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Coherent effects in the ionization loss of ultrarelativistic electron ensembles (bunches) are studied on the
basis of perturbation theory of quantum mechanics. These effects originate from the interference of the
electrons’ proper electric fields with each other. General expressions for the ionization loss in this case, as
well as their applicability conditions, are derived. It is shown that for ensembles of sufficiently small spatial
size, achievable in modern accelerator facilities, the discussed effects lead to an increase of the ionization
loss by several orders of magnitude compared to the result predicted by the Bethe-Bloch formula. In this
case, the effective mean ionization potentials of the atomic shells depend not only on the structure of the
atomic levels, but on the ensemble form factors as well. The numerical calculations are made for hydrogen
atoms, taking into account the density effect in the ionization loss. The ionization loss due to resonant
excitation and ionization of atoms by ensembles with periodical modulation of the particle density (realized
at free-electron lasers) is investigated.
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I. INTRODUCTION

Interference effects in the ionization loss of charged
particles have been studied previously for the case of
microscopic groups of several particles. For instance, it
was shown that the ionization loss of an ultrarelativistic
electron-positron pair is reduced in the vicinity of the pair
creation point in a substance, compared to the sum of
independent losses by the electron and positron [1,2]. Such
a reduction is caused by the destructive interference of the
particles’ electric fields with each other and is known as the
Chudakov effect. Another example, concerning nonrela-
tivistic particles, was studied in Refs. [3,4]. Here, the
authors considered impinging of a cluster of several
protons, bound by a common electron, on a solid target.
Inside the target, such a cluster instantly lost the electron
and suffered a “Coulomb explosion.” In this case, immedi-
ately after the explosion the constructive interference
between the protons’ fields made the value of the particles’
ionization loss several times larger than at the moment of
time when the protons flew well apart from each other and
the interference disappeared. The analogy between the

processes considered in Refs. [1,2] and Refs. [3,4] was
pointed out in Ref. [5].
In Ref. [6], analogous effects were considered for macro-

scopic ensembles of relativistic electrons consisting of
105 − 109 particles with a total charge up to 1 nC. It was
shown that, in this case, the interference effects can change
the ionization loss much more significantly than in the case
ofmicroscopic groups of particles.Namely, for a sufficiently
small size of such ensembles (bunches), their ionization loss
can be coherently enhanced by several orders of magnitude.
It resembles the phenomenon of coherent amplification of
radiation by small electron bunches [7–9]. Bunches with the
proper parameters required for the manifestation of the
discussed effect are already obtained at modern x-ray free-
electron lasers and are going to be obtained at a series of
accelerators presently under construction. This motivates
the study of the interference effects in the ionization
loss of such macroscopic particle ensembles. The applica-
tion of such effects might be of interest for problems
of the experimental diagnostics of the parameters of such
ensembles.
In the discussed work [6], consideration of the ionization

loss process was made in the framework of classical
electrodynamics with the use of a simplified model of
atomic electrons as classical harmonic oscillators. Such a
model is rather nice for approximate estimations. Naturally,
it did not allow accurately accounting for the electronic
structure of the atoms excited or ionized by the impinging
ensemble. However, the magnitude of the interference
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effects in the ionization loss is rather sensitive to the details
of this structure and, particularly, to the values of the
ionization potentials of the atomic shells.
In the present work, we develop a more accurate

approach for the treatment of coherent effects in the
ionization loss of macroscopic electron ensembles, based
on perturbation theory of quantum mechanics. Such an
approach allows obtaining general expressions for the
effective values of the mean ionization potentials of the
atomic shells which define the ensemble ionization loss. It
is shown that, in general, such values depend on the
ensemble form factors.
Let us also note that in Ref. [6] ionization loss in solid

targets was studied. It was shown that, for the electron
bunch parameters which are currently technically achiev-
able, the discussed interference (coherent) effects can be
manifested only in ultrathin targets, in which the density
effect [10,11] in the ionization loss is absent. In the present
work, special attention is drawn to the gaseous targets, and
the numerical results are presented for the simplest case of
this kind which corresponds to atomic hydrogen. It is
shown that in gases coherent effects can be manifested in
the presence of the density effect as well and, therefore, for
arbitrary values of the target thickness.

II. CASE OF A SINGLE PARTICLE

In the present work, we will consider the so-called
restricted ionization loss. It is a part of the particle’s mean
ionization loss associated with the collisions accompanied
by the momentum transfer less than some maximum value
ℏq0 (which corresponds to ℏq1 in Ref. [12]). This quantity
is often much more convenient for experimental measure-
ments than the total loss due to collisions with arbitrary
momentum transfer. If ℏq0 is much less than the typical
momentum of incident ultrarelativistic electrons from the
ensemble, we can neglect the scattering of the latter ones. In
this case, the velocity of the incident electrons is almost
unchanged, and the total electromagnetic field created by
the ensemble can be considered as an external perturbation
of the atomic electrons’ Hamiltonian. It triggers the
transitions of these electrons to higher levels of the discrete
(excitation) and continuous (ionization) spectrum.
Let us first consider the workability of this method for

calculation of the ionization loss by a single particle in the
absence of any coherent effects. In the nonrelativistic case,
an analogous method was applied, for instance, in
Refs. [13,14] for the study of hydrogen atom ionization
by multiply charged ions. We will presently consider the
case of an ultrarelativistic incident electron taking into
account the density effect, which can noticeably suppress
the ionization loss at high particle energies.
As pointed out in Ref. [15], in order to accurately

account for the incident external field in the Schrödinger
equation for an atomic electron (with charge e), it is
necessary to proceed from the relativistic Klein-Gordon

