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Multiobjective genetic algorithms (MOGAs) have proven to be powerful in solving multiobjective
problems in the accelerator field. Nevertheless, for explorative problems that have many variables and local
optima, the performance of MOGAs is not always satisfactory, especially when a small population size is
used due to practical limitations, e.g., limited computing resources. To deal with this challenge, in this
paper an enhanced MOGA, neural network-based MOGA (NBMOGA), is proposed. In this method, the
data produced with the standard MOGA are used to train a neural network. The neural network is fast to
produce a large pool of objective function estimates, with sufficiently high accuracy. A subset of the most
competitive estimates is selected to form a population (matching MOGA population size), which is then
evaluated with the MOGA evaluator. By taking three classic multiobjective problems as examples, we
demonstrate that the proposed method promises a faster convergence and a higher degree of diversity than
that available with the standard MOGA and other three optimization methods that have been applied in the
accelerator field, i.e., the multiobjective particle swarm optimization (MOPSO), the combination of
MOPSO and MOGA, and the clustering enhanced MOGA. And then this method is applied to a time-
consuming optimization problem, the dynamic aperture and Touschek lifetime optimization of the high
energy photon source. It turns out that, within the same optimization time, a better set of solutions in the
objective space can be obtained with the NBMOGA than using other methods. The Touschek lifetime can
be improved by about 10% compared with using the standard MOGA, with approximately the same
dynamic aperture area. Besides, a higher degree of diversity among solutions is observed with the
NBMOGA than using other tested methods.
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I. INTRODUCTION

Multiobjective genetic algorithms (MOGAs) [1] have
proven to be powerful in exploring optimal solutions of
multiobjective problems in many research areas [2–9].
They are widely used in the accelerator field, especially
for global optimization of particle accelerator lattices,
including optimizations of linear optics and nonlinear
dynamics [2–6]. For an optimization problem with V input
variables, referred to as genes and denoted with xv
(v ¼ 1; 2;…; V), and M performance parameters to be
optimized, referred to as objectives and denoted with ym

(m ¼ 1; 2;…;M), the goal of a MOGA is to optimize the
values of objectives, so as to explore optimal combinations
of variables in their parameter space.
Taking a typical MOGA, the nondominated sorting

genetic algorithm II (NSGA-II) [10], as an example, its
procedure can be described as follows. (i) An initial
population consisting of N random seeds is generated,
where N is the population size. One seed (sometimes
referred to as an individual) Xn ¼ ½xn;1; xn;2;…; xn;V �
(n ¼ 1; 2;…; N) denotes a set of variable values.
(ii) These seeds are evaluated via an evaluator (a numerical
simulation code, or an experiment), to calculate the
corresponding objective values denoted with Yn ¼
½yn;1; yn;2;…; yn;M� (n ¼ 1; 2;…; N). (iii) Then the evalu-
ated seeds are sorted with the nondominated sorting
method (for more details of this method, we recommend
Ref. [11]). The nondominated individuals are assigned a
rank of 1, and the rest of the solutions are assigned ranks
according to their domination levels. (iv) The seeds with
better objective performance are weighted to increase the
probability of being selected to generate offspring by
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crossover and mutation. (v) The offspring individuals are
then evaluated and combined with parent individuals, from
which N individuals with better objective performance
are selected to form a new generation. (vi) Repeat steps
(ii)–(v) until the criterion of convergence is met or the
maximum of iterations is reached.
It has been noted that the optimization performance of

MOGAs depends highly on the distribution of the initial
population. Experiences (e.g., [6,12]) indicate that, if the
initial population is not generated with enough diversity,
the algorithm may converge to local optima rather than
global optima, especially when a MOGA is applied to a
complicated problem with many variables and many local
optima. To overcome this problem, the most direct way is to
use a large size of initial population, so as to ensure enough
diversity. This, however, implies a requirement of a long
computing time and/or many computing resources. In
an actual scenario, the computing resources are usually
limited, and one always wants to obtain solutions in as
short a time as possible. Thus, the problem becomes, with
limited computing resources, how to achieve better opti-
mization performance, e.g., faster convergence and/or more
diversity, in a specific time.
In the past few years, many measures have been

proposed to enhance the MOGA optimization performance.
For instance, multiobjective particle swarm optimization
(MOPSO) [13] was proven to be able to promise faster
convergence than MOGA in ring lattice optimization [6].
And, a combination of MOGA and MOPSO has more
potential of avoiding local optima than using the MOGA
or MOPSO alone [12]. Moreover, accelerator scientists
are now exploring different machine learning enhanced
MOGAs [14–18]. The basic consideration is that the
dataset fXn; Yng continuously produced and accumulated
by the MOGA can be used as the training data of machine
learning, so as to reveal some hidden properties of the data
which, in turn, helps to speed up the convergence and/or
increase the diversity among solutions.
One approach is to combine MOGAwith data clustering

