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We present a linearized method to study transverse instabilities due to electron clouds. It is based on an
accurate and compact characterization of the cloud dipolar and quadrupolar forces, that can be easily
obtained from quick single-pass numerical simulations. The long-term stability properties of the bunch are
then predicted by solving the linearized Vlasov equation, taking into account the dipolar forces introduced
by the e-cloud along the bunch as well as the betatron tune modulation with the longitudinal coordinate due
to the e-cloud quadrupolar forces. The method is benchmarked against macroparticle simulations based on
the same characterization of the e-cloud and the results are compared against conventional “brute-force”
simulations based on the Particle-In-Cell method. The effect of transverse nonlinearities due to the e-cloud,
which are neglected by the linearized method, is also analyzed.
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I. INTRODUCTION

In particle accelerators, secondary electron emission
and photoemission at the surface of the vacuum chambers
can drive an exponential multiplication of low-energy
electrons, leading to the formation of an electron cloud
(e-cloud). E-clouds have been observed in several synchro-
trons operating with positively charged particles, resulting
in detrimental effects on the beam quality and on the
performance of different accelerator systems [1–4].
Notably, e-clouds can drive transverse head-tail insta-

bilities of the bunches, which cannot be suppressed by
conventional transverse feedback systems due to the strong
intrabunch motion. These instabilities have hampered the
operation of different machines, including, recently, the
Large Hadron Collider (LHC) [5–7].
Predictions of the beam stability in the presence of an

e-cloud typically rely on macroparticle codes that simulate
turn after turn the coupled dynamics of the beam and of the
cloud distributions using the particle-in-cell (PIC) method.
This approach has the advantage of allowing a detailed
modeling of complex features of the e-cloud dynamics, but
has the drawback of being extremely demanding in terms of
computing resources and calculation time, which can
become prohibitive when simulating instability timescales
beyond a few seconds [8].

On the other hand, in the study of more conventional
instabilities driven by electromagnetic coupling of the
beam with surrounding structures, it is standard practice
to characterize the short-term response of the environment
to the beam distribution through effective quantities,
namely wakefields and impedances. This proves to be
extremely convenient as it allows predicting the long term
behavior of the beam using fast macroparticle simulations
or analytical approaches [9].
Analytical predictions for instabilities caused by imped-

ance effects are often based on the linearized Vlasov
equation [9,10], and consist in identifying all the character-
istic eigenmodes of the beam motion and calculating, for
each of them, the corresponding growth rate and betatron
frequency shift. This is done without the need for simulat-
ing directly the dynamics of individual particles. The
advantage of this approach with respect to “brute-force”
macroparticle simulations is twofold: first, as the compu-
tation time is not directly related to the growth rate of the
instability, this method allows the study of slow instabilities
that are out of reach for macroparticle simulations; second,
the analysis of the eigenmode frequency shifts as a function
of parameters of interest (e.g., bunch intensity, synchrotron
frequency, chromaticity) provides important insight on the
underlying mechanisms driving the instability, which in
turn gives valuable information toward the identification of
possible mitigation strategies.
Applying existing Vlasov methods to e-cloud instabil-

ities is not straightforward due to certain characteristic
features of the e-cloud, notably [5]: (i) the dipolar forces
introduced by the e-cloud in response to a transverse
distortion along the bunch cannot be modeled by conven-
tional effective quantities (wakefields, impedances) for
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which Vlasov methods are routinely applied, but require a
more general description, as clearly shown in [11]; (ii) the
e-cloud introduces a modulation of the betatron tune as a
function of the particle longitudinal coordinate along the
bunch, which is known to have an impact on the beam
stability properties [12].
A first attempt at using the Vlasov approach on e-cloud

