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The determination of dynamic aperture in storage rings and colliders is a numerically intensive
procedure. When realistic space-charge forces come into consideration, the numerical load becomes even
heavier. Furthermore, dynamic aperture estimation using chaos indicators like frequency map analysis
(FMA) raises reliability issues when the dynamical system has a time-dependent perturbation like the
space-charge force. In this article, we apply a rapidly converging chaos indicator called reversibility error
method (REM) to study the space-charge contribution to the dynamic aperture of the integrable optics test
accelerator (IOTA) storage ring at a small value of the space charge tune shift. The strength of REM is
addressed through examples, including a particle-core model of halo formation. We also develop a toy
model of the IOTA lattice to further reduce the computing time required to estimate the dynamic aperture,
and we compare this model with a realistic space-charge simulation for verification.
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I. INTRODUCTION

The integrable optics test accelerator (IOTA) is a storage
ring at Fermi National Accelerator Laboratory dedicated
to testing innovative beam-physics ideas. One of the key
operation modes of the IOTA ring is to test the novel
concept of nonlinear integrable optics. In this concept, the
single-particle transverse optics is highly nonlinear but
integrable, so that coherent collective instabilities are
expected to be Landau damped [1–5] due to the large
frequency spread, while maximizing the dynamic aperture.
Since integrability can be broken by various factors
including perturbative nonlinearities, fringe fields [6–10],
and space-charge forces [11], it follows that the dynamic
aperture becomes finite.
We consider the following Hamiltonian system,

Hðξ; tÞ ¼ H0ðξÞ þ εVðξ; tÞ ð1Þ

where ξ≡ ðx; px; y; pyÞ is the vector of transverse phase-
space coordinates, H0 is an autonomous integrable
Hamiltonian, and ε ≪ 1 represents the size of the pertur-
bation V, which can be time-dependent. The independent
time variable t often represents longitudinal location or
betatron phase advance over the ring [12]. Since an

equilibrium beam distribution is difficult to obtain (or
may not exist), the presence of space charge typically adds
a nonperiodic time-dependent perturbation. Furthermore,
the finite number of simulation particles and the numerical
discretization of the space-charge model add sources of
time-dependent random numerical noise.
The brute force determination of the dynamic aperture

involves a numerically heavy simulation of many particles
sampled in phase-space for a tracking time of interest that
can be very long. In practice, chaos indicators like
frequency map analysis (FMA) [13] are widely used for
dynamic aperture estimation using a relatively short term
simulation [12,14,15]. In the core of FMA, the numerical
analysis of the fundamental frequency (NAFF) [13] algo-
rithm attempts to obtain the following harmonic decom-
position of an orbit zðtÞ by assuming that the orbit is
quasiperiodic:

zðtÞ ¼
X
k∈Zd

zke2πk·νt; ð2Þ

where d is the number of degrees-of-freedom of the
Hamiltonian system and ν≡ ðν1;…; νdÞ is the vector of
fundamental tunes that depends on oscillation amplitude
[13]. If the measured tunes of an orbit diffuse over time, the
attempt to construct a harmonic decomposition fails and
FMA indicates the corresponding orbit to be chaotic.
However, when the perturbation V is time-dependent,
the reliability and convergence of FMA for dynamic
aperture estimation is questionable. This is because the
measured tunes can diffuse not only on chaotic orbits but
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also on regular orbits, due to the time dependence of the
perturbation.
It is unclear how to define the dynamic aperture of the

system Eq. (1) when the time dependence is non-periodic.
Thus, in the presence of space-charge, it makes sense to
define the dynamic aperture only after the beam has relaxed
to a matched periodic equilibrium. However, in many cases,
convergence to an equilibrium is not guaranteed or may
require a very long time (compared to the time of interest or
the numerically manageable time). Therefore, we consider
dynamic aperture to be the stable phase-space volume from
a specified time to the time of interest. If the time
dependence is weak (or becomes weak due to very fast
beam filamentation), such that the evolution of the dynamic
aperture is slow compared to the time of interest, the chaos
indicators may be able to predict long term dynamic
aperture using data sampled over a shorter time.
In order to apply chaos detection methods to the

IOTA ring with space charge, we address these difficulties
using two approaches in combination. One approach is to
construct a simplified toy-model to represent particle
dynamics in the ring using a symplectic map. In this
model, the space-charge effect is parametrized by the
space-charge induced tune depression. The second
approach is to use a rapidly-converging and reliable chaos
indicator called reversibility error method (REM) [16–19]
which will be introduced in the following section.
Throughout this paper, we often compare REM against
FMA, which is one of the most popular tools for dynamic
aperture study in the accelerator community. Comparison
against other chaos indicators can be found elsewhere [17].
The goals of this paper include (1) introducing REM

along with its strengths: rapid convergence, numerical
efficiency, and reliability for systems with time-dependent
perturbations and (2) studying dynamic aperture of the
IOTA ring with weak space-charge near the nominal design
choice for the nonlinear magnet parameters, using a
simplified toy-model for comparison with a realistic
space-charge simulation result.
This paper is organized as follows. In Sec. II, we present

an overview of REM and illustrating examples. In Sec. III,
the IOTA toy-model is defined. In Sec. IV, REM is applied
to study the dynamic aperture of the IOTA toy-model, and
the results are compared to those obtained using FMA. This
is followed by a discussion comparing the two indicators.
In Sec. V, REM is applied to a realistic IOTA lattice with
space-charge, and the results are compared with FMA. In
Sec. VI, we investigate how the dynamic aperture responds
to a change of the nonlinear magnet parameter. Finally, a
conclusion follows in Sec. VII. Additional details are
contained in the three Appendixes.