equation (p̂μp̂μ −m2c2Þψ ¼ 0 for the atomic electron wave
function ψ (we neglect any spin effects in our study).
Making here the substitution p̂μ → p̂μ − eðAμ þ aμÞ=c and
writing ψ in the form ψ ¼ ϕðr; tÞe−imc2t=ℏ, in the non-
relativistic limit we obtain

iℏ
∂ϕ
∂t ¼

�
p̂2

2m
þ eφn þ eA0 −

e
mc

Ap̂þ e2

2mc2
A2

�
ϕ

þ ieℏ
2mc

�
1

c
∂A0

∂t þ divA

�
ϕ: ð1Þ

Here, Aμ ¼ ðA0;AÞ is the four-vector potential of the
external field, while aμ ¼ ðφn; 0Þ is the one of the atomic
nucleus. Generally, aμ describes the field of the nucleus
together with the field of the rest of the atomic electrons,
except the considered one, but this does not induce any
changes in our present consideration.
The components of the four-vector potential of a

relativistic incident electron with the velocity v in a
polarized medium can be presented as follows [16]:

A0 ¼ e
expf− ωp

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ0 − ρÞ2 þ γ2ðz − vtÞ2

p
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðρ0 − ρÞ2γ−2 þ ðz − vtÞ2
p ;

A ¼ vA0=c: ð2Þ

The incident electron is assumed to move along the z
axis having radius vector ρ0 in the xy plane and Lorentz
factor γ. The vector r ¼ ðρ; zÞ describes the atomic electron
position; ωp is the plasma frequency of the medium.
The potentials (2) satisfy the Lorenz gauge ∂Aμ=∂xμ¼0,

which sets the second line in Eq. (1) to zero. The require-
ment of perturbation weakness allows neglecting the term
withA2 in Eq. (1) as well. Hence, the perturbation operator
can be presented in the following form:

V̂ðr; tÞ ¼ eA0

�
1 −

v
mc2

p̂z

�
: ð3Þ

We assume that, before the interaction with the
incident particle, the atomic electron is in the ground state
with energy ε1 and wave function ϕ1ðrÞ expð−iε1t=ℏÞ.
Further, the denomination ϕkðrÞ ¼ jki will be used. The
probability amplitude for this electron to transit to the kth
exited state as a result of interaction in the leading order of
perturbation theory is [17]

ck1 ¼ −
i
ℏ
hkjV̂ðωk1Þj1i; ð4Þ

where

V̂ðωk1Þ ¼
Z þ∞

−∞
dteiωk1tV̂ðr; tÞ ð5Þ
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is the perturbation Fourier component and ωk1 ¼
ðεk − ε1Þ=ℏ.
Substituting Eqs. (2) and (3) into Eq. (4), we finally

obtain

ck1 ¼ −
2ie2

ℏv
xk1

�
iωk1

vγ2
K0ðΩk1ρ0Þ þΩk1K1ðΩk1ρ0Þ

�
; ð6Þ

where Ω2
k1 ¼ ω2

k1=ðv2γ2Þ þ ω2
p=c2, Ki are the Macdonald

functions, and xk1 ¼ hkjxj1i. Here, it was assumed that the
incident electron moves in the xz plane. In order to obtain
Eq. (6), we made an expansion with respect to the small
parameters Ωk1ρ and ωk1z=v, which are present in the
explicit expression for V̂ðωk1Þ. Calculating the matrix
element from the second term in Eq. (3), we applied the
relation hkjp̂zj1i ¼ mhkjv̂zj1i ¼ imωk1zk1. Finally, due to
the spherical symmetry of the atom, zk1 ¼ xk1.
The ionization loss per unit path can be calculated as

dϵ
dz

¼ nℏ
Z

2πρ0dρ0

�X
k

jck1j2ωk1 þ
Z

jcκ1j2ωκ1d3κ

�
;

ð7Þ

where the first term is associated with the atomic excitation
and the second one with the ionization (κ is the wave vector
of the knocked out atomic electron). Further, to be short, we
will write where possible just the first term in the braces in
Eq. (7), assuming the presence of the second one by
default.
It is convenient to change the order of the summation (or

integration with respect to κ) and integration with respect to
ρ0. In order to calculate the latter integral from the second
term in Eq. (6), it is convenient to proceed to the
momentum representation, writing K1 in the form

K1ðΩk1ρ0Þ ¼ −
i

2πΩk1

ρ0
ρ0

Z
d2q

qeiqρ0

q2 þ Ω2
k1

ð8Þ

and presenting jK1j2 as a product of Eq. (8), with the
integration variable q and its complex conjugate with the
corresponding variable q0. The integrals with respect to ρ0
and q0 are easily calculated. The upper limit in the
remaining integral with respect to q should be chosen to
equal q0, reflecting the fact that one considers the restricted
ionization loss. Generally, the precise value of q0 depends
on the conditions of the experimental measurements. For
theoretical estimations, it is usually taken equal to the
inverse value of the interatomic distance q0 ∼ 108 cm−1. In
this case, for q > q0 the interaction of the incident and
atomic electrons should be treated as free-particle scattering
in vacuum [12]. However, for the ensemble parameters
achievable at modern accelerator facilities, the coherent
effects in atomic ionization take place only for soft
collisions with q < q0. Thus, the treatment of these effects

is exhausted by the consideration of the restricted ioniza-
tion loss.
The integral from the first term in Eq. (6) is calculated

straightforwardly. As a result, we get

dϵ
dz

¼4πne4

ℏv2
X
k

ωk1jxk1j2
�

ω2
k1

Ω2
k1v

2γ4
þ2

�
ln

q0
Ωk1

−
1

2

��
: ð9Þ

For γ ≫ 1, the first term in the braces here, which originates
from the first term in Eq. (6), is much smaller than the
second one. Further, we will neglect this term in the
expressions for both ck1 and dϵ=dz.
The sum over k in Eq. (9), which, by agreement, contains