(e.g., [14,15]), namely, using K-means clustering for each
generation to find the “elite” variable range covered by the
individuals that have high objective performance. The new
competitive offspring individuals are then generated within
the elite variable range and used to replace the original data
in the population, which can result in faster convergence.
Another approach is to use the data from MOGA to train a
machine learning surrogate model (e.g., [16,17]), which
can predict the objective values in fractions of a second,
much faster than the actual evaluator. To take advantage of
such a surrogate model, one can use it to replace the actual
MOGA evaluator as in Ref. [16]. Such an approach can
greatly reduce the optimization time. However, one prob-
lem is that there is an inevitable error between the
prediction of the surrogate model and the result of the
actual evaluator. It is empirically found that, for some

problems with advancing steps of the objectives for each
generation similar to or even smaller than the prediction
error, the individuals with actually better objective perfor-
mance may be underestimated to have worse objective
values and accordingly assigned a lower probability of
being selected to form the new generation. In the worst
scenario, the prediction error may cause the algorithm to
suggest a different optimizing direction from what it
actually would be.
Actually, the problem can be avoided. As shown in

Ref. [18], for each generation of a MOGA, a Gaussian
process regression-based model was constructed and
used to predict the objective values of a large pool of
candidate individuals (≫N). Then N individuals with high
probability of producing better objective values were
selected and evaluated with the actual evaluator. It has
been demonstrated that this approach promises much faster
convergence than the standard MOGA. Nevertheless, due
to the fact that Gaussian process regression has a time
complexity of Oðn3Þ [19], this approach is especially
suitable for problems when the dataset is not very large.
In the case of using a large dataset, the training time for
Gaussian process regression will be significantly increased.
To avoid the training time being too long, one could use
part of (instead of all) the obtained samples, e.g., by setting
an upper limit for the number of the training data samples,
to build the Gaussian process model.
In the presented study, we adopt a similar approach to

that in Ref. [18], while replacing the Gaussian process
regression-based model with a neural network-based model
and using the data of the first few generations of MOGA for
training. For simplicity, hereafter this approach is referred
to as neural network-based MOGA (NBMOGA). Since the
training time for neural network increases only linearly
with the number of samples, it is thought the NBMOGA
allows for greater flexibility and adaptability.
To demonstrate the effectiveness of NBMOGA, taking

three classic optimization problems as test problems,
the convergence rate and diversity available with the
NBMOGA, the standard MOGA, and three other multi-
objective optimization methods that have been proposed
and used in the accelerator field, i.e., the MOPSO, the
combination of MOPSO and MOGA, and the clustering
enhanced MOGA (CEMOGA) [15], are quantitatively
compared in Sec. II. The impact of population size on
optimization performance is especially investigated. The
results suggest that, with the NBMOGA, the available
minimum population size can be greatly reduced, while
ensuring a fast convergence rate and high degree of
diversity. In addition, we trace the origin of each individual
in a generation to reveal how NBMOGA improves the
diversity. Then in Sec. III, the NBMOGA is applied to
the Touschek lifetime and dynamic aperture optimization of
the high energy photon source (HEPS). In this optimiza-
tion, it is very time consuming for evaluating the objective
values of individuals, and the population size cannot be
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set to a large value due to the limited computing resources.
The results indicate that the NBMOGA results in a better
set of solutions having higher objective performance and a
more continuous nondominated front in the objective space
than using the other four methods. Within almost the same
optimizing time as the standard MOGA, the NBMOGA
allows a further improvement of the Touschek lifetime by
about 10%, with almost the same dynamic aperture area.

II. METHOD

A. Neural network

Thanks to the astonishing development of computing
devices, the neural network, one of the classic machine
learning algorithms that has existed for more than 70 years,
has gotten a second wind in the age of the 21st century.
In recent years, the developments of supervised learning
and reinforcement learning are remarkable in the areas of
pattern recognition and automatic control, signaling that
the machine learning field moves a step toward the
expected general artificial intelligence. Neural networks
play a central role in these developments, as almost all of
those inspiring achievements are based on deep neural
networks. Neural networks are becoming the most popular
machine learning algorithms.
The neural network is a relevant method for the purpose of

this paper, and we briefly describe it here. For further
reading, we recommend Lippmann [20], Widrow and Lehr
[21], and Girosi and Poggio [22]. A schematic of a typical
fully connected neural network is shown in Fig. 1. It contains
at least three layers: the input layer, the hidden layer, and the
output layer. In either of the hidden and output layers, there
is at least one node called a neuron, which represents a
nonlinear algebraic function called an activation function.
The input data are fed to the hidden layer from the input layer
and then processed by the activation functions. The compu-
tation results are then weighted and summed as the inputs of
the next layer, as described in Eq. (1):

Oj;k ¼ fA

�XNk−1

i¼1

Wi;k−1Oi;k−1 þ bi;k−1
�
; ð1Þ

where fA is the activation function; Oi;k, Wi;k, and bi;k
are the output, weight, and bias of the ith neuron in the kth
layer, respectively; and Nk is the number of neurons in the
kth layer.
This process is repeated until the output layer is reached.