II. REVERSIBILITY ERROR METHOD

When the particle dynamics is symmetric under time-
reversal, REM uses numerical integration forward and

backward in time to indicate how sensitive the orbit is
to a small initial condition perturbation. Consider a
numerical integration forward in time. During each inte-
gration step, a numerical round-off error associated with the
finite digits of precision occurs. If the round-off errors from
different integration steps can be modeled by a random
walk, the accumulated error in the orbit will be order of

ffiffiffi
n

p
after n steps [20,21]. However, there exist correlations
of round-off errors between different steps, and the accu-
mulated error grows as a power law in time [17] for regular
orbits. For a chaotic orbit, the accumulated error can grow
exponentially over time due to the presence of nonvanish-
ing Lyapunov exponents. The accumulated error can be
measured by comparing the difference between the initial
point of the orbit and the return point obtained after
first integrating forward over time t, and then integrating
backward over time −t, as illustrated in Fig. 1. Throughout
this paper, we use double precision for all the numerical
operations.
In this section, we benchmark REM in comparison with

FMA using two examples. An additional example illustrat-
ing the sensitivity of FMA on resonance is presented in
Appendix B.

A. Example: Henon-Heilies potential

As a first example, we applied REM to the Henon-
Heilies problem [22] whose Hamiltonian is given by:

Hðx; px; y; pyÞ ¼
p2
x þ p2

y

2
þ x2 þ y2

2
þ x2y −

y3

3
: ð3Þ

Through this example, we would like to illustrate how the
reversibility error grows over time for chaotic and regular
orbits and define the value of the chaos indicator using the
reversibility error.

FIG. 1. Illustration of forward-backward integration. The
planes represent the phase-space at different integration steps.
The black curve is the exact orbit, the red curve is the orbit
obtained using numerical integration forward in time, and the
blue curve is the orbit obtained using numerical integration
backward in time.
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Figure 2 shows a Poincaré section illustrating two orbits
with energies (i.e., Hamiltonian values) E ¼ 1=12 (regular
orbit) and E ¼ 1=9 (chaotic orbit). For each orbit, Fig. 3
illustrates the phase space distance between the initial point
and the return point after integrating forward and backward
over time t, shown as a function of t. For the chaotic orbit,
note that this distance grows exponentially with t, exceed-
ing the corresponding result for the regular orbit near
t ¼ 20, and it becomes 1010 times larger at t ¼ 500. This
motivates us to define the following measure of chaos using
forward-backward integration. For a reference, we also
define the measure of the frequency diffusion we will use
throughout this paper:

ΔFMA ≡ log10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δν2x þ Δν2y

q
; ð4Þ

ΔREM ≡ log10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δp2

x þ Δy2 þ Δp2
y

q
: ð5Þ

Here, Δνx denotes the change in the horizontal tune when it
is computed using two successive time intervals of the same
length. (Throughout, “sampling period” refers to the time
between successive data points in the time series, and “time
interval” T refers to the length of the time series. That is, to
calculate FMAwe track time T forward and another time T

forward to evaluate ΔFMA.) A similar definition applies for
Δνy. We define νx and νy to be the tunes corresponding to
largest spectral peak obtained using the horizontal and
vertical time series data, respectively. (It is worth mention-
ing that these are not necessarily equal to the fundamental
tunes, as each time series contains many harmonics of the
fundamental tunes, as in Eq. (2). It is also worth mentioning
that the order of the first largest and the second largest peak
can change over the two successive time intervals when two
or more spectral peaks have comparable amplitude.
Therefore, we carefully choose the peak during the second
time interval so that the chosen peak corresponds to the
largest peak during the first time interval.) The quantity Δx
is the difference between the initial and return coordinate x
after forward and backward integration, and Δpx, Δy, and
Δpy are similarly defined. When computing Eqs. (4)–(5),
we typically work in a canonically transformed system of
coordinates in which all phase space variables are dimen-
sionless and of comparable size.
Now we apply the chaos indicators with the defined

measures to the Henon-Heilies example. A set of initial
particles was prepared in the surface defined by x ¼ 0 and
Hðx; px; y; pyÞ ¼ E. Particles are numerically tracked for-
ward a time T ¼ 2048, then another time T ¼ 2048 to
compute ΔFMA (with sampling period t ¼ 1) or another
time T ¼ −2048 backward to compute ΔREM. Figures 4
and 5 illustrate the initial particles with E ¼ 1=12 and
E ¼ 1=9, respectively, by projecting them into the y − py

plane. The colors indicate the values of the chaos measures
in Eqs. (4), (5). The two measures agree well with each

FIG. 2. Poincaré section of particles starting from x ¼ 0.0,
y ¼ −0.15, py ¼ 0.0 and px determined by the condition H ¼ E
where E ¼ 1=12 for the left and E ¼ 1=9 for the right.

FIG. 3. Differences after forward-backward tracking for various
times t. Each orbit starts from x ¼ 0.0, y ¼ −0.15, and py ¼ 0.0,
with px determined by the condition H ¼ E. Here E ¼ 1=12
(left) or E ¼ 1=9 (right). Notice that the vertical scale in the
rightmost figure is logarithmic. A second order symplectic
integrator with time step dt ¼ 10−3 is used to track particles.

FIG. 4. Dynamic aperture of x ¼ 0 and E ¼ 1=12 surface
projected on y − py plane. The color bar corresponds to the
measure of chaos ΔFMA for the left and ΔREM for the right.