the integration over the continuous spectrum states as well,
can be calculated with the use of the theorem [12,17]X

k

ωk1jxk1j2 ¼ ℏZ=ð2mÞ; ð10Þ

where Z is the atomic number of the substance. With
the use of Eq. (10), the mean ionization potential I is
defined as [12]

ln I ¼ 2m
ℏZ

X
k

ωk1jxk1j2 lnωk1: ð11Þ

In the case of γ ≪ I=ωp, expression (9) turns into

dϵ
dz

¼ 4πne4Z
mv2

�
ln
q0vγ
I

−
v2

2c2

�
: ð12Þ

In this case of moderate γ, we kept the first term in (9).
Formula (12) coincides with the well-known expression for
particle ionization loss due to distant collisions [12]. Up to
the terms on the order of unity in the braces, it coincides
with the Bethe-Bloch formula (its part due to distant
collisions) without the density effect correction.
In the opposite case of γ ≫ I=ωp, formula (9) is reduced

to

dϵ
dz

¼ 4πne4Z
mv2

�
ln

q0
ωp

−
1

2

�
; ð13Þ

which is the high-energy asymptotics of the Bethe-Bloch
formula with the density effect correction [10,11].

III. GENERAL EXPRESSIONS FOR THE
ELECTRON ENSEMBLE IONIZATION LOSS

After testing the discussed calculation method in the
case of a single particle, let us proceed to the consideration
of ionization loss by an electron ensemble consisting
of a large number of particles. Let all the electrons from
the ensemble move along the z axis with velocity v.
The coordinates of the rth electron we denote as
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ðRþ ρr; vtþ zrÞ. Here, the set ðR; vtÞ defines the position
of some point inside the ensemble which is at rest relative
to the incident particles, while ðρr; zrÞ are the electron
coordinates relative to this point. For axially symmetric
ensembles, it is natural to locate the point ðR; vtÞ at the
ensemble central axis (the exact value of its z coordinate
does not influence the calculation results), so that jRj
denotes the distance between this axis and the z axis. With
the use of Eq. (8), expression (6) for a single rth electron
from the ensemble can be generalized as follows:

crk1 ¼ −
e2e−iωk1zr=v

πvℏ
ðρeρ0Þk1eρ0

Z
d2q

qeiqρ0

q2 þ Ω2
k1

; ð14Þ

where eρ0 ¼ ρ0=ρ0 and ρ0 ¼ Rþ ρr. The result of inte-
gration in Eq. (14), which we denote by the vector Q, is
directed along ρ0. Therefore, Qeρ0ðρeρ0Þk1 ¼ Qρk1 and the
quantity ck1 for the whole ensemble can be written in the
form in which the matrix element of the atomic electron
coordinate ρ is carried out from the sum over r:

ck1 ¼ −
e2

πvℏ
ρk1

Z
d2q

qeiqR

q2 þ Ω2
k1

X
r

e−iωk1zr=vþiqρr : ð15Þ

Let us assume that the particle distribution in the
ensemble is axially symmetric with respect to some axis
parallel to v. In this case, the result of integration in Eq. (15)
is directed alongR. Choosing this direction to be parallel to
the x axis and applying a procedure analogous to the one
described before Eq. (9), one can finally present the
expression for the ensemble ionization loss in the following
form:

dϵ
dz

¼ 4ne4

v2ℏ

X
k

ωk1jxk1j2
Z

d2q
q2

ðq2 þ Ω2
k1Þ2

×
X
r;p

e−iωk1ðzr−zpÞ=vþiqðρr−ρpÞ: ð16Þ

Note that, generally, for atoms with Z ≥ 2 it is necessary to
perform here a summation over all the atomic electrons as
well. Further, for the sake of simplicity, we will still write
the expressions for the case of a single electron in the atom.
Proceeding to the approximation of a continuous charge
distribution in the ensemble and, where possible, calculat-
ing the integral with respect to q, we get

dϵ
dz

¼ 4πnZe4

mv2
N

�
ln
q0
Ω̄

−
1

2
þ ðN − 1ÞGðγ;ωpÞ

�
; ð17Þ

where N is the total number of particles in the ensemble
and the quantity Ω̄ is defined by analogy with the mean
ionization potential:

ln Ω̄ ¼ 2m
ℏZ

X
k

ωk1jxk1j2 lnΩk1: ð18Þ

The functionGðγ;ωpÞ, which also depends on the structure
of the excited levels of the atom and the ensemble
geometrical properties, has the form

Gðγ;ωpÞ ¼
2m
Zℏ

X
k

ωk1jxk1j2Fkðωk1Þ
Z

dq
q3F⊥ðqÞ

ðq2 þΩ2
k1Þ2

;

ð19Þ

where Fk and F⊥ are the ensemble form factors, which are
defined as

Fkðωk1Þ ¼
				
Z þ∞

−∞
dzfkðzÞe−iωk1z=v

				2; ð20Þ

F⊥ðqÞ ¼
				2π

Z
∞

0

drrJ0ðqrÞf⊥ðrÞ
				2; ð21Þ

respectively, and J0 is the Bessel function. The functions fk
and f⊥ describe, respectively, the longitudinal and trans-
versal particle distribution in the ensemble (we assume that
the particle distribution factorizes in these directions) and
are normalized to unity.
The first two terms in braces in Eq. (17) are associated