Backpropagation learning [23] is usually used to adjust the
weights and biases in each neuron to train the network to
fully model the mapping between the inputs and outputs.

B. Neural network-based MOGA

With the NBMOGA, the processing for the first few
generations follows a standard MOGA, i.e., NSGA-II in
this study. As the data pool becomes large enough, e.g.,
the number of samples becomes larger than 100V (V is the
number of variables), a neural network is trained with
the data produced in the evolution of the MOGA. The
optimized variables xv (v ¼ 1; 2;…; V) and objectives ym
(m ¼ 1; 2;…;M) in the optimization, where M is the
number of the optimized objectives, are treated as inputs
and outputs of the network, respectively.
In the later optimization, the number of generated

offspring in each generation is increased to K times that
of a standard MOGA. Specifically, when the population
size is N, K × N offspring will be generated by crossover
and mutation. The objective values of the offspring are
estimated with the trained neural network in fractions of a
second. Based on the estimated results, those offspring are
ranked with the nondominated sorting method. To alleviate
the influence of the prediction error on the ranking of the
offspring, 1.1 × N top-ranked individuals are first retained,
from which N solutions are randomly selected and used as
the evolutionary candidates. With their objective perfor-
mance evaluated on the actual evaluator, theseN candidates
are then combined with their parent individuals and ranked
with the nondominated sorting method again. The N top-
ranked solutions are selected from the combination to form
a new generation. In addition, the prediction accuracy of the
neural network is also validated in each generation, with the
newly evaluated solutions as validation data.
To summarize the NBMOGA processing, let us denote

the initial population as P0; the parents and children in the
tth generation asPt andQt; the combination ofPt andQt as
Rt; the generation index when the neural network training
starts as ta; and themaximumnumber of generations as tmax.
The constructed neural network is calledNN for short. The
main loop of the NBMOGA can be described as follows:
initialize t ← 0, P0

while t < tmax
if t < ta
Perform standard NSGA-II to generate Pt þ 1.

else if t ¼ ta
Perform standard NSGA-II to generate Pt þ 1.
Construct a neural network NN .
Train NN with the data produced from the first to
the tath generations.

FIG. 1. A schematic of a typical fully connected neural
network.
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Validate accuracy of NN with the new data in
Pt þ 1 as testing data.

else if t > ta
Generate K × N offspring from Pt by mutation and
crossover.
Estimate performance of the K × N offspring
with NN .
Rank these offspring with the nondominated sorting
method.
Randomly select N solutions denoted as Qt from
the 1.1 × N top-ranked solutions.
Evaluate solutions in Qt on the actual evaluator.
Combine Pt and Qt as Rt.
Rank Rt according to the actual performance with
the nondominated sorting method.
Select N top-ranked solutions in Rt as Pt þ 1.
Validate accuracy of NN with the new data in Qt
as testing data.

end if
t ¼ tþ 1.

end while

C. Optimizations of three test problems

To investigate the performance of NBMOGA, we use three
classic multiobjective problems as test problems, the so-
called ZDT1, ZDT2, and ZDT6 referenced in Ref. [24], with
10, 30, and 10 input variables, respectively. Details of their
definitions are described in the Appendix A. All the test
problems have known optimal solution sets, the so-called
Pareto front, which helps to quantify the performance of
optimization algorithms. In addition to the NBMOGA and
the standard MOGA, three other evolutionary algorithms
showing faster convergence than MOGA in accelerator opti-
mizations, i.e., the MOPSO, the combination of MOGA
and MOPSO, and the CEMOGA, are also tested for further

comparison. For fair comparison, the optimizations with
different algorithms are seeded with the same initial
population.
For the NBMOGA, the parameter ta, i.e., the index of the

generation when training starts, is set to 10, and a simple
neural network that has only one hidden layer with 32
hidden neurons is adopted to build the surrogate model. It is
worth mentioning here that, although it is enough to use
such a simple network to demonstrate the effectiveness of
NBMOGA, even better optimization performance can be
achieved if using a more complicated network. The cases
with parameter K of 5 and 15 are both tested. For the
CEMOGA, the ratio of the individual replacement is set to
be the same as in Ref. [15], 20%. For the MOPSO, the same
parameter settings as in Ref. [6] are adopted, with the
velocity weight factor w in Eq. (2) being set to 0.4 and the
acceleration coefficients of group best experience (gbest)
and personal experience (pbest), i.e., c1 and c2 in Eq. (2),
being set to 1. It is worth mentioning that, different from
typical parameter settings of MOPSO, the two random
coefficients, i.e., r1 and r2 in Eq. (2), are fixed to 1. To
test the performance of the combination of MOGA and
MOPSO, the solutions of the 20th generation of the
MOPSO evolution is used as the initial population of a
further optimization with the standard MOGA. In addition,
considering that the population size is an important control
parameter, all the test problems are optimized with different
population sizes, from 50 to 1000, to study how population
size affects the optimization performance.