FIG. 5. Dynamic aperture of x ¼ 0 and E ¼ 1=12 surface
projected on y − py plane. The color bar corresponds to the
measure of chaos ΔFMA for the left and ΔREM for the right.
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other in the overall structure of the chaotic regions, except
for some fine bright lines of the FMA result in Fig. 4.
Such delicate differences can be partly understood from
the fact that FMA is sensitive to the presence of resonant
orbits, as illustrated in Appendix B. It appears that all
initial conditions with E ¼ 1=12 shown in Fig. 4 corre-
spond to regular orbits, while the set of initial conditions
with E ¼ 1=9 shown Fig. 5 contains chaotic bands.
Throughout this paper, we often refer to similar figures
as dynamic aperture plots.

B. Example: Particle-core model

As an example of a time dependent Hamiltonian system,
we use the 1-dimensional particle-core model [23–27] in a
constant focusing channel. The particle and the envelope
(i.e., beam core radius) can be described by the following
Hamiltonian [24],

Hðx; pÞ ¼ p2

2
þ x2

2
þ ðη2 − 1Þ ×

(
x2

2X2ðtÞ jxj < X

lnðxÞ jxj ≥ X
ð6Þ

HðX ;PÞ ¼ P2

2
þ X2

2
þ η2

2X2
þ ðη2 − 1Þ lnðXÞ ð7Þ

where ðx; pÞ and ðX ;PÞ are phase space variables describ-
ing the particles and the beam envelope, respectively, and
η ¼ ν=ν0 is the tune depression ratio. (Here ν0 is the zero
current tune and ν is the depressed tune of particles that
remain within the beam core.) The normalization is taken
such that t ¼ 2π is the betatron period in the limit of zero
current, and the matched beam envelope size is X ¼ 1.
When the 1-dimensional envelope Hamiltonian is time
dependent there is a rich content of envelope dynamics
[26]. Since the envelope Hamiltonian Eq. (7) is autono-
mous, the envelope oscillation is integrable. In Eq. (6),
note that there can be a numerical error associated with the
finite integration step size when particles cross the hard-
edge envelope. Luckily, such an error can be made time
reversible under the split-composition method [28,29] of
symplectic map construction.
Figures 6 and 7 show stroboscopic plots of particle orbits

moving in the field of an emittance dominated beam
η ¼ 0.8 with Xð0Þ ¼ 0.651 and a space-charge dominated
beam η ¼ 0.1 with Xð0Þ ¼ 0.577, respectively. They show
particles of an initial array of 32 particle coordinates
uniformly distributed along the positive horizontal and
vertical axes (as in [24]) with sampling at every minimum
of the mismatched envelope. Note that orbits are regular in
Fig. 6 while there are chaotic bands in Fig. 7.
In order to illustrate the effect of time dependent

potential on the tune diffusion measurement ΔFMA, we
sample the orbit data with two different sampling periods.
One sampling period is chosen to be equal to the strobo-
scopic period (equivalently, the envelope oscillation period)

as we did for Figs. 6 and 7 so that the envelope motion
between each data time appears to be constant to the
observer. With such a sampling period, Fig. 8 shows FMA
and REM dynamic aperture plot when tune depression ratio
and mismatch are same as the Fig. 6 case. Both methods
well indicated that the separatrix line to be chaotic.
Although FMA reveals much rich structure, the meaning
of such complex structure does not seems to be intuitively
interpretable. Similarly, Fig. 9 shows dynamic aperture plot
when tune depression ratio and mismatch are same as the
Fig 7. Both methods well indicated the chaotic bands as
well as resonance islands that appeared in Fig 7.
Another sampling period is chosen to be slight larger

than stroboscopic period (by 0.1%) so that slow envelope
motion can be observed as shown in Fig 10. With this

FIG. 6. Stroboscopic plot of particles at every minimum of
the envelope which is indicated by the black dashed line. The
tune depression ratio and the initial mismatch are η ¼ 0.8 and
Xð0Þ ¼ 0.651 respectively.

FIG. 7. Stroboscopic plot of particles at every minimum of
the envelope which is indicated by the black dashed line. The
tune depression ratio and the initial mismatch are η ¼ 0.1 and
Xð0Þ ¼ 0.577 respectively.
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sampling period, Figs 11 and 12 show FMA and REM
dynamic aperture plots when tune depression ratio and
mismatch are same as Fig 6 and Fig 7 cases respectively.
Note that FMA results are largely differ from Figs 8 and 9
while REM result looks consistent. Under this sampling
period, FMA indicates the regions bounded by separatices
or chaotic band to be chaotic. It can be understood from the
fact that there is spurious tune diffusion due to envelope
oscillation.

III. IOTA TOY-MODEL

The single particle dynamics of the IOTA lattice can be
described by the following on-momentum autonomous
Hamiltonian [1,30,31] whose canonical variables are the
(dimensionless) normal coordinates xn, yn, px;n, and py;n

and the independent time variable is the phase advance ψ :

Hðxn; pn;ψÞ ¼
1

2
ðp2

x;n þ p2
y;n þ x2n þ y2nÞ − τU: ð8Þ

Here, τ is the (dimensionless) strength of the nonlinear
potential and, with z≡ xn þ iyn,

U ¼ ℜ

�
zffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p sin−1ðzÞ

�
ð9Þ

is the nonlinear integrable potential, which can be achieved
by a specially designed nonlinear magnet [32]. Note that
the Hamiltonian is dimensionless. Then a second invariant
of motion functionally independent of H is given by:

I ¼ 1

2
ðxnpy;n − ynpx;nÞ2 þ p2

x;n þ x2n − τW ð10Þ

where

W ¼ ℜ

�
zþ z�ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p sin−1ðzÞ
�
: ð11Þ

FIG. 8. Dynamic aperture plot using FMA and REM for the
tune depression ratio η ¼ 0.8 and mismatch Xð0Þ ¼ 0.651. The
data is taken at every minimum of the envelope for the first 256
times forward and additional 256 times forward to evaluate
ΔFMA. Similarly, ΔREM is measured after 256 times forward and
then 256 times backward of the envelope period.