with the incoherent part of the ensemble ionization loss.
Being proportional to N, it is just the sum of the
independent losses by separate particles defined by the
Bethe-Bloch formula. The part of the expression (17)
which contains Gðγ;ωpÞ is the coherent part of the loss.
It is proportional to N2 and describes the influence of the
interference (coherent) effects upon the ensemble ioniza-
tion loss. According to Ref. [6] and more rigorous
calculations in the present work, these effects can enhance
the value of the ensemble ionization loss by several orders
of magnitude (for currently available parameters of the
electron ensembles) compared to the result predicted by the
Bethe-Bloch formula.
The expression 2mωk1jxk1j2=ðZℏÞ, the sum of which

over k is equal to unity, can be considered as a distribution
function over the excited states of the atomic electron
(which includes both the states of the discrete and con-
tinuous spectrum). Thus, Eq. (19) represents the averaging
of the function depending on Fk and F⊥ over the atomic
electron states. Further, we will denote such an averaging
by h…i. Under the condition of the full value density effect
(γ ≫ I=ωp), the expression for Gðγ;ωpÞ simplifies.
Namely, in this case, Ωk1 ¼ ωp=c and G ceases to depend
on γ, while the averaging involves just the longitudinal
form factor:
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GðωpÞ ¼ hFkðωk1Þi
Z

dq
q3F⊥ðqÞ

ðq2 þ ω2
p=c2Þ2

: ð22Þ

Further, we will mainly concentrate on this particular case.

IV. APPLICABILITY CONDITIONS FOR THE
APPLIED APPROACH

In the present work, we study the case when, due to
coherent effects, the interaction of incident particles with
atomic electrons can be much more intense than in the case
of a single electron scattering on an atom. Therefore, it is
necessary to study the applicability of perturbation theory
which is applied in the present investigation.
The general condition of the workability of the applied

approach is
P∞

k¼2 jck1j2 ≪ 1. The condition of the con-
vergence of the sum over k suggests that by an order of
magnitude this sum coincides with the sum of the first
several terms in it. In the present work, numerical estima-
tions will be made for hydrogen atoms. In this case, due to
the quick decrease of jxk1j2 with the increase of k (see
details below), the above condition with nice accuracy can
be replaced by

jc21j2 ≪ 1; ð23Þ

which includes just the probability of the electron transition
to the first (k ¼ 2) excited level. An exception may be made
for ensembles whose longitudinal form factors Fk turn to
zero at certain finite values of the ensemble parameters, as,
for instance, in the case of a homogeneous longitudinal
particle distribution, briefly discussed in Sec. VA.
Presently, for such values of the parameters, jc21j2 may
turn to zero, while the terms with k ≥ 3 remain nonzero. In
this case, it is necessary to take into account the first two
terms from the sum over k in Eq. (23).
In the case of a single incident particle with unit charge,

the value of jc21j2, which can be obtained from Eq. (6), is

jc21j2 ¼ 4α2jx21j2=ρ20; ð24Þ

where α ¼ 1=137 is the fine-structure constant. For a
hydrogen atom, the quantity jx21j2 is on the order of a20
(more precisely, 0.56a20), where a0 ¼ ℏ2=ðme2Þ is the Bohr
radius. The minimal impact parameters ρ0, associated with
the maximum values of jc21j2, which we consider in our
study are ρ0 ∼ a0. This gives jc21j2 ∼ α2, providing nice
validation of the condition (23).
Let us now calculate the quantity jck1j2 (for an arbitrary

value of k) for the case of an incident ensemble on the basis
of Eq. (15). Presently, we need to obtain the result for an
arbitrary value of R (which is the distance between the atom
and the ensemble central axis) without preliminary inte-
gration with respect to R. In the previous section, such an
integration (in that case, it was performed with respect

to ρ0) preceded the ones with respect to q and q0
and considerably simplified the calculation of dϵ=dz.
Proceeding from the sum over the discrete set of charges
to the approximation of a continuous charge distribution, as
was done in the case of dϵ=dz calculation, one can present
Eq. (15) in the following form:

jck1j2 ¼
�
α

π

�
2

jxk1j2N2Fkðωk1ÞjIk1ðRÞj2; ð25Þ

where

Ik1ðRÞ ¼
Z

d2q
qeiqR

q2 þ Ω2
k1

Z
d2rf⊥ðrÞeiqr: ð26Þ

Here, the incoherent part of jck1j2, which is proportional to
N, is neglected compared to the coherent one proportional
toN2. This is due to the fact that we are mainly interested in
the study of the applicability condition (23) in the case
when the coherent effects in the ensemble ionization loss
are rather huge. The integral Ik1ðRÞ is directed along R,
which allows one to present it as

Ik1ðRÞ ¼ ð2πÞ2ieR
Z

∞

0

drrf⊥ðrÞ
Z

∞

0

dq
q2J0ðqrÞJ1ðqRÞ

q2 þΩ2
k1

;

ð27Þ

where eR ¼ R=R. After calculation of the integral with
respect to q in Eq. (27), expression (25) acquires the form

jck1j2 ¼ 16π2α2jxk1j2N2Ω2
k1Fkðωk1ÞjSk1ðRÞj2; ð28Þ

with

Sk1ðRÞ ¼ K1ðΩk1RÞ
Z

R

0

drrf⊥ðrÞI0ðΩk1rÞ

− I1ðΩk1RÞ
Z

∞

R
drrf⊥ðrÞK0ðΩk1rÞ: ð29Þ

Here, Ii are the Bessel functions of an imaginary argument
(like the Macdonald functions Ki).
The case of a single incident particle can be obtained

from Eq. (28) by putting f⊥ðrÞ ¼ δðrÞ, N ¼ 1, and
Fkðωk1Þ ¼ 1. In this case, for R ≪ Ω−1

k1 and k ¼ 2,
expression (28) reduces to Eq. (24) with ρ0 ¼ R.
Let us, for the sake of illustration, calculate jc21j2 for the

simplest case of an ensemble (bunch) with homogeneous
transversal particle distribution. Presently, f⊥ðrÞ ¼
θðd − rÞ=ðπd2Þ, where θðxÞ is the Heaviside step function
and d is the bunch radius. We will put R ¼ d, since in this
case jck1j2 reaches its maximum value. From Eqs. (28) and
(29), we have
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jck1j2 ¼ 16α2
jxk1j2
d2