vtþ1
t ¼ wvti þ c1r1ðpt

i − xtiÞ þ c1r1ðgi − xtiÞ: ð2Þ

The convergence rate and the diversity among solutions
are treated as two performance parameters of optimization.
To quantitatively measure the degree of convergence, the

FIG. 2. Comparison of the convergence rate versus population size for the three test problems. The figures from left to right represent
ZDT1, ZDT2, and ZDT6, respectively. The X axis indicates the population size, and the Y axis is the generation index when the
population first reaches to the Pareto front. The “failed” on the Y axis indicates the failure of reaching the Pareto front after 500
generations of optimization. The black, purple, green, blue, red, and yellow points represent the results obtained with the standard
MOGA, MOPSO, combination of MOPSO and MOGA, CEMOGA, NBMOGA (K ¼ 5), and NBMOGA (K ¼ 15), respectively.
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convergence metric γ proposed in Ref. [10] (with its
definition presented in Appendix B) is used, which mea-
sures the average distance of the obtained nondominated
solutions and the Pareto front. The smaller the γ is, the
closer the obtained solutions are to the Pareto front. For all
test problems, the criterion marking successful convergence
to the Pareto front is set to γ < 0.05, which can guarantee
that almost all obtained solutions are located on the Pareto
front. The index of the first generation to meet this criterion
is used to characterize the convergence rate.
The required minimum numbers of generations to meet

the Pareto front for different methods are shown in Fig. 2.
In addition, to better compare the convergence rates of
different methods, the evolutions of γ for a few cases are
illustrated in Fig. 3.

For the presented optimization methods, the convergence
rate roughly improves with the population size. Once
the population size is large enough, e.g., N ≥ 10V for
the standard MOGA, the minimum number of generations
to reach the Pareto front stabilizes. In such a case, if the
population size continues to increase, the gain in the
convergence rate may be inconsequential compared with
the extra required computing resources or evaluation time.
For all three problems, with the same population size, the
NBMOGA with K ¼ 5 requires a smaller number of
generations to reach the Pareto front than the standard
MOGA and CEMOGA, while it needs more generations
than the MOPSO and combination of MOPSO and MOGA
in most cases. When K is increased to 15, the required
minimum number of generations to reach the Pareto front

FIG. 3. The evolutions of γ over generations for a few cases. For the combination of MOPSO and MOGA, the data of the first 20
generations are obtained from the MOPSO optimizations—i.e., the purple and green curves are the same in the first 20 generations—and
the data of the 21st to the last generations are obtained with the standard MOGA. In the cases of optimizing ZDT1 with population sizes
of 500 and 1000, the convergence is fast, and only the first 100 generations are illustrated for a clear comparison.
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for the NBMOGA becomes less than that of the MOPSO
and combination of MOPSO and MOGA. Namely, it is
feasible for the NBMOGAwith a large K (e.g., 15) to use a
smaller population size than the other four methods for a
similar convergence rate. Even in the cases with population
sizes as small as 50, the NBMOGA can speed up the
evolution smoothly and effectively.
The results also indicate that in very few cases, e.g.,

optimizing ZDT2 with a population size of 50, the MOPSO
fails to reach the Pareto front even after 500 generations of
evolution. Nevertheless, the results in Fig. 3 indicate that the
MOPSO does evolve fast in the early state of the optimi-
zation. The problem is that after a few tens of generations the
convergence may slow down or even stop while the Pareto
front is not reached yet. This phenomenon has been reported
(e.g., in Ref, [25]) and referred to as the “premature
convergence” problem. From Fig. 3, one can see that, by
combining the MOPSO and MOGA, the γ can be further
reduced in the case of the MOPSO optimization being
trapped in premature convergence. However, for many other
cases, the combination of MOPSO and MOGA does not
show faster convergence than using MOPSO alone. It may
be because the chosen generation to use the standard MOGA
(i.e., 20th generation) is not the best for these cases.
However, note that a smaller number of generations of

evolution does not definitely correspond to a shorter
optimization time, which is related to both the number
of generations and the running time for each generation.
Taking ZDT2 as an example, we calculate the average
running time for each generation for the presented methods,
with the results shown in Fig. 4. For this problem, the
NBMOGA requires a longer average time of up to 15
(K ¼ 5) and 40 s (K ¼ 15) for each generation, which is a
few times larger than that of the other four methods, due to
the training of the neural network surrogate model, the
prediction of the objective values, and the sorting of a large
number of candidates. Nevertheless, as will be shown in the
next section, for a more complex and practical problem,
more time will be taken for evaluating the objectives while
the time of training and prediction of the surrogate model
and sorting of the candidates will not grow as the complex-
ity of the problem increases. The running times for each
generation of the NBMOGA, the standard MOGA, the
MOPSO, and the combination of MOPSO and MOGA are
approximately equal, while the CEMOGA needs more
running time than the other four methods due to the
required evaluation of the additional solutions in each
generation. For such a problem, the NBMOGA, requiring
fewer generations with smaller population sizes and pro-
viding comparable or improved results, can potentially use
computer resources more efficiently.
Another parameter describing the optimization perfor-