FIG. 9. Dynamic aperture plot using FMA and REM for the
tune depression ratio η ¼ 0.1 and mismatch Xð0Þ ¼ 0.577. The
data is taken at every minimum of the envelope for the first 256
times forward and additional 256 times forward to evaluate
ΔFMA. Similarly, ΔREM is measured after 256 times forward and
then 256 times backward of the envelope period.

FIG. 10. Envelope data with sampling period slightly larger
than the stroboscopic period by 0.1%. The left and right plots are
at η ¼ 0.8, Xð0Þ ¼ 0.651 and η ¼ 0.1, Xð0Þ ¼ 0.577 respec-
tively. Blue is the forward 256 samples, orange is the next
forward 256 samples and the red dashed line is the backward 256
samples after the first forward tracking.

FIG. 11. Dynamic aperture plot using FMA and REM for the
tune depression ratio η ¼ 0.8 and mismatch Xð0Þ ¼ 0.651 with
the sampling period slight larger than the stroboscopic period
(by 0.1%).

FIG. 12. Dynamic aperture plot using FMA and REM for the
tune depression ratio η ¼ 0.1 and mismatch Xð0Þ ¼ 0.577 with
the sampling period slight larger than the stroboscopic period
(by 0.1%).
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Note that the two invariants are symmetric under the
reflections ðxn; px;nÞ → ð−xn;−px;nÞ and ðyn; py;nÞ →
ð−yn;−py;nÞ. Note also that the potential U has singular
points at ðxn; ynÞ ¼ ð�1; 0Þ.
Since the Hamiltonian is autonomous, the Lie map can

be written as

N ¼ e−2πν∶H∶ ð12Þ

where 2πν is the phase-advance over the nonlinear potential
element, and the colons are used to represent the Poisson
bracket operator following Alex Dragt’s notation [33], so
that ∶f∶g≡ ½f; g�. Due to the reflection symmetry of the
two invariants, the integrability will be preserved when the
map N is concatenated by a linear rotation map R with a
half-integer tune advance in each plane:

R ¼ e−πμx∶Rx∶−πμy∶Ry∶: ð13Þ

Here 2μx; 2μy ∈ Z and

Rx ¼
p2
x;n

2
þ x2n

2
; Ry ¼

p2
y;n

2
þ y2n

2
: ð14Þ

The concatenated map M ¼ NR approximates the one-
turn map of the actual IOTA ring, which consists of the
nonlinear magnet insert section, represented by N , and the
linear arc section, represented by R, as shown in Fig. 13.
We introduce a crude approximation of weak space-

charge effects into this model by introducing small per-
turbations δμx and δμy to the horizontal and vertical tune
advance over the arc section, denoted here by μx and μy,
respectively. The map of the nonlinear magnet section is
not affected. This is justified by the fact that the length of
the linear arc section is an order of magnitude longer than
the nonlinear magnet insert section, so that the space-
charge perturbation to R is expected to be dominant over
the space charge perturbation to N . (See Appendix C for a
more detailed analysis.) We benchmark how well this
simplified model can predict dynamic aperture against
the prediction from a realistic space-charge simulation
in Sec. V.

IV. COMPARISON OF CHAOS INDICATORS
USING THE IOTA TOY-MODEL

This section has three goals. The first goal is to address
the numerical reliability of REM. The second goal is to

illustrate the relatively rapid convergence of REM in
comparison with FMA. The third goal is to present and
understand the dynamic aperture of the IOTA toy-model
at a nominal design choice of nonlinear magnet tune
advance ν ¼ 0.3, magnet strength τ ¼ −0.4, and various
tune advance errors δμx, δμy, to compare with the realistic
space-charge model in later sections. The incoherent tune
depression can be modeled if we know δμx and δμx for
each particles. However, for simplicity, we use same tune
error δμ ¼ δμx ¼ δμy in both planes for all the particles.
Note that the perturbation is autonomous in this model.
Therefore, the IOTA toy-model can be a good test-bed for
comparing REM against FMA on autonomous systems. To
visualize the comparison of the two indicators, we will use
dynamic aperture plots.
Throughout this and later sections, we use the following

procedure to produce dynamic aperture plots. We start by
preparing particles on a rectangular grid of points bounded
by the circle x2n þ y2n < 1 in the transverse normal coor-
dinate plane. The transverse normal momentum is set to
zero. Then, we numerically track particles for T forward
in time. This is followed by tracking an additional time
forward T (for FMA) or backward −T (for REM). Then,
each particle’s initial condition in the transverse coordinate
plane is mapped to a color based on the indicators ΔFMA or
ΔREM, so that the brighter color indicates chaotic orbits
while the darker color indicates regular orbits.
First, we perform reliability tests of REM by estimating

the dynamic aperture of the map associated with the IOTA
toy-model. Figure 14 shows one such test with various
values of the tune advance error δμ. Note that dynamic
aperture plots obtained using FMA have finer and richer
structure than the REM results generally. However, such
microstructures tend to vanish as we sample the data for a
longer time, as shown in Fig. 16. Apart from the differences
in such fine-scale structures, the agreement in the overall
structures of the regular regions are apparent for various
values of δμ in Fig. 16. The reliability can be further
checked by tracking for a much longer time as shown in
Fig. 15. Comparing the figures, we see that the majority of
particles indicated to be on a chaotic orbit using the short-
time tracking data as shown in Fig. 14 are eventually lost
after long time tracking as in Fig. 15.
Second, we perform tests of numerical convergence with