N2Fkðωk1ÞK2
1ðΩk1dÞI21ðΩk1dÞ: ð30Þ

Further, we will be interested, particularly, in the case when
the full value density effect (γ ≫ I=ωp) takes place in a
hydrogen medium and the typical bunch radius is
d ∼ c=ωp. In this case, Eq. (30) reads (k ¼ 2)

jc21j2 ∼ α2N2ða0ωp=cÞ2Fkðω21Þ: ð31Þ

Here, we see that for the electron ensemble jc21j2 is not just
α2N2, as would be, e.g., for a heavy ion with charge Ne.
Expression (31) also contains two “suppression” factors
which considerably reduce its value. Indeed, for hydrogen
under normal conditions the ratio a0ωp=c is about
5 × 10−5. For bunches with length noticeably exceeding
the value c=ω21, the longitudinal form factor Fk is much
less than unity as well (though the coherent effects can still
be considerable in this case). Therefore, we see that the
applied approach, based on perturbation theory, can be
applicable even for very large values of N typical for
macroscopic particle ensembles.

V. NUMERICAL ESTIMATION OF THE
IONIZATION LOSS BY ELECTRON ENSEMBLES

IN HYDROGEN

In this section, we perform a numerical calculation of
restricted ionization loss by ultrarelativistic electron ensem-
bles (bunches). The parameters of the ensembles are chosen
to correspond to the ones which are available at modern
accelerator facilities. The cases of various shapes of the
bunches are considered. As noted, the calculations are
made for the simplest case of the substance, which
corresponds to atomic hydrogen, for which the precise
consideration is possible.
The major quantities in (17)–(21) describing the sub-

stance, which the ensemble penetrates, are ωk1 and xk1. For
the discrete spectrum of atomic hydrogen, the quantities
ωk1 are

ωk1 ¼
me4

2ℏ3

k2 − 1

k2
; ð32Þ

which follows from the well-known formula for εk. Hence,
for transitions to the continuous spectrum,

ωκ1 ¼
me4

2ℏ3
þ ℏκ2

2m
: ð33Þ

The matrix elements xk1 for the discrete spectrum can be
directly obtained, e.g., from the matrix elements ðeiqrÞk1,
derived in Ref. [17]. They read (only transitions to states
with p ¼ 0, described by wave functions in parabolic
coordinates ϕn1;n2;p, take place; n1 þ n2 ¼ k − 1)

jxk1j2 ¼ 28k7a20
ðk − 1Þ2k−6
ðkþ 1Þ2kþ6

k2 − 1

3
: ð34Þ

The matrix elements xκ1 can be derived with the use of
wave functions of the continuous spectrum in parabolic
coordinates [17]. They read

jxκ1j2 ¼
28a40
3κ

exp½− 4
κa0

arctgðκa0Þ�
ð1þ κ2a20Þ5f1 − exp½−2π=ðκa0Þ�g

: ð35Þ

The numerical estimation of the sum
P

ωk1jxk1j2 with the
use of (32)–(35), including integration over the continuous
spectrum states, is in agreement with Eq. (10).

A. Ensemble with a Gaussian particle distribution

Among other parameters, the magnitude of electron
ensemble dϵ=dz is defined by its form factors. Thus, as
in the case of radiation, the magnitude of the coherent
effects in the ionization loss significantly depends on the
spatial distribution of the electrons in the ensemble. In the
present subsection, we perform a numerical estimation of
the ensemble ionization loss for the case of Gaussian
particle distribution in both the longitudinal (along the z
axis) and transversal directions. Presently, the functions fk
and f⊥ can be written, respectively, as [18]

fkðzÞ¼e−z
2=2l2=

ffiffiffiffiffiffi
2π

p
l; f⊥ðrÞ¼e−r

2=2d2=2πd2 ð36Þ

and result in the following forms of Fk and F⊥:

Fkðωk1Þ ¼ e−ω
2
k1l

2=v2 ; F⊥ðqÞ ¼ e−q
2d2 : ð37Þ

The quantities l and d describe the ensemble dimensions in
the longitudinal and transversal directions, respectively.
They are related to the corresponding full widths at
half maxima (FWHM) lf and df as lf ¼ l

ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
and

df ¼ d
ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
.

Let us consider the case of fairly high-energy incident
electrons (γ ≫ I=ωp) when the full value density effect
takes place. Calculating the integral with respect to q in
Eq. (22), we finally obtain

dϵ
dz

¼4πne4

mv2
N

�
ln
cq0
ωp

−
1

2
−
N
2
gðωp;dÞhe−ω2

k1l
2=v2i

�
; ð38Þ

where

gðωp;dÞ¼eω
2
pd2=c2ð1þω2

pd2=c2ÞEið−ω2
pd2=c2Þþ1 ð39Þ

and Ei is the integral exponent function. The function
−gðωp; dÞ monotonically decreases with the increase of d.
Namely, for x ≫ 1 we have Eið−xÞ ≈ e−xð−x−1 þ x−2−
2x−3Þ, which leads to −gðωp; dÞ ≈ ðc=ωpdÞ4 for
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d ≫ c=ωp. Note that, in order to obtain the expression for
dϵ=dz in the general case of arbitrary γ (provided γ ≫ 1), it
is necessary to make the substitution ωp=c → Ωk1 in
Eq. (39) and move function g under angle brackets. The
substitution ωp=c → Ω̄ in the first term in Eq. (38) is
required in this case as well.
By analogy with the mean ionization potential (11), it is