mance is the diversity among the obtained nondominated
solutions. We use the diversity metric Δ proposed in
Ref. [10] to measure the degree of diversity (see the

definition in Appendix B). The larger the Δ is, the lower
the degree of diversity is.
A stable nondominated front is required to calculate

Δ. Based on observation, we empirically find that the
nondominated front usually stabilizes after dozens of
generations, and henceforth we start to calculate Δ. In
addition, it is found that the randomness in the evolution
of a MOGA sometimes heavily affects the diversity
among solutions. To reduce the influence of randomness
on Δ, the optimizations mentioned above are repeated
5 times. And, the average value of Δ, denoted as Δ̄, is used
to measure the performance of optimization algorithms in
terms of diversity.
Figure 5 presents the Δ̄ in the 100th and 300th

generations of optimizing ZDT1 and the 300th and
500th generations of optimizing ZDT2 and ZDT6. Such
two generations can represent the cases when the popula-
tion is close to the Pareto front and at the Pareto front,
respectively. With the NBMOGA, a higher degree of
diversity than that of the other four methods is observed,
especially for the cases with as a low population size as 50.
For the CEMOGA, the resulting diversity is similar to, and
sometimes lower than, that of the standard MOGA. This is
probably because the replacement of original data with the
individuals repopulated in a reduced variable range may
decrease the diversity [15]. For the combination of the
MOPSO and MOGA, the obtained diversity is slightly
higher than that with MOPSO in most cases of optimizing
ZDT2 but becomes lower than that of MOPSO when
optimizing ZDT1 and ZDT6. It may be because the chosen
generation to use the standard MOGA is not the best for the
two problems. Figure 6 shows the obtained solutions of the
cases with a population size of 50. The nondominated front
obtained with the NBMOGA is more continuous in the
objective space than that of other methods, especially at a

FIG. 4. The average running time for each generation of
optimizing ZDT2 with different optimization methods and differ-
ent population sizes. The average time is defined as the total
optimizing time divided by the number of generations.
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FIG. 5. Variations of the average diversity metric Δ̄ with the population size, where Δ̄ represents the average of Δ for five repeated
optimizations.

FIG. 6. The obtained solutions of the cases with a population size of 50. The rows from top to bottom represent the results of ZDT1
(100th generation), ZDT2 (300th generation), and ZDT6 (300th generation), respectively. The columns from left to right represent the
results obtained with the standard MOGA, MOPSO, combination of MOPSO and MOGA, CEMOGA, NBMOGA (K ¼ 5), and
NBMOGA (K ¼ 15), respectively.
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low population size, corresponding to a higher degree of
diversity.
In a further step, we try to investigate why and how

NBMOGA improves the diversity. As we know, for the
standard MOGA, the diversity is mainly fed by mutations
in each generation of evolution. However, due to the
random nature of mutation operation, the mutation indi-
viduals are more likely to have a lower objective perfor-
mance than those generated from crossover or even copies
of parents. A high probability of mutation could decrease
the convergence rate [26]. Therefore, the nominal value of
the mutation probability for a standard MOGA is usually
set to a small number, e.g., 0.1. In contrast, thanks to the
quick prediction of objective values with the surrogate
model, it is feasible for the NBMOGA to generate a larger
group of offspring (with the same probability of mutation),
from which one can select more competitive candidates
generated from mutation. To verify this understanding,
taking ZDT2 as an example, we count the ratios of the
individuals generated from crossover, mutation, and copies
of parents in the 11th generation (the training of the neural
network starts at the 10th generation), with different K
parameters. The case with K ¼ 1 can be regarded as the
standardMOGA. One can clearly see that in Fig. 7, as theK
parameter increases, the ratio of the mutants relative to the
population size increases, from just a few percent to about
20%, providing a higher degree of diversity among
solutions.

