric field of a line charge in free
space and is singular at r ¼ 0. We then obtain

Zk ¼ iω
2

c2β2γ2
cζkrK1ðkrbÞ − iωK0ðkrbÞ=β2γ2
cζkrI1ðkrbÞ þ iωI0ðkrbÞ=β2γ2

¼ iω
2

c2β2γ2
ω2δskinK1ðkrbÞ þ ð1 − iÞc2krK0ðkrbÞ
ω2δskinI1ðkrbÞ − ð1 − iÞc2krI0ðkrbÞ

:

ð6Þ

This expression agrees with Eq. (54) in Ref. [5] if we
correct their equation inserting kr in front of K0 and I0
functions (without this correction Eq. (54) has wrong
dimensions of the summands in the numerator and the
denominator).

Equation (6) is not yet our final result: as explained in the
Introduction, it is a combination of the resistive wall
impedance and the space charge impedance in a pipe of
radius b. We need to subtract the latter from Eq. (6). It
makes sense to define the space charge impedance as the
limit of perfect conductivity, that is when σ → ∞ or,
equivalently, ζ → 0. Taking this limit in Eq. (6) we obtain
the space charge impedance,

Zk;sc ¼ lim
ζ→0

Zk ¼ −iω
2

c2β2γ2
K0ðkrbÞ
I0ðkrbÞ

: ð7Þ

Subtracting Eq. (7) from Eq. (6) gives

Zk;rw ¼ Zk − Zk;sc ¼
2iζ
cb

1

½βγζI1ðkrbÞ þ iI0ðkrbÞ�I0ðkrbÞ
:

ð8Þ

To arrive at Eq. (8) we used the mathematical identity

I0ðxÞK1ðxÞ þ K0ðxÞI1ðxÞ ¼
1

x
: ð9Þ

In application to short bunches typical for modern
electron linear accelerators it is convenient to introduce
the parameter s0 (see Ref. [8]),

s0 ¼
�
cb2

2πσ

�
1=3

; ð10Þ

normalize the frequency by the ratio c=s0,

ϰ ¼ ωs0
c

; ð11Þ

and use the dimensionless parameter

ν ¼ b
s0βγ

: ð12Þ

The parameter s0 is usually small: for an aluminum
pipe (σ ¼ 3.28 × 1017 s−1 which is equivalent to 3.65 ×
107 Ω−1m−1 in the MKS system) of radius b ¼ 5 cm it is
equal to 71 μm. In terms of the new variables ϰ and ν,
Eq. (8) reads,

Zk;rw ¼ 2s0
cb2

iϰ1=2ν
I0ðϰνÞ½

ffiffiffi
ϰ

p
I1ðϰνÞ þ ði − 1ÞνI0ðϰνÞ�

: ð13Þ

We can recover the known impedance [2] in the limit
γ → ∞ assuming krb ≪ 1 and using the approximations

I1ðkrbÞ ≈
1

2
krb; I0ðkrbÞ ≈ 1; ð14Þ

which gives
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Zk;rw ¼ 2

cb
1

1=ζ − iωb=2c
¼ 2s0

cb2
1

ð1þ iÞϰ−1=2 − iϰ=2
:

ð15Þ

The second term in the denominator of Eq. (15) can be
neglected in comparison with the first one in the limit of
small frequencies, ϰ ≪ 1, and in this limit we arrive at the
classical expression for the impedance valid for bunches
with the bunch length σz ≫ s0,

Zk;rw ¼ ð1 − iÞ s0
cb2

ϰ1=2: ð16Þ

It is important to realize here that the product krb ¼
ωb=cβγ becomes small not only in the limit of large
values of γ, but also for γ ∼ 1 if the frequency is small,
ω=c ≪ β=b. This means, somewhat surprisingly, that
relativistic formulas for the resistive wall wake can also
be used for nonrelativistic beams if the bunch lengths is
large enough, σz ≫ b=γ. We will see in Sec. IV that this is
the case for the ZO numerical examples. Another obser-
vation that follows from the analysis of the smallness of krb
is that the resistive wall wake derived in the limit γ ¼ ∞
may not be applicable even for γ ≫ 1 if the bunch is very
short, σz ≲ b=γ. This requirement is easy to understand if
we notice that the Coulomb field of a relativistic point
charge moving in a pipe of radius b projects its electric and
magnetic fields on the wall within an angle ∼1=γ with the
spot size of the order of b=γ. We will explore this
observation in more detail in Sec. IV.