the length of the tracking interval. Figure 16 shows the
dynamic aperture prediction for the IOTA toy-model at
ν ¼ 0.3, τ ¼ −0.4, and δμ ¼ 0.01 obtained by FMA and
REM using data for various numbers of turns T per interval
(Recall that two successive forward intervals are used for
FMA, while one forward and one backward interval are
used for REM). FMA is a powerful tool for revealing
resonance structures in the phase-space [34], as it measures
the tune diffusion over time. This is illustrated in Fig. 17.
Here, contour lines of νx=νy corresponding to low-order
resonances are drawn over the background dynamicFIG. 13. Schematic layout of the IOTA ring.
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aperture plot, where νx and νy are the horizontal and
vertical fractional tunes computed using the NAFF algo-
rithm. The background is the same FMA dynamic aperture
plot shown in Fig. 16, except that it is for T ¼ 128 instead
of T ¼ 256, and the color scale was modified to improve

visibility by increasing contrast with the resonant lines. The
lines indicate resonances of the ideal (unperturbed) system.
That is, these are resonances of the map N of Eq. (12),
defined by nxνx þ nyνy ¼ 0 with nx; ny ∈ Z. The resonant
lines largely coincide with the chaotic regions indicated by
FMA. However, in Fig. 16, much of the finer and richer
structure (including the resonant lines) appearing in the
FMA dynamic aperture plot at T ¼ 256 tends to vanish at
T ¼ 2048. This suggests that such fine microstructures

FIG. 14. Dynamic aperture plots for the IOTA toy-model at
ν ¼ 0.3, τ ¼ −0.4 and various δμ with a fixed number of turns
T ¼ 1024 for each interval. Two successive forward intervals are
used for FMA, while one forward and one backward interval are
used for REM. The color maps in the left and right columns are
ΔFMA, and ΔREM respectively. From top to bottom δμ is
increasing from 0.0 to 0.04 in increments of 0.01. Red x-marks
denote the singular points of the nonlinear insert potential. The
red curve is where I ¼ 2H. We draw the red curve only on the
xn > 0 side for dynamic aperture visibility, but the I ¼ 2H curve
should also be present on the side xn < 0, due to the reflection
symmetry of H and I.

FIG. 15. Dynamic aperture plot of the IOTA toy-model using
FMAwith a large number of turns T ¼ 65536 for each successive
interval. The toy-model parameters are ν ¼ 0.3, τ ¼ −0.4 and
δμ ¼ 0.01 for the left top, δμ ¼ 0.02 for the right top, δμ ¼ 0.03
for the left bottom and δμ ¼ 0.04 for the right bottom.

FIG. 16. Comparison of FMA and REM for varying number of
turns T per tracking interval at δμ ¼ 0.01. The phase-advance
over the nonlinear magnet section is fixed at ν ¼ 0.3. The color
bars of the left and right columns scale with ΔFMA and ΔREM,
respectively. The time interval is T ¼ 256 (top) and T ¼ 2048
(bottom).
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appearing in the short term FMA plots are likely false
indications of chaos. See Appendix B or Ref. [34] for
further details. The Henon-Heiles potential example pre-
sented in Appendix A further supports this argument. We
believe that this occurs because the accuracy of FMA is
very sensitive to the precision of the frequency measure-
ment that can be obtained using a time series of finite
length. In the limit of continuous-time data, it can be shown
that the numerical error of the frequency vector obtained
using the NAFF algorithm scales as an inverse power of
the time length of the data, i.e., ∝ T−n for n > 0 [13].
Practically, for discrete-time data, the convergence can be
worse. The sensitivity of FMA to the time length is
especially high near resonances, as reported in [35]. On
the other hand, the REM results in Fig. 16 show that the
structure of the dynamic aperture plots is already converg-
ing with a time length as short as T ¼ 256, verifying the
relatively rapid convergence of REM.
Finally, we analyze in more detail the dynamic aperture

of the IOTA toy-model at the nominal parameters used to
produce Fig. 14. We emphasize that these figures illustrate
the breakdown of integrability in the presence of a
perturbation. The perturbation is given by an error in tune
advance δμ over the arc section, which is motivated by the
space-charge induced tune depression in the IOTA ring.
When δμ ¼ 0, the system is perfectly integrable every-
where except at the singular points ðxn; ynÞ ¼ ð�1; 0Þ
inherent to the potential in Eq. (8). This may be seen
clearly in the uppermost figure in Fig. 14. However,
numerical errors due to the finite integration step size
and finite precision can break some of the invariant tori.
When the invariant tori are broken by such small errors, it is

likely that these tori will also be broken when physical
perturbations including the tune error over the arc δμ are
considered. Among the broken tori are those containing
initial conditions that lie along the red curve shown in
Fig. 14, which corresponds to the locus of points I ¼ 2H in
the xn − yn plane (with px;n ¼ py;n ¼ 0, yn ≠ 0), where H
are I are given in Eq. (8) and Eq. (10). It can be shown that
the invariant level sets corresponding to these initial
conditions contain unstable critical periodic orbits, and
lie on a separatrix-like structure separating distinct dynami-
cal regions in the phase space [31]. Note that the I ¼ 2H
curves also form the innermost boundary of the dynamic
aperture at the various values of δμ in Fig. 14.