III. OPTIMIZATION OF NONLINEAR BEAM
DYNAMICS OF THE HEPS

The HEPS is a 6-GeV, 1.3-km, ultralow-emittance
storage ring light source being built in Beijing, China

[27]. The lattice of the HEPS storage ring has been
iteratively evolved and optimized for more than 10 years
[28]. Currently, the storage ring lattice consists of 48 hybrid
seven bend achromats (7BAs), which are grouped in
24 periods [29]. To explore the ultimate potential of the
lattice, a global parameter scan of the lattice with stochastic
algorithms has been extensively used to simultaneously
optimize the linear and nonlinear beam dynamics [30],
aiming to find an optimal balance between the available
maximum brightness (or minimum emittance) and the
largest possible dynamic aperture (DA).
There is another important performance parameter

of the nonlinear beam dynamics of a ring light source,
the Touschek lifetime (TL), which dominates the electron
beam lifetime in a high brightness and low emittance
light source [31]. Note that the combination of multipole
strengths (i.e., strengths of sextupoles and octupoles)
resulting in a large DA does not always correspond to a
high TL. Thus, after the lattice linear parameters were fixed
based on the brightness and DA optimization, optimization
of the TL is necessary and has been performed for HEPS.
In this optimization, the goal is to simultaneously obtain

a large DA with a long TL. Both of them are computed
with the particle tracking simulation code Accelerator
Toolbox (AT) [32]. Among 16 families of multipoles,
except two families of sextupoles used for chromaticity
correction, the strengths of the other 14 families of multi-
poles are used as optimizing variables and varied within
specific ranges determined by practical limits (see the
ranges in Table I). Two optimization objectives are con-
structed based on the values of the DA area and TL, which
are denoted as f1 and f2, respectively:

f1 ¼ − DAx × DAyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βx½m�βy½m�p MA

0.03

Y
wi; ð3Þ

f2 ¼ −τYwi; ð4Þ

where DAx and DAy are the horizontal and vertical DA
size, respectively; βx and βy are the values of the horizontal
and vertical beta functions, respectively, at the location
where a particle is launched for DA tracking; MA is the

FIG. 7. The origins of individuals in the 11th generation of
optimizing ZDT2 with the NBMOGA. The K parameter in the X
axis represents different numbers of offspring generated with the
NBMOGA. The blue, red, and black markers represent individ-
uals originated from mutation, crossover, and copies of parents
based on the solutions of the 10th generation, respectively.

TABLE I. Variable ranges of the DA and TL optimization.

Variables Scanning range

Strengths of sextupoles (KSD1, KSD5) ½ − 126; 0� m−2
Strengths of sextupoles (KSD2, KSD3,
KSD4, KSD6, KSD7)

½ − 192; 0� m−2

Strengths of sextupoles
(KSF1, KSF2, KSF3)

½0; 192� m−2

Strengths of octupoles (KOCT1,
KOCT2, KOCT3, KOCT4)

½ − 5592; 5592� m−3
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effective momentum acceptance [33] at the middle of the
long straight section that is evaluated taking into account
the limitation of dangerous low order resonances [34]; the
weight wi measures the degree of the solutions satisfying
the ith constraint; and τ is the Touschek lifetime, which is
determined by the local momentum acceptance, namely,
the momentum acceptance of different locations along the
ring. The constraints include limitations on the fractional
part of tune, the maximum or minimum value of the beta
function, the momentum compaction factor, the energy
loss per turn, and the longitudinal damping partition
number. Note that the objectives are assigned negative
values, because the optimization is implemented for
minimization.
This problem is optimized with the standard MOGA,

MOPSO, combination of MOPSO andMOGA, CEMOGA,
and NBMOGA, by adopting the same initial population
that is generated by introducing random fluctuations on one
initial solution, i.e., the lattice obtained from the brightness
and DA optimization. The layout and optical functions of
one period of the lattice corresponding to the initial solution
are shown in Fig. 8. For the NBMOGA, after the tenth
generation, a neural network is constructed to model the
most time-consuming objective, the TL. A Python deep
learning library, Keras [35], is used to train the network.
After tests of different neural network structures, a neural
network showing the highest prediction accuracy is
adopted. It consists of three hidden layers with 64, 32,
and 64 neurons in each hidden layer. As shown in Fig. 9,
the coefficient of determination, R2, is 0.9893 for this
neural network, representing high prediction accuracy. The
time taken for predicting the objectives of one individual
with the trained model is about 0.04 s, which is 5 orders of
magnitude shorter than that of particle tracking. For the
other four methods, the control parameter settings are the
same as that used in Sec. II.
One significant feature of this optimization problem is

that it is very time consuming. To evaluate the linear

parameters and the DA of a lattice, it will take less than one
second and a few minutes, respectively. In contrast, it will
take a few hours (3 h for the HEPS) to evaluate the TL for
one set of multipole strengths, since it is necessary to
calculate the momentum acceptances of many positions
rather than that of only one specific location. For this
problem, the available computing device is a parallel cluster
equipped with 512 Intel® Xeon® 2.3 GHz CPU cores that
allows us to compute the f1 and f2 for at most 512 sets of
multipole strengths at the same time. As a compromise
between better optimization performance and faster opti-
mization, a population size of 500 is chosen for this
optimization. In this way, the running time for evaluating
each generation is approximately the same as the time taken
for evaluating a single individual. In each generation, the
time for training the neural network and for predicting the
objective values of offspring is about 10 s, which is much
less than the running time for each generation and can be

FIG. 8. Layout and optical functions of a period with two 7BAs in the lattice of the HEPS.