III. TRANSVERSE IMPEDANCE

To calculate the transverse impedance, we consider
two line-charges as given by Eq. (1) but with opposite
signs, þλb and −λb, shifted off axis in the horizontal plane
by the distance �Δ=2, respectively, where Δ ≪ b (more
precisely, mathematically we solve the problem with
Δ → 0, λb → ∞, but their product λbΔ remaining con-
stant). The dipole momentum per unit length of these two
line charges is

ξbe−iωtþikz; ð17Þ

where ξb ¼ λbΔ. In the cylindrical coordinate system r, θ,
z, the dependence of the components of the electromagnetic
field versus t, z and θ is given by the factor e−iωtþikzþiθ

(which will omit in what follows), and the radial depend-
ence of the fields inside the pipe is determined from the
Maxwell equations. The solution contains four arbitrary
constants. Two of these constants are found from the
requirement that the field in the limit r → 0 approaches
the Coulomb field of a line-dipole, limr→0Er ¼ 2ξb=r2 and
limr→0 Bz ¼ 0. The other two constants are found from
Eq. (3) supplemented by another component of the vecto-
rial Leontovich boundary condition, Eθ ¼ ζBz.

From the total electromagnetic field one has to subtract
the field of the line-dipole in free space (which can be
formally found taking the limit b → ∞) and to use the
difference to calculate the transverse impedance,

Z⊥ ¼ −
i

ξbv

�
ErðrÞ −

v
c
BθðrÞ

�����
r¼0

: ð18Þ

As in the longitudinal case, this impedance consists of the
combination of the space charge and the resistive wall
transverse impedance and we need to separate them as we
did in the previous section by associating the space charge
impedance Z⊥;sc with the value of Z⊥ at ζ ¼ 0, and
defining Z⊥;rw ¼ Z⊥ − Z⊥;sc. The result is a rather com-
plicated expression,

Z⊥;rw ¼ N
D
; ð19Þ

where

N ¼ ζk2½I1ðkrbÞðbζkþ iγ2βÞ − ibγkβI0ðkrbÞ�;
D ¼ cγ2I1ðkrbÞfI1ðkrbÞ2½b2ζk2 þ ibγ2ðζ2 þ 1Þkβ þ γ2ζ�

− b2γ2ζk2β2I0ðkrbÞ2
− ibγkβI1ðkrbÞI0ðkrbÞ½bðζ2 þ 1Þkþ 2iγ2ζβ�g; ð20Þ

with k ¼ ω=v. This expression can be slightly simplified if
one takes into account that the parameter ζ, being a ratio of
the skin depth to the wavelength c=ω, is supposed to be
much smaller than one, hence 1þ ζ2 ≈ 1. Using this
approximation, we rewrite Eqs. (20), now expressing them
through the variables ϰ, ν, and s0,

N ¼ 2iγ2ϰ3νβ2I0ðϰνÞ
− ð1 − iÞϰ2I1ðϰνÞ½ϰ3=2 − ð1 − iÞγ2β2�;

D ¼ 2cγ4s20β
3I1ðϰνÞfγ2ϰ2ν2β2I0ðϰνÞ2

þ I1ðϰνÞ2½−ϰ2ν2 þ ð1 − iÞγ2 ffiffiffi
ϰ

p
ν2β2 − 1�

− ð1 − iÞγ2ϰνβ2½ ffiffiffi
ϰ

p
ν2 þ ð1þ iÞ�I0ðϰνÞI1ðϰνÞg:

ð21Þ
Taking the limit γ → ∞ one obtains

Z⊥;rw ¼ 8iζ
cb2ðb2ζϰ2 þ 2ibϰ − 2ζÞ

¼ 4

cb2

�
bkð1þ iÞ

ffiffiffiffiffiffiffiffiffiffi
2π

σ

ω

r
−
1

2
ib2k2 þ i

�−1
; ð22Þ

which is the classical result that can be found in the
textbook [2] (here k ¼ ω=c). The result (22) can be even
more simplified in the limit k ≪ 1=s0,

Z⊥;rw ¼ 8iζ
cb2ð2ibϰÞ ¼

4

cb2

�
bkð1þ iÞ

ffiffiffiffiffiffiffiffiffiffi
2π

σ

ω

r �−1
: ð23Þ
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IV. APPLICATIONS

We will now apply our results to the four accelerators
considered by ZO. They are: the accumulator ring of
the Spallation Neutron Source (SNS), the 3-GeV rapid-
cycling synchrotron of the Japan Proton Accelerator
Research Complex (J-PARC), the booster rings of the
CERN Proton Synchrotron (PS booster), and an electron-
cyclotron resonance (ECR) ion source. The parameters
relevant for our calculations are taken from Table IV of
Ref. [5] and listed in Table I. Following ZO we assumed a
stainless steel conductivity of the pipe with σ ¼ 1.25 ×
1016 s−1 (σ ¼ 1.4 × 106 Ω−1m−1 in the MKS system). In
line four of the table we indicate the ratio of the skin depth
at the characteristic frequency of the bunch ω ∼ v=σz to the
pipe radius—the small value of this parameters justifies
the usage of the impedance derived with the Leontovich
boundary condition. The last line shows the parameter
b=σzγ which is an estimate of the argument krb in Eq. (8)
when the frequency ω is evaluated as ω ∼ v=σz. As was
discussed in Sec. II, if this parameter is small, one can use
the classical formulas for the resistive wall wake derived in
the limit γ ¼ ∞. We see that for all four examples this
parameter is extremely small, even though the parameter γ
is not large—the smallness is provided by the large bunch
length relative to the radius of the pipe. Plotting the bunch
wakefield for all four cases, we found, as expected, that the
wake calculated with a nonrelativistic formula (8) is the
same as the one calculated using Eq. (16). One of such plots

is shown in Fig. 1(a), where the SNS bunch wake is
calculated assuming a Gaussian profile and using the
formula