V. SELF-CONSISTENT SPACE-CHARGE
SIMULATION OF REALISTIC IOTA LATTICE

In this section, we apply FMA and REM to simulated
particle orbits obtained in the presence of space charge,
using a realistic IOTA lattice with a 2D symplectic space-
charge solver [36] implemented in IMPACT-Z [37]. We
choose a 2D solver: (1) in order to model the nominal case
of a long beam that nearly fills the ring, and (2) in order to
isolate transverse space-charge effects from off-momentum
chromatic effects, which are enhanced in the presence of a
longitudinal space-charge force. The nonlinear integrability
is preserved only for on-momentum particles unless a
special chromatic correction is applied [38]. In this study,
we choose a small beam current I ¼ 0.41 mA targeting a
test proton operation of IOTA before ramping up to high
current. The nonlinear effects over the arc section including
geometric nonlinearity of dipoles, nonlinear kinetics, and
nonlinear fringe fields (but linear fringe field effects are
considered) are ignored so that weak space-charge con-
tribution can be solely explored. Lattice parameters were
adjusted accordingly such that δμx ¼ δμy ¼ 0 for particles
near the beam center [39]. In order words, the phases-
advance of particles of zero amplitude limit is integer
multiple of π. The nominal settings for the nonlinear insert
are used: ν ¼ 0.3 and τ ¼ −0.4.
For the initial beam, we use a waterbag distribution,

defined by the distribution function:

ρðHÞ ∝ ΘðH −H0Þ ð15Þ

where ΘðHÞ ¼ 1 for H ≤ 0 and ΘðHÞ ¼ 0 for H > 0. One
million macroparticles are sampled from Eq. (15) with
H0 ¼ 0.06 (which corresponds to the nominal beam size)
to represent the beam. In addition to the particles of the
beam, we also prepared test particles of zero charge over
the disk x2n þ y2n < 1 in the xn − yn plane, with zero normal
momentum, as we did in Sec. IV, to obtain a plot of
dynamic aperture for test particles moving in the combined
space charge and external fields.
Figure 18 shows the resulting dynamic aperture plots

obtained using FMA and REM. The initial boundary of the

FIG. 17. Resonant contour lines of νy=νx overlaid on top of an
FMA dynamic aperture plot for the IOTA toy-model at ν ¼ 0.3,
δμ ¼ 0.01 and T ¼ 128. The color-bar overhead indicates
−ΔFMA, and the color-bar on the right indicates νy=νx.
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waterbag beam is indicated by the white contour. None of
the particles in the beam are lost and the evolution of the
beam density is shown in Fig 19. Note that the FMA
dynamic aperture plot looks noisy. This can likely be
attributed to the time dependence of space-charge effects,
including fluctuations of the beam density and numerical
errors due to finite resolution of the space-charge fields. On
the other hand, the REM result looks less sensitive to such
fluctuations. Nevertheless, both indicators show that the
I ¼ 2H curve is the major boundary of the dynamic
aperture, as was the case for the IOTA toy-model. Note
also that these figures are similar to the δμ ¼ 0.02 and
δμ ¼ 0.03 cases shown in Fig. 14. This can be understood
in the following way. Each particle is affected by space-
charge tune depression, and the particles farther from the
beam center experience less tune depression [We observed
the beam density decrease monotonically for the waterbag
distribution Eq. (15)]. Since the tune error near the beam
center is nearly zero, this means that the outer particles have
positive tune error, making the dynamic aperture resemble
the toy-model dynamic aperture at δμ ≤ 0.027. (The linear

tune depression is 0.027 and 0.016 for the horizontal and
vertical tunes, respectively. See Appendix C.)
The agreement with the toy-model can be further

improved by assigning the toy-model to have the different
tune error parameters δμx and δμy for different particles. To
illustrate, the tune advance over the arc section in Fig. 13 is
supposed to be an integer. However, in the presence of
space-charge, different test particles have different values
of tune error over the arc section. We calculate the tune
errors δμx, δμy in the presence of space-charge by tracking
the beam and test particles over the arc section during the
first turn. Although the beam has not yet reached an
equilibrium state after the first turn, the computed values
of δμx, δμy obtained using the first turn differ only slightly
from those obtained over later turns, as the beam is exactly
matched to the lattice at zero current, and the current is
weak. In other words, the initial beam is already close to
(but not in perfect) equilibrium as shown in Fig. 19.
Figure 20 shows the dynamic aperture obtained using this
modified toy-model, in which each test particle’s tune
errors δμx, δμy are obtained as described above. The result
by REM agrees well with Fig. 18 at T ¼ 256.
In order to further study the stability of the particles in

the beam, we applied REM to the orbits of the 1 million
macroparticles sampled from Eq. (15). In order to visualize
ΔREM of the 1 million particles, we divided the xn − yn
plane into cells of a rectangular grid. Figure 21 shows the

FIG. 18. Comparison of FMA (left) and REM (right) for a
realistic IOTA lattice with 2D symplectic space-charge. The time
interval is T ¼ 128 (top) and T ¼ 256 (bottom). The white
contour corresponds to the boundary of the initial waterbag
beam Eq. (15).

FIG. 19. Beam density at the 0-th turn (left), 128-th turn
(middle) and 256-th turn (right).

FIG. 20. Dynamic aperture by FMA (left) and REM (right) on
toy-model using measured tune error over the arc of individual
particles. The time interval is T ¼ 256.

FIG. 21. Projected maximum of ΔREM of all particles in the
beam for T ¼ 256.
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maximum value of ΔREM among the particles whose
xn − yn initial conditions are in the corresponding cell.
Comparing to the ΔREM values appearing in Fig 18, we can
say that the particle orbits in the beam is quite regular.