FIG. 9. Comparison of the Touschek lifetimes of 100 testing
samples predicted by neural network (red) and particle tracking
(blue). The coefficient of determination, R2, is 0.9893.
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ignored. Therefore, the running time required for a gen-
eration of evolution with the standard MOGA, MOPSO,
combination of MOPSO and MOGA, and NBMOGA is
considered to be the same. However, for the CEMOGA, it
is necessary to evaluate some extra “elite solutions” when
the MOGA offspring are evaluated. In each generation, the
CEMOGA program will successively call the parallel
program twice to evaluate the MOGA offspring and the
elite solutions, respectively, which doubles the evaluation
time for this problem.
The evolutions of population over 100 generations

(∼600 h for the CEMOGA and ∼300 h for the other four
methods) are illustrated in Fig. 10, and the nondominated
solutions obtained in the 100th generation are shown in
Fig. 11. To better compare the solutions of different
methods, here we combine the final solutions of all
methods and sort them with the nondominated sorting
method. Then a “best front,” representing the nondomi-
nated ones among the combined solutions, is defined and
shown in Fig. 11. The comparison of the nondominated
front shows that the NBMOGA results in a better non-
dominated front with higher objective performance
and more continuous distribution in the objective space
than using other four methods. For the standard MOGA,
even after completing 50 additional generations, the
nondominated front found by the standard MOGA is
still inferior to that of the NBMOGA. In addition, the
distribution of the MOGA solutions becomes more dis-
crete in the objective space, implying a lower degree of
the diversity. For the MOPSO, a fast evolution is
observed during the 30th–60th generations in Fig. 10.

The evolution, however, slows down in the subsequent
generations, and many solutions with larger DA are
phased out. By combining MOPSO and MOGA, a wider
and more continuous nondominated front can be
observed than using MOPSO alone. For the CEMOGA,
the obtained nondominated front is close to the best front,
but the nondominated front is still discrete, especially for
the solutions having large DA.
For this problem, the Pareto front is actually unknown,

so the convergence criterion defined in the last section
is not applicable to this case. However, to quantitatively
compare the convergence rates between the standard
MOGA and the NBMOGA, we define a γ� similar to
the convergence metric γ (see the definition in
Appendix B). Different from γ, γ� measures the average
distance between the obtained nondominated solutions
and the best front shown in Fig. 11. As shown in Fig. 12,
with the NBMOGA, the γ� evolves faster over gener-
ations than that with the standard MOGA, MOPSO,
and combination of MOPSO and MOGA. For the
CEMOGA, the dropping speed of γ� is similar to
(and a bit slower at the final stage than) that of the
NBMOGA. However, note that the running time of
CEMOGA is twice longer than that of the other four
methods for this problem. The convergence rate of
NBMOGA in terms of time is actually much faster than
that of CEMOGA.
From Fig. 11, if keeping the DA area approximately the

same as the initial solution, the TL can be further improved
by about 10% with the NBMOGA compared with the
standard MOGA within the same optimization time (see

FIG. 10. Evolutions of population for optimizing DA and TL. The color from blue to red represents the index of generation from
1 to 100.
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solutions marked as A and B in Fig. 11). The green star
selected for HEPS in Fig. 11 has a longer TL with large
enough DA. Its variable values are listed in Table II. For

this solution, the DA at the center of low-beta section center
and the local momentum acceptance along one period of
the lattice are plotted in Fig. 13 and compared with that of
the initial solution. It can be seen that the selected solution
just sacrifices a little DA in the horizontal plane, while it
gains an obvious increase in local momentum acceptance
that is beneficial to the beam lifetime.

FIG. 11. Comparison of the nondominated solutions in the 100th generation obtained with different optimization methods. The black
dashed line represents the best front. The pink star is the initial solution. The black and red stars, A and B, are two nondominated
solutions of standard MOGA and NBMOGA, respectively, which have almost the same DA area as the initial solution. The green star is
the selected solution for the multipole strengths of the HEPS.

FIG. 12. Evolution of γ� over generations (1–150 generations
for the standard MOGA and 1–100 generations for the other four
methods) for the DA and TL optimization of the HEPS. γ�
measures the average distance between the obtained nondomi-
nated solutions and the best front.

TABLE II. Comparison of the initial solution and the selected
solution.