instabilities was made by Ohmi et al. in Ref. [13]. It was
based on the approximation of the e-cloud response with a
conventional broad-band resonator wakefield and consid-
ered the simplified case of a single radial mode. The tune
modulation along the bunch introduced by the e-cloud
was neglected. Perevendentsev extended these results in
Ref. [14] by considering multiple radial modes and by
introducing the effect of a linear dependence of the tune
on the longitudinal particle position. Still such a model
does not allow to fully describe the realistic behavior of
the cloud. In particular it does not account for the
dependence of the betatron tune on the longitudinal
action, which, as we will show in the following, plays
a significant role in defining the characteristics of the
instability. Perevendentsev in Ref. [14] also proposes to
describe the dipolar forces from the e-cloud with a
generalized impedance (function of two variables) and
derives expressions for the mode coupling matrix based
on this description. To our knowledge this interesting line
of research was not continued and no results from the
application of this method are available in the literature. In
general, due to the strong simplifications involved, past
studies based on the Vlasov approach could only identify
the order of magnitude of the instability threshold found
by PIC simulations [13], but a quantitative agreement on
the frequency of the instability and on its growth rate
could not be shown.
In the following we will present a more general approach

that addresses the highlighted limitations. As our focus is
on proton accelerators, we will neglect the effect of
radiation damping on the beam dynamics. The longitudinal
focusing force from the rf system is assumed to be linear
and, for simplicity, we will study the transverse motion and
the stability of the bunch only in the horizontal plane,
neglecting coupling to the vertical plane.
Examples and numerical tests in this article will refer to

the realistic case of transverse instabilities observed at the
LHC, which will be briefly introduced in Sec. II. In Sec. III
we will introduce an effective way of characterizing both
the dipolar and quadrupolar forces exerted by the e-cloud
on the bunch distribution. In particular we will show that
the dipolar forces of a realistic e-cloud can be accurately
described by a small set of one-dimensional response
functions and that the detuning introduced along the bunch
by the e-cloud quadrupolar forces can be accurately
modeled by a polynomial. In Sec. IV we will develop a
method to solve the linearized Vlasov equation in the
presence of an arbitrary detuning along the bunch and of a

dipolar coherent force described by a set of response
functions, as required to model the e-cloud. In Sec. V,
after describing its implementation, the method will be
applied to the realistic case of transverse instabilities
observed at the LHC and will be benchmarked against
macroparticle simulations performed with the same linear-
ized model of the e-cloud. The results will also be
compared against conventional simulations based on the
PIC method, showing the capability of the proposed
method to identify the frequency and the growth rate of
the instability as well as the tune shift of the “rigid-bunch”
mode. The impact of the transverse nonlinearities intro-
duced by the e-cloud, which are neglected in the Vlasov
treatment, will also be discussed.
Although the proposed method is developed to treat

e-cloud effects, it can in fact be applied to different kinds of
collective effects, in particular conventional and general-
ized wakefields, as will be briefly discussed in Appendix.

II. CASE STUDY: INSTABILITIES DRIVEN
BY E-CLOUD IN THE ARC QUADRUPOLES

AT THE LHC

In the examples and numerical tests discussed in the
following we will refer to the realistic case of transverse
instabilities observed at the LHC at injection energy, which
are driven by the e-cloud in the superconducting quadru-
poles of the collider. In spite of their modest length (they
occupy only 7% of the accelerator length) the quadrupoles
represent the main source of e-cloud instabilities in the
LHC, due to the fact that the magnetic field gradient tends
to favour the accumulation of electrons in the chamber
(magnetic trapping [15]) and to concentrate a large electron
density around the beam location, as shown by the snapshot
of the distribution displayed in Fig. 1. The main parameters
of the considered instability scenario are reported in Table I.

FIG. 1. Electron distribution in the LHC arc quadrupoles at
injection energy as seen right before the arrival of a bunch (from a
PIC simulation).
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All macroparticle simulations mentioned in this work are
performed with the PyECLOUD-PyHEADTAIL suite [8], using
the numerical settings summarized in Table II, which
followed from systematic convergence studies.