VI. DYNAMIC APERTURE AT VARIOUS
NONLINEAR MAGNET PHASE ADVANCE

In this section, we study the dependence of the dynamic
aperture of the IOTA toy-model to the parameter ν
appearing in Eq. (12) (the tune advance across the nonlinear
magnet). In Section IV, we observed that in the case
ν ¼ 0.3, the geometric structure of the dynamic aperture
is determined primarily by the curve I ¼ 2H (that served as
the innermost boundary of the dynamic aperture), which
does not change much as the tune error δμ is varied. This
makes sense, as the orbits with I ¼ 2H lie on a separatrix-
like structure in the phase space, containing unstable
periodic orbits that result in homoclinic points (and chaos)
when a small perturbation is applied.
The geometric structure of the I ¼ 2H curve depends on

the nonlinear magnet strength τ but not on the nonlinear
magnet tune advance ν, as can be seen from Eq. (8) and
Eq. (10). However, in the presence of a noninteger tune
error δμ, the dynamics of the map NR can no longer be
described by the Hamiltonian in Eq. (8) alone, so it is
possible that the geometric structure of the dynamic
aperture may change as we vary ν. In this section, we
vary ν at a fixed perturbation δμ ¼ 0.01, to see if the
innermost boundary of dynamic aperture changes. For this
purpose, we divide the unit disk in the xn − yn plane into
two geometric regions, as shown in Fig. 22. We refer to the
blue region as region I, and we refer to the orange region as
region II. So far, we have observed (at ν ¼ 0.3, in the
presence of various perturbations, including space-charge)
that most of the particles starting from region I lie on
regular orbits, while many of the particles starting from
region II lie on chaotic orbits. It can be shown that the
particles starting in region I encircle the stable fixed point at

the origin, while the particles starting in region II do not
cross the xn axis, and thus are confined to the upper or
lower half of the plane [31]. Therefore, the yn time series
for each particle starting in region II has a large direct
current (DC) component in the frequency domain. This fact
can be used to detect a change in the structure of the
separatrix as ν is varied.
Figure 23 shows the dynamic aperture of the IOTA toy-

model at various ν and fixed δμ ¼ 0.01. Notice that the
boundary of the dynamic aperture is significantly changed
in the two cases ν ¼ 0.36 and ν ¼ 0.28. In all other cases,
the dynamic aperture looks well behaved, suggesting a

FIG. 22. Initial conditions in the unit disk in the xn − yn plane
are divided into two geometric regions by the curves I ¼ 2H
(red curves).

FIG. 23. Dynamic aperture of the IOTA toy-model at various
values of ν with δμ ¼ 0.01. From top to bottom: ν ¼ 0.28, 0.3,
0.32, 0.34 and ν ¼ 0.36. The left column is obtained using FMA
and the right column is obtained using REM.
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working point for the nonlinear magnet tune advance
roughly in ν ∈ ½0.3; 0.34�.
In the case ν ¼ 0.36, the dynamic aperture is drastically

reduced when compared to the red curve. The chaotic band
along the red curve bifurcates, and the bifurcated curve
forms a bulge toward the origin, so that chaotic orbits
appear in region I. To see if this is associated with a change
in the geometric structure of the separatrix, we collected all
of those particles whose orbital time series data yn has a dc
frequency component larger than the dominant nonzero
frequency component. Figure 24 shows the initial con-
ditions of all such particles. Note that these particles paint
the band of the borderline of the bulge in Fig. 23. This
suggests that the geometric structure of the dynamics, as
defined by the separatrix, is changed by a small perturba-
tion δμ ¼ 0.01 when ν ¼ 0.36.
In the case ν ¼ 0.28, a new chaotic arc appears inside

region I that is not connected to the I ¼ 2H curve.
Figure 25(a) shows those particles whose orbital time
series data yn has a dc frequency component larger than
the dominant nonzero frequency component. Note that

there are no such particles visible in region I. Figure 25(b)
shows a tune footprint for all particles with initial con-
ditions in region I. Note that many of the chaotic particles in
region I appear to lie on resonance lines. This suggests that
the new chaotic arc appearing in region I when ν ¼ 0.28 is
not due to deformation of the separatrix, but is instead due
to the presence of low-order resonances.

VII. CONCLUSION

The chaos indicator known as the reversibility error
method (REM) was compared with the use of frequency
map analysis (FMA) for studying the IOTA ring dynamic
aperture in the presence of weak space-charge. The
reliability of FMA is questionable when the Hamiltonian
possesses nonperiodic time dependence (such as space-
charge). This does not present a difficulty for REM, which
is better-suited for such systems. In addition, the REM
indicator converged more quickly with respect to the length
of the numerical tracking interval than FMA, making it a
suitable application for numerically heavy simulations. The
two indicators agreed well when fully converged for an
autonomous system. Application to studies of the IOTA
dynamic aperture revealed that a separatrixlike structure
played a major role in limiting the dynamic aperture for
various perturbation strengths. In addition, a simplified toy-
model was used to represent the effects of space-charge,
and we observed reasonable agreement with the realistic
space-charge simulation. The toy-model is further used to
study the effect of the nonlinear insert section phase-
advance on the dynamic aperture in the presence of a
small perturbation.
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APPENDIX A: CONVERGENCE OF
CHAOS INDICATORS ON THE
HENON-HEILES PROBLEM

In this section, we present a numerical convergence test
of REM for comparison against FMA on the Henon-Heiles
problem in Eq. (3). Figures 26 and 27 show dynamic
aperture plots corresponding to orbits with E ¼ 1=12 and
E ¼ 1=9, given for two values of the tracking time interval
T. The orbits with E ¼ 1=12 are regular everywhere except
on a set whose phase-space volume is zero [22]. In other
words, there should be no visible chaotic band on the
dynamic aperture plot. However, this fact is not well
reflected by FMA in comparison against REM when the

FIG. 24. Initial conditions of those particles whose time series
data yn has a dc frequency component larger than the dominant
nonzero frequency component when ν ¼ 0.36 and δμ ¼ 0.01.
The color map indicates ΔFMA.