KSD1
(m−2)

KSD2
(m−2)

KSD3
(m−2)

KSD4
(m−2)

KSD5
(m−2)

Initial −116.52 −146.15 −124.53 −54.25 −111.21
Selected −118.88 −148.44 −127.93 −58.10 −108.10

KSD6
(m−2)

KSD7
(m−2)

KSF1
(m−2)

KSF2
(m−2)

KSF3
(m−2)

Initial −71.73 −191.97 171.32 182.77 61.61
Selected −69.04 −189.79 167.62 183.89 62.14

KOCT1
(m−3)

KOCT2
(m−3)

KOCT3
(m−3)

KOCT4
(m−3)

Initial −5592 −4981 −3876 −5529
Selected −5498 −5166 −4087 −5563
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IV. CONCLUSION

An enhanced MOGA algorithm, called neural network-
based MOGA (NBMOGA), has been proposed. By taking
three classic test problems as examples, it has been
demonstrated that, if using the same population size, the
NBMOGA is able to reach the Pareto front with not only a
smaller number of generations but also a higher degree of
diversity, compared with the other four optimization
methods that have been used in an accelerator field, i.e.,
the standard MOGA, the MOPSO, combination of MOPSO
and MOGA, and the CEMOGA. Moreover, with fewer
generations and smaller population sizes, the NBMOGA
can provide comparable or improved results. Additionally,
it needs an extra time of a few seconds on average for each
generation to train the surrogate model and to predict the
objectivevalueswith the trainedmodel. Thus, theNBMOGA
method is especially applicable to time-consuming optimiz-
ing problems where the running time for each generation is
on the minute or even hour scale. For such problems, the
proposedmethod can providemore efficient use of computer
resources.
With implementation of the NBMOGA in the dynamic

aperture and Touschek lifetime optimization of the high

energy photon source, within the same optimization time, a
better set of solutions with a larger dynamic aperture area and
longer Touschek lifetime is obtained than using the other four
methods. A further improvement of the Touschek lifetime by
10%with almost the same dynamic aperture area is obtained
compared with the standard MOGA. In addition, a higher
degree of diversity among solutions is also observed.
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APPENDIX A: ZITZLER-DEB-THIELE
PROBLEMS

In order to test performance of multiobjective optimi-
zation algorithms, Zitzler, Deb, and Thiele suggested six
test problems [24], the so-called ZDT1–ZDT6. In this
paper, ZDT1, ZDT2, and ZDT6 are chosen as test problems

FIG. 13. The numerical tracking results of the DA (left) and local momentum acceptance (right) for the initial solution (black curve)
and the selected solution (red curve).

TABLE III. Details of three test problems. All the objective functions are to be minimized.

Problem Variable bounds Objective functions Optimal solutions Number of variables

ZDT1 [0,1] f1ðXÞ ¼ x1, x1 ∈ ½0; 1�, 10
f2ðXÞ ¼ gðXÞ½1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1=gðXÞ
p �, xi ¼ 0,

gðXÞ ¼ 1þ 9ðPn
i¼2 xiÞ=ðn − 1Þ i ¼ 2; ...; 10

ZDT2 [0,1] f1ðXÞ ¼ x1, x1 ∈ ½0; 1�, 30
f2ðXÞ ¼ gðXÞ½1 − ðx1=gðXÞÞ2�, xi ¼ 0,
gðXÞ ¼ 1þ 9ðPn

i¼2 xiÞ=ðn − 1Þ i ¼ 2; ...; 30

ZDT6 [0,1] f1ðXÞ ¼ 1 − expð−4x1Þsin6ð4πx1Þ, x1 ∈ ½0; 1�, 10
f2ðXÞ ¼ gðXÞ½1 − ðf1ðXÞ=gðXÞÞ2�, xi ¼ 0,
gðXÞ ¼ 1þ 9½ðPn

i¼2 xiÞ=ðn − 1Þ�0.25 i ¼ 2; ...; 10
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to test performance of the NBMOGA. All of these
problems have only two objectives. Details of them are
described as in Table III.

APPENDIX B: THE CONVERGENCE METRIC γ
AND THE DIVERSITY METRIC Δ

To measure the performance of different optimization
methods, Deb proposed two performance metrics, γ and Δ,
in Ref. [10]. The γ is defined as Eq. (B1), where XO;i

denotes an obtained solution, XP;i denotes the Pareto-
optimal solution with the smallest Euclidean distance to
XO;i, and N is the number of obtained solutions:

γ ¼
P

N
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXO;i − XP;iÞ2

q
N

: ðB1Þ

The Δ is formulated in Eq. (B2), where di is the
Euclidean distance between consecutive solutions in the
obtained nondominated set, d̄ is the average distance of di,
and df and dl are the Euclidean distances between the
boundary of the Pareto optimal set and the boundary of the
N obtained nondominated solutions:

Δ ¼ df þ dI þ
P

N−1
i¼1 jdi − d̄j

df þ dI þ ðN − 1Þd̄ : ðB2Þ

Similar to Eq. (4), another metric, γ�, is defined for the
problems with an unknown Pareto front. As defined in
Eq. (B3), XB;i denotes the solution with the smallest
Euclidean distance to XO;i in the obtained best nondomi-
nated front:

γ� ¼
P

N
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXO;i − XB;iÞ2

q
N

: ðB3Þ
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