presently possible to introduce some effective mean ion-
ization potential ω̄ defined as

e−ω̄
2l2=v2 ¼ he−ω2

k1l
2=v2i ð40Þ

or, explicitly,

ω̄ ¼ v
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ln

�
2m
ℏ

X
k

ωk1jxk1j2e−ω2
k1l

2=v2
�s
: ð41Þ

If we substitute (40) in (38), the latter expression will
acquire the same form as the analogous expression for
Gaussian bunch ionization loss in an ultrathin solid target
obtained in Ref. [6] with the use of a simplified classical
approach. The main difference between these expressions,
which emphasizes the main advantage of our present
consideration, concerns the quantity ω̄. Namely, in
Ref. [6], for each atomic shell ω̄ was chosen equal to
the mean ionization potential of this shell (e.g., for silicon
targets, such potentials for K, L, and M shells were taken
from Ref. [19]). The present consideration provides a
principal possibility to calculate these quantities on the
basis of Eq. (41), at least approximately for most of the
substances (generally, Z ≠ 1 should be reestablished in this
formula). It is a rather important advance, since, as further
shown (see Fig. 3), ensemble ionization loss can be very
sensitive to the value of ω̄. It is worth noting that
formula (41) indicates that ω̄ is not just a constant defined
by the physical properties of the medium but depends on
the longitudinal dimension l of the ensemble and the
explicit functional dependence of its form factor Fk. In
the absence of the density effect (or under the condition of
its partial manifestation at not very large γ), the quantity ω̄
is defined by the ensemble dimensions in both transversal
and longitudinal directions and the corresponding form
factors Fk and F⊥.
Figure 1 shows the dependence of ω̄ on the ensemble

length lf (FWHM in the longitudinal direction) calculated
on the basis of Eq. (41), where we put v ¼ c. The
calculation is performed for atomic hydrogen with the
use of Eqs. (32)–(35). The figure demonstrates a noticeable
change of ω̄ in the region of lf which corresponds to the
most considerable manifestation of coherent effects in
ionization loss. Such a region can be defined by the
condition l < l0 ∼ v=ω21. At l ∼ l0, according to
Eq. (37), the form factor Fk corresponding to the smallest
excitation energy ℏω21 ≈ 10.2 eV becomes close to unity.

At smaller l, the same occurs for the rest of ωk1. Presently,
l0 ∼ 20 nm, which corresponds to lf ∼ 46 nm.
At l ≫ l0, the quantity ω̄ tends to the smallest excitation

energy ω21. The contributions from transitions to higher
levels of the discrete and continuous spectrum are sup-
pressed by the exponential factor in Eq. (41) in this case. In
the opposite extreme case of small l, it is possible to expand
the exponents in Eq. (41) and obtain the following relation:
ω̄ ¼ hω2

k1i1=2. It is valid under condition l ≪ v=ωmax,
where ωmax is the value of ωκ1 at some maximum κ which
still contributes to the integral with respect to the continu-
ous spectrum states in Eq. (41), or, more generally, in
Eq. (10). For the considered case of hydrogen atoms, it is
roughly κ ≲ 4=a0 which make the main contribution to this
integral. Thus, presently, ℏωmax can be set equal to ℏωκ1

with the value κ ¼ 4=a0 of the knocked out electron wave
vector in Eq. (33) and is around 230 eV.
Before calculating dϵ=dz, it is necessary to define the

applicability range of the applied approach under consid-
ered conditions. Presently, we will make estimations for the
parameters which can be realized at the Short Innovative
Bunches and Accelerators at DESY (SINBAD) facility
[20], presently under construction at Deutsches Elektronen-
Synchrotron (DESY). This particularly includes the elec-
tron energy of 100 MeV, df ¼ 0.75 μm beam spot size, and
1 pC total charge of a subfemtosecond bunch
(lf < 300 nm). Figure 2 demonstrates jc21j2 as a function
of lf in this case calculated on the basis of Eqs. (28) and
(29). We take ℏωp ≈ 0.19 eV, which is the plasma fre-
quency of atomic hydrogen at normal conditions (it is

ffiffiffi
2

p
times smaller than the corresponding frequency for molecu-
lar hydrogen). The calculation is made for R ¼ 0.5 μm, at
which jc21j2, as a function of R, reaches its maximum. Note
that we consider the case when the particle density n0 in the
center of the bunch is fixed. It corresponds to a total charge
of 1 pC at length lf ≈ 130 nm (0.43 fs), which is typical for
the discussed facility. The change of the bunch length
occurs due to the change of the number of particles N.

FIG. 1. Dependence of ω̄ on the ensemble longitudinal dimen-
sion lf in hydrogen (here, to be short, ℏ ¼ 1).
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Here, we see that in the considered case condition (23) is
satisfied rather well in the regions lf ≳ 80 nm and
lf ≲ 15 nm. The present approach is applicable here for
the calculation of ensemble ionization loss.
The dependence of ensemble ionization loss per unit

particle on lf in the region of lf ≳ 80 nm is presented in
Fig. 3 (thick green line). The dimensionless quantity on the
vertical axis is defined as dE=dz ¼ mv2=ð4πne4Þdϵ=dz.
The value of q0 in Eq. (38) is usually determined by
experimental conditions. For estimations, it is natural to
apply the value q0 ∼ 108 cm−1 [10]. In this case, the
minimal considered distance between the incident particle
and the atom ρ0 ∼ 1=q0 is on the order of a0. The dashed
line in the figure shows the ionization loss value in the
absence of coherent effects, defined by the first two terms
in Eq. (38) corresponding to the Bethe-Bloch result. Here,
we see that for lf < 170 nm coherent effects are manifested
in ionization loss for the considered type of particle
distribution in the ensemble. With the decrease of lf, these