III. LINEARIZED DESCRIPTION OF THE
E-CLOUD FORCES

In this section we introduce a method to build a
linearized model of the forces exerted by the e-cloud on
a circulating bunch. For this purpose we will use quick
(single-pass) PIC simulations. In particular in Sec. III Awe
will characterize the tune modulation introduced by the
e-cloud along the bunch and in Sec. III B we will address
the dipolar forces exerted by the e-cloud in response to a
distortion of the bunch distribution.

A. Quadrupolar forces

The presence of electrons in the beam chamber intro-
duces focusing forces on the beam particles. In fact, during
the bunch passage, the electrons are attracted toward
the beam (the so-called “electron pinch” occurs) and the
electron density at the beam location increases, as shown in
the top part of Fig. 2 for the LHC case introduced in Sec. II
(z defines the coordinate along the bunch, with z > 0
corresponding to the head of the bunch). This effect results
in a change of the focusing forces during the bunch passage
and therefore in a betatron tune modulation with the

longitudinal coordinate. This is displayed in the bottom
part of Fig. 2,where one can observe the tune shift increasing
by about a factor of seven from the head to the core of the
bunch and then slowly decaying toward the tail.
In the following the detuning along the bunch will be

modeled using a polynomial:

ΔQðzÞ ¼
XNP

n¼0

Anzn ð1Þ

Figure 2 shows that a realistic model can be obtained
truncating the sum at NP ¼ 10.

B. Dipolar forces

To describe the dipolar forces introduced by the e-cloud
in response to distortions of the bunch shape, we consider a
discrete set of functions hnðzÞ that satisfy the following
orthogonality condition:Z

hnðzÞhn0 ðzÞdz ¼ H2
nδn;n0 ; ð2Þ

where Hn is the norm of hnðzÞ and δn;n0 is the
Kronecker delta.
The transverse centroid as a function of the position along

the bunch, x̄ðzÞ, can bewritten as a linear combination of the
hn functions:

TABLE I. Main parameters for the considered LHC scenario.

Beam energy [GeV] 450
Bunch population, Nb [p/bunch] 1.2 × 1011

R.m.s. bunch length, σb [cm] 9.7
R.m.s horizontal emittance (normalized) [μm] 2.5
R.m.s vertival emittance (normalized) [μm] 2.5
Ring circumference, ð2πRÞ [km] 26.7
Horizontal beta function at the e-clouds, βx [m] 92.7
Vertical beta function at the e-clouds, βy [m] 93.2
Horizontal betatron tune, Qx 62.27
Vertical betatron tune, Qy 60.295
Synchrotron tune, Qs 4.9 × 10−3

Slippage factor, η 3.18 × 10−4

Quadrupole gradient [T/m] 12.1
Fraction of the ring occupied by quadrupoles 7%
SEYmax at the quadrupole beam-screens 1.4

TABLE II. Numerical settings used in the macroparticle
simulations.

Number of e-cloud interactions 8
Number of macroparticles per e-cloud 5 × 105

Number of macroparticles per bunch 5 × 106

Number of longitudinal slices along the bunch 200
Transverse grid resolution at the beam location 0.1 mm

FIG. 2. Top: evolution of the electron density in the plane y ¼ 0
during the passage of a bunch. Bottom: corresponding effect on
the particle betatron tune.
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x̄ðzÞ ¼
X∞
n¼0

anhnðzÞ; ð3Þ

where the coefficients an are given by the scalar product:

an ¼
1

H2
n

Z
x̄ðzÞhnðzÞdz: ð4Þ

We call knðzÞ the e-cloud kick along the bunch resulting
from a distortion of the bunch distribution equal to hnðzÞ.
For sufficiently small amplitudes of the transverse distor-
tion, the response of the e-cloud can be assumed to be linear
and the resulting transverse kick along the bunch can be
written using the superposition principle:

Δx0ðzÞ ¼
X∞
n¼0

anknðzÞ ¼
X∞
n¼0

knðzÞ
Z

x̄ðz̃Þ hnðz̃Þ
H2

n
dz̃: ð5Þ

Although the discussed method is valid for any set of
orthogonal basis functions, for the practical examples
presented in this work, we will choose hnðzÞ to be simple
sinusoids in the form:

hnðzÞ ¼
�
An cos ð2πfznzÞ; if n is even

An sin ð2πfznzÞ; if n is odd
; ð6Þ

where

fzn ¼
� n

2
1

Lbkt
if n is even

nþ1
2

1
Lbkt

if n is odd
; ð7Þ

Lbkt is the length of the rf bucket, and the amplitudes An
are chosen to be equal to 0.1 mm, corresponding to about
15% of the transverse r.m.s. beam size in the LHC case
(see Table I).

The response functions knðzÞ can be obtained through
short (single-pass) PIC simulations, in which the distortion
hnðzÞ is applied to the bunch and the corresponding kick is
measured. It has been verified that, for similar or smaller
amplitudes of the test functions, the response of the e-cloud
is linear, i.e., the response function knðzÞ scale linearly with
the amplitude of the corresponding test function hnðzÞ.
The detuning forces discussed in Sec. III A are sub-

tracted from the measured kicks:

knðzÞ ¼ Δx0measðzÞ −
4π

βx
ΔQðzÞhnðzÞ; ð8Þ

and will be treated separately.
Some of the measured response functions for our LHC

test case are illustrated in Fig. 3. We observe that the
strength of the resulting kick reduces for larger excitation
frequency. This feature is a result of the inertia of the
electrons, which prevents them from responding to very
fast oscillations within the bunch. This is displayed in a
more general way in Fig. 4 where the energy of all response
functions (defined as

R
k2nðzÞdz) is displayed. For the

considered LHC test case, the larger terms are observed
at frequencies close to the electron oscillation frequency
within the bunch [13]. Terms with n > 30 have negligible
energy, which means that the dipolar response of the
e-cloud is fully described by the first 30 terms.
In Fig. 5 we test the capability of this approach to

reconstruct the kick for a realistic distortion of the bunch
shape obtained from an e-cloud instability simulated with
the PIC method. A very good agreement with the PIC
simulation is obtained even with a relatively small number
of terms. This feature will result in a very reasonable
computational burden for the calculation of the mode
coupling matrix that will be presented in Sec. IV.
One can finally note that this description of the e-cloud

dipolar forces with a small number of one-dimensional

FIG. 3. Top: some of the applied test functions (in black) and corresponding evolution of the electron density. Bottom: dipolar kick
measured along the bunch as an effect of the applied test function (the effect of the e-cloud quadrupolar forces is already subtracted).
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functions, turns out to be much more compact than the two-
dimensional generalized wake function used in [11,14].

IV. VLASOV TREATMENT

To study the long-term stability of the bunch based on the
linearized model introduced in Sec. III, we apply Vlasov
equation [16] to the distribution function ψðx; x0; z; δ; tÞ,
representing the phase space density of particles in the
bunch. Considering only its first order perturbationΔψ , our

starting point is the so-called linearized Vlasov equation as
expressed in Eq. (53) of Ref. [17], with an additional
detuning term depending on the longitudinal phase space
coordinates ΔQðr;ϕÞ, as done in Ref. [18]:

∂Δψ
∂t − ω0ðQx0 þ ΔQðr;ϕÞÞ ∂Δψ∂θx þ ωs

∂Δψ
∂ϕ

¼ −
ηg0ðrÞ
ωsm0γ

df0
dJx

ffiffiffiffiffiffiffiffiffiffi
2JxR
Qx0

s
sin θxFcoh

x ðz; tÞ: ð9Þ

Here Fcoh
x ðz; tÞ is the transverse dipolar force due to the

e-cloud; polar coordinates in the longitudinal phase space
(r, ϕ) are defined such that:

z ¼ r cosϕ; ð10Þ
δ ¼ ωs

vη
r sinϕ; ð11Þ

polar coordinates in the transverse phase space (Jx, θx) are
defined such that:

x ¼
ffiffiffiffiffiffiffiffiffiffi
2JxR
Qx0

s
cos θx; ð12Þ

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2JxQx0

R

r
sin θx; ð13Þ

with Jx being the horizontal action; ω0 is the revolution
angular frequency; Qx0 is the unperturbed betatron tune;
ωs ¼ ω0Qs is the synchrotron angular frequency; η is
the slippage factor, m0 is the particle mass, v its velocity,
γ the corresponding relativistic factor, and R ¼ v=ω0 is the
accelerator radius. The unperturbed bunch distribution has
been factorized as:

ψ0ðJx; rÞ ¼
ηv
ωs

f0ðJxÞg0ðrÞ; ð14Þ

where the following normalization is chosen:Z
f0ðJxÞdJx ¼

Nb

2π
; ð15Þ

Z
g0ðrÞrdr ¼

1

2π
; ð16Þ

Nb being the number of particles in the bunch.
Generalizing the method discussed in Refs. [9,17], we

search for solutions in the form:

ΔψðJx; θx; r;ϕ; tÞ ¼ ejΩt
Xþ∞

p¼−∞
fpðJxÞejp½θx−ΔΦðr;ϕÞ�

×
Xþ∞

l¼−∞
Rp
l ðrÞe−jlϕ; ð17Þ

FIG. 4. Energy associated with the measured response func-
tions knðzÞ. The curves are normalized to the maximum value.

FIG. 5. Top: intrabunch oscillation as observed during an
e-cloud instability simulated with the PIC method (black); the
other traces show its reconstruction using Eq. (3) with an
increasing number of terms. Bottom: transverse kick measured
along the bunch in the same PIC simulations (black); the other
traces show its reconstruction using Eq. (5).
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where the complex frequency Ω, the phase shift ΔΦðr;ϕÞ
and the distribution functions fpðJxÞ and Rp

l ðrÞ are to
be found.

A. Handling the detuning function

Without loss of generality we can decompose the
detuning term in two parts:

ΔQðr;ϕÞ ¼ ΔQRðrÞ þ ΔQΦðr;ϕÞ ð18Þ

where ΔQRðrÞ accounts for the transverse detuning with
longitudinal amplitude and is defined as:

ΔQRðrÞ ¼
1

2π

Z
2π

0

ΔQðr;ϕÞdϕ: ð19Þ

As a consequence, ΔQΦðr;ϕÞ introduces no average
detuning over a synchrotron period

1

2π

Z
2π

0

ΔQΦðr;ϕÞdϕ ¼ 0; ð20Þ

but is only responsible for a phase shift as a function of the
longitudinal coordinates.
Substituting Eqs. (17) and (18) into Eq. (9), we obtain:

ejΩt
Xþ∞

p¼−∞
fpðJxÞejpθx

Xþ∞

l¼−∞
Rp
l ðrÞe−jðpΔΦðr;ϕÞþlϕÞ

×

�
jΩ− jpωs

∂ΔΦ
∂ϕ − jlωs− jpω0½Qx0þΔQΦþΔQR�

�

¼−
ηg0ðrÞ
ωsm0γ

df0
dJx

ffiffiffiffiffiffiffiffiffiffi
2JxR
Qx0

s
sinθxFcoh

x ðz;tÞ: ð21Þ

It is possible, without loss of generality, to choose the
phase-shift function ΔΦ to match the phase modulation
induced by the term ΔQΦ:

∂ΔΦ
∂ϕ ¼ −

ω0

ωs
ΔQΦðr;ϕÞ: ð22Þ

Schenk et al. in Ref. [18] used an approach very similar to
the one discussed so far, to handle the detuning introduced
by nonlinear chromaticity.
Here we consider a detuning function in the general

form:

ΔQðz; δÞ ¼
XNP

n¼0

Anzn þ Bnδ
n; ð23