FIG. 25. Analysis of the IOTA toy-model with ν ¼ 0.28 and
δμ ¼ 0.01. The color map indicates ΔFMA. (a) Initial conditions
of those particles whose time series data yn has a dc frequency
component larger than the dominant nonzero frequency compo-
nent. (b) Tune footprint of all particles starting from region I,
shown together with a few strong resonance lines (red dashed).
Here νx and νy are the horizontal and vertical fractional tunes.
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T ¼ 512. In the case of E ¼ 1=9, chaotic bands appear on
the dynamic aperture plot. In this case also, FMA tends to
largely overestimate the chaotic region at T ¼ 512 while
REM tends to slightly underestimate the chaotic region at
T ¼ 512. Note that some chaotic resonant islands reported
by FMA for E ¼ 1=9 and T ¼ 512 are vanishing for
T ¼ 2048. In both energies, both indicators converged
and agreed with each other as T becomes long. However,
the convergence looks relatively faster for REM.

APPENDIX B: COMPARISON OF CHAOS
INDICATORS ON A PERIODIC FOCUSING

SYSTEM NEAR RESONANCE

Here, we illustrate the sensitivity of FMA to errors when
used in a system near resonance. Consider a system
described by the Hamiltonian

Hðx; p; tÞ ¼ p2

2
þ x2

2
ðB1Þ

with period of length

Lperiod ¼ 2πð1þ 1=4 − ϵÞ; ϵ ¼ 0.03: ðB2Þ

We interpret (B1)–(B2) as representing a storage ring near
the quarter-integer resonance. We consider two cases by
inserting thin and thick octupoles: (i) integrable case:
A thick octupole field, of length Loct ¼ 2πð1=4 − ϵÞ, is
superposed on top of the constant focusing field such that
the map outside of the thick octupole field is an identity
map. The potential is

Voct ¼
x4

4
ΘðtðLoct − tÞÞ ðB3Þ

where Θ is the Heaviside step function. (ii) nonintegrable
case: A thin octupole is added at t ¼ 0, given by the
potential:

Voct ¼ Loct
x4

4
δðtÞ ðB4Þ

where δ is the Dirac delta function.
Figure 28 shows the dynamic aperture plot for the

thick octupole case (B3). Since the system is integrable,
the entire phase-space area is filled with regular orbits.
However, FMA indicates orbits near the quarter-integer
resonance (forming a bright ring on the x–p plane) to be
chaotic compared to the surrounding phase-space area. This
is because the accuracy of the NAFF algorithm is degraded
near the resonance. (This phenomenon is illustrated in
Ref. [34].) The accuracy can be improved by sampling data

FIG. 26. Dynamic aperture of x ¼ 0 and E ¼ 1=12 surface
projected on y-py plane. The left and right columns are FMA
and REM respectively. The top and bottom rows are T ¼ 512
and T ¼ 2048 respectively. The numerical integration step size
was dt ¼ 10−3.

FIG. 27. Dynamic aperture of x ¼ 0 and E ¼ 1=9 surface
projected on y-py plane. The left and right columns are FMA
and REM respectively. The top and bottom rows are
T ¼ 512 and T ¼ 2048 respectively. The numerical integration
step size was dt ¼ 10−3.

FIG. 28. Dynamic aperture plot with a thick octupole near the
quarter-integer resonance using FMA(left) and REM(right) with
the time interval T ¼ 256.
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for a longer time interval. It is not shown in the plot, but we
observed that the width of the bright ring appearing in the
FMA dynamic aperture plot becomes narrower as the time
interval T becomes longer. Although it is often informative
to indicate the resonant lines, this can confuse interpreta-
tion, blurring the distinction between chaotic and regular
resonant orbits in the dynamic aperture plot.
Figure 29 shows the dynamic aperture plot for the thin

octupole case (B4) obtained using FMA and REM. The
resonance islands and the chaotic band near the separatrix
are well captured by both indicators.

APPENDIX C: ESTIMATES OF SPACE-CHARGE
TUNE DEPRESSION IN THE IOTA RING

It can be shown that the linear space-charge tune shifts in
a proton ring are given by [12,40]:

ξx ¼ −
KSC

4π

I
ds

βx
σxðσx þ σyÞ

;

ξy ¼ −
KSC

4π

I
ds

βy
σyðσx þ σyÞ

; ðC1Þ

where s is the longitudinal coordinate along the reference
orbit, βx;y and σx;y denote the betatron amplitude(s) and rms

beam size(s), and KSC ¼ 2nr0
β2
0
γ3
0

. Here r0 ¼ 1
4πϵ0

q2

mc2 is the

classical proton radius and n is the line density of number
of particles. Using thewaterbag distribution Eq. (15), we find
that the linear space-charge tune shifts are ξx ¼ −0.027 and
ξy ¼ −0.016. We also find that the ratios of tune depression
over the arc section and nonlinear insert section areR

insert dsβx=σxðσx þ σyÞR
arc dsβx=σxðσx þ σyÞ

¼ 0.036 ðC2Þ

R
insert dsβy=σyðσx þ σyÞR
arc dsβy=σyðσx þ σyÞ

¼ 0.049 ðC3Þ

which verifies our claim that the tune depression over the
arc dominates the tune depression over the nonlinear insert
section.
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