effects become considerable and result in a dramatic
increase of the dϵ=dz value by several orders of magnitude.
For the bunch length typical for the SINBAD facility,
marked by the vertical line in the figure, the coherent
enhancement factor of the ionization loss is still very large
(about 47). By this factor, we mean the ratio of dϵ=dz with
and without taking into account coherent effects.
For comparison, we also present the result of calculation

on the basis of Eq. (38) with ω̄ being equal to the mean
ionization potential I ≈ 15 eV (thin red line). As noted,
such a result corresponds to the simplified approach applied
in Ref. [6]. We see that in the considered range of lf, where
the explicit form of Fk is decisive, the difference between
the predictions of the simplified and more accurate
approaches in the present case is considerable. The results
of these approaches coincide in the region lf ≲ lmax ¼ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
v=I. Here, dϵ=dz reaches its maximum value at lf ∼

lmax ≈ 30 nm (strictly speaking, the neighborhood of this
maximum is not accurately described by the present
approach, according to Fig. 2). With a further decrease
of lf, the coherent part of dϵ=dz quickly vanishes. It is
caused by the decrease of the number of particles in the
ensemble (at constant n0) with the decrease of lf.
Figure 3 indicates a fast decrease of the coherent part of

the ionization loss with the increase of lf at lf > lmax. Such
a decrease can be much slower if the longitudinal particle
distribution fk in the ensemble differs from the Gaussian
one. Consider, for instance, the simplest case of this
kind, which corresponds to homogeneous distribution
fk ¼ const. The corresponding transversal distribution
f⊥ we will still assume to be Gaussian. In this case, the
calculation of dϵ=dz can be performed with the use of
Eq. (38), in which the longitudinal form factor is sub-
stituted by Fk ¼ 4v2 sin2ðωk1l=2vÞ=ω2

k1l
2, where l is the

bunch length. Particularly, the coherent enhancement factor
at l ≈ 130 nm is presently about 4800, which is 100 times
larger than in the case of the Gaussian fk. The value of
jc21j2 þ jc31j2 for this l is presently around 0.084, which
validates the application of perturbation theory in this case
as well. The necessity of taking into account both c21 and
c31 in the applicability condition in the present case has
been discussed above after Eq. (23).
Let us finally note that in the considered case the applied

assumption of the presence of the full value density effect
(strictly valid at γ ≫ I=ωp) is somewhat approximate, since
I=ωp ≈ 80, while γ ≈ 200. Nevertheless, a more accurate
calculation on the basis of Eqs. (17) and (19) leads to the
result, which is almost undistinguishable from the one
presented in Fig. 3.

B. Ensemble with a periodically modulated particle
density. Resonance effect

X-ray and ultraviolet free-electron lasers (FELs) are
facilities which allow obtaining high-energy electron

FIG. 2. Dependence of jc21j2 on lf for an ensemble with
Gaussian particle distribution in hydrogen for df ¼ 0.75 μm,
n0 ¼ 6 × 1019 cm−3, and γ ≫ I=ωp.

FIG. 3. Dependence of the ensemble ionization loss on lf in
hydrogen for df ¼ 0.75 μm, n0 ¼ 6 × 1019 cm−3 and Gaussian
particle distribution (thick green line). Thin red line, calculation
for ω̄ ¼ I; dashed line, no coherent effects; the dotted line marks
the length lf ≈ 130 nm (0.43 fs).
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ensembles of an extremely small size. This is achieved via
the phenomenon of microbunching of the initial incident
electron bunch when it moves in the undulator section of a
FEL. In this case, the initial bunch breaks up into a train of
short microbunches, whose length is equal to the emitted
coherent radiation wavelength. In Ref. [6], it was shown
(with the use of a simplified classical approach) that in the
case where such an ensemble interacts with matter, gen-
erally, the ionization losses of its separate microbunches
may not be independent. Interference between the contri-
butions of these microbunches to the total energy trans-
mitted to an atomic electron may result in the resonant
amplification of this energy for certain values of the
microbunching period. In the present subsection, we study
this effect with the use of the more accurate approach
developed in the present work and make numerical esti-
mations for the case of a hydrogen medium.
As a model of a microbunched incident beam,

we consider an electron ensemble with the density peri-
odically modulated in the longitudinal direction fk ¼
½1 − cosð2πz=lÞ�=ðslÞ. It is, certainly, a somewhat idealized
model of the real electron density which can be achieved at
a FEL. Presently, l is the microbunching period, and s is the
total number of microbunches in the ensemble. By L ¼ sl
we denote the total length of the ensemble. In this case, the
longitudinal form factor reads

Fkðωk1Þ ¼
�

2v
ωk1L

�
2
�

4π2=l2

ω2
k1=v

2 − 4π2=l2

�
2

sin2
�
ωk1L
2v

�
:

ð42Þ
We still assume that transversal particle distribution f⊥ is
Gaussian and the full value density effect takes place. The
ensemble ionization loss in this case can be calculated with
the use of Eq. (38), in which the longitudinal form factor is
substituted by Eq. (42). As before, the expression hFki
consists of the sum over the states of the discrete spectrum
and integration over the states of the continuous one:
hFki ¼ hFkidiscr þ hFkicont. If fk is periodically modulated,
the function Fk possesses sharp maxima, as, e.g., at ωk1 ¼
2πv=l in Eq. (42). In this case, the integral with respect to κ
in hFkicont can be analytically calculated. Indeed, with the
use of Eqs. (33) and (35), it can be explicitly written in the
form