Wk;rwðzÞ ¼
1

2π

Z
∞

−∞
dωZk;rwðωÞe−iωz=ve−ω2σ2z=2v2 : ð24Þ

We also calculated the SNS transverse wake,

W⊥;rwðzÞ ¼
i
2π

Z
∞

−∞
dωZ⊥;rwðωÞe−iωz=ve−ω2σ2z=2v2 ; ð25Þ

with the exact expression for the transverse impedance (21)
and its ultrarelativistic approximation (23). These two
wakes are plotted in Fig. 1(b), and, as one can see, they
also go on top of each other.
An interesting example where the nonrelativistic

approximation indeed deviates from its limit γ ¼ ∞ is
presented by the Green-function wake of a relativistic point
charge at a small distance from the source charge. As is
well known, in the limit γ ¼ ∞, the longitudinal wake is
zero in front of the charge, z < 0, and it jumps to the value
4=b2 immediately behind it, z ¼ 0þ. The transverse wake
is continuous at z ¼ 0, but has a jump of its derivative,
dw⊥=dz, from zero at z ¼ 0− to 8=b4 at z ¼ 0þ. In the
Fourier representation, theses jumps are formed by high
frequency components of the spectrum, and hence by
large values of the argument krb of the Bessel functions
in Eqs. (8) and (20). As was discussed in Sec. II, these
frequencies should be described by the equations which do
not assume γ ¼ ∞. To make a quantitative illustration of
this point in Fig. 2 we show the plots of the longitudinal
point charge wakefield for three different values of the
parameter ν, ν ¼ 0.1, 0.5, 1.0, together with the curve
corresponding to ν ¼ 0 (that is γ ¼ ∞). The latter is
discontinuous at z ¼ 0. In Fig. 3 a similar plot is shown
for the transverse resistive wall wake. One can see how the
wake deviates from its limiting profile γ ¼ ∞ (ν ¼ 0) with

TABLE I. Paramters of four accelerators from Ref. [5].

SNS J-PARC PS booster ECR

γ 2.1 1.4 1.05 1.003
σz 25 m 12 m 26 m 100 m
b 8 cm 12.5 cm 30 cm 3 cm
δskin=b 4.1 × 10−3 2.0 × 10−3 1.8 × 10−3 7.4 × 10−2

b=σzγ 1.5 × 10−3 7.4 × 10−3 1.0 × 10−2 2.9 × 10−4

(a) (b)

FIG. 1. SNS longitudinal (a) and transverse (b) RW bunch wakes. On each plot there are two lines that go on top of each other: one line
is calculated with a nonrelativistic formulas (8) and (21) and the other one with Eqs. (16) and (23), respectively.
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increasing value of ν. Note also how these wakes propagate
ahead of the source charge (z < 0), which of course is
expected if one drops the assumption that the charge that
creates the wake moves with v ¼ c.

V. SUMMARY

In this paper we revised the previously derived expres-
sions for the longitudinal and transverse RW impedance in
a round pipe. We advocated that solving Maxwell’s
equations gives an impedance that is a sum of the resistive
wall and the space charge components. Subtracting the

space charge, we arrived at the expressions which in the
limit of γ → ∞ reduce to the classical RW formulas. We
also observed that the parameter that controls the transition
to the limit γ ¼ ∞ is ωb=cβγ. This parameter becomes
small not only in the limit of large values of γ, but also
for small values of ω. Specifically, for long bunches with
σz ≫ b=γ one can use the RW formulas derived for
infinitely large γ, even when γ ∼ 1. We have shown, by
direct numerical integration, that for four examples from
Ref. [5], the RW wakefield calculated with exact formulas
is indistinguishable from the one calculated with the
ultrarelativistic approximation, in contrast to the conclusion
of ZO. Finally, we demonstrated how a point charge wake
at short distances starts to deviate from its limiting ultra-
relativistic profile when the parameter ν increases from zero
to a finite value of the order of one.
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FIG. 2. The longitudinal wake of a point charge for three
different values of the parameter ν: (1) ν ¼ 0.1, (2) ν ¼ 0.5, and
(3) ν ¼ 1. The red dashed line shows the limit ν ¼ 0 when the
wake is equal to zero in front of the charge (z < 0) and then
jumps to the value 4=b2 at z ¼ 0þ.

FIG. 3. The transverse wake of a point charge for three different
values of the parameter ν: (1) ν ¼ 0.1, (2) ν ¼ 0.5, and (3) ν ¼ 1.
The red dashed line shows the limit ν ¼ 0.
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