hFkicont ¼
28

3

Z
∞

0

dxxRðxÞFkðωκ1Þ; ð43Þ

where x ¼ κa0, ωκ1 ¼ me4ðx2 þ 1Þ=2ℏ3, and

RðxÞ ¼ exp½−4arctgx=x�
ð1þ x2Þ4ð1 − exp½−2π=x�Þ : ð44Þ

For a fixed value of l, the main contribution to the integral
in Eq. (43) is made by the narrow region around the point

x ¼ x0 ¼ ½4πvℏ3=ðme4lÞ − 1�1=2, which corresponds to
ωκ1 ¼ 2πv=l. This allows one to extract all the factors
from the integral except the sine squared and the denom-
inator ðωk1=v − 2π=lÞ2, which are the constituent parts of
Fk. After calculation of the remaining integral, Eq. (43)
acquires the form

hFkicont ¼
27πℏ3v
3me4L

Rðx0Þ: ð45Þ

Note that this expression is valid if l < lb ¼ 4πvℏ3=ðme4Þ.
For v ≈ c, we have lb ≈ 91 nm. At l > lb, the contribution
of hFkicont to hFki is negligibly small. The value lb marks
the boundary between the regions of l in which resonance
effects take place for atomic excitation (transitions to the
discrete spectrum states) and ionization (transitions to the
continuous spectrum).
Numerical estimations of the microbunched ensemble

ionization loss will be made for the parameters, which can
be realized at the European x-ray FEL [21,22]. This
includes a multi-GeV electron energy (the condition γ ≫
I=ωp is nicely satisfied in this case, and the precise value of
the energy is not significant), the bunch length of
L ¼ 24 μm, and its total charge of 1 nC. However, we
will consider a much wider range of microbunching periods
l (corresponding rather to the operational range of ultra-
violet FELs) than the one typical for this FEL. This is due to
the fact that for hydrogen atoms, which we consider as an
example in our present study, the resonance effects are most
significant for l ¼ 2πv=ωk1, corresponding to the ultra-
violet range of the excitation and ionization frequencies
ωk1. Such effects “expand” to the soft x-ray region for
heavier substances with larger Z.
Figure 4 demonstrates the dependence of ensemble

ionization loss on the microbunching period l. Note that
for a fixed L the quantity l changes discretely, since the

FIG. 4. Dependence of the ensemble ionization loss on
the microbunching period l in hydrogen for df ¼ 40 μm,
L ¼ 24 μm, and γ ≫ I=ωp (solid line). Dashed line, no coherent
effects.
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number of microbunches s is an integer, and the presented
dependence is extrapolated to the continuous set of l.
Moreover, the figure shows the result which is averaged
with respect to a small variation δL of the length L.
Presently, δL=L ¼ 0.02. We see that in the region l > lb
there exists a series of resonances associated with the
frequencies ωk1 of the atomic electron transition to the
excited states of the discrete spectrum. The values of dϵ=dz
in these resonances considerably exceed the ensemble
ionization loss without taking into account the coherent
effects. The value of Fk in each resonance is 1=4. Thus, the
ratio of dϵ=dz values in the resonances is defined by the
ratio of the corresponding ωk1jxk1j2 values. However, this
statement is somewhat approximate due to some blurring of
the peaks as a result of averaging with respect to δL. Some
additional blurring may also occur due to the natural width
of the excited atomic levels, which we do not presently take
into account. Note that the maximum value of jc21j2, which
is reached at the position of the rightmost resonance
(l ≈ 122 nm), is about 0.054 and perturbation theory is
well applicable in the present case. The estimation of jc21j2
was made for R ¼ df=

ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
, where it has the maxi-

mum value.
In the region l < lb, ionization loss is merely defined by

the coherently enhanced contribution from the atomic
electron transitions to the continuous spectrum hFkicont.
The dependence of dϵ=dz on l in this region is presently
determined by the function x0ðlÞ in Eq. (45). Note that the
existence of a series of resonances (instead of a single
resonance for each atomic shell) in the region l > lb, as
well as the ionization loss behavior in the region l < lb,
defined by coherent effects in atomic ionization, are the
novel features of the present more accurate approach
compared to the simplified one applied in Ref. [6].

VI. CONCLUSIONS

In the present paper, ionization loss of ultrarelativistic
electron ensembles (bunches) is studied taking into account
coherent effects in this loss. Such effects originate from the
interference between the electric fields of the electrons and
can be manifested for a sufficiently small spatial size of the
ensembles. General expressions for the ionization loss in
this case are derived with the use of perturbation theory of
quantum mechanics. The conditions of applicability of
such an approach are thoroughly investigated. Compared to
the simplified classical consideration of this problem,
reported in Ref. [6], the present approach allows calculating
the key parameters defining the ionization loss value. This
particularly concerns the effective mean ionization poten-
tial of the atomic shell. It is shown that, in the case when
coherent effects are manifested, such a potential is defined
not just by the structure of the atomic levels, but by the
ensemble form factors as well. Numerical calculations are
performed for the simplest case which corresponds to the

ensemble motion in atomic hydrogen. It is shown that in
this case (like in the general case of light or rarefied gases
having small plasma frequency) coherent effects can be
manifested even under conditions of the full value density
effect in the ionization loss. It is demonstrated that, for the
ensemble parameters achievable at modern accelerator
facilities, coherent effects can lead to an ionization loss
increase by several orders of magnitude compared to the
result predicted by the Bethe-Bloch formula. Ensembles
with different types of longitudinal particle density dis-
tribution are considered. It is shown that, in the case of a
bunch with a periodical modulation of its density (which is
a model of the bunches obtained at free-electron lasers),
resonance effects in ionization loss can take place. The fact
that coherent effects make the ionization loss depend on the
bunch dimensions and shape provides a principle possibil-
ity to apply them (like analogous effects in radiation) for
problems of diagnostics of charged particle beams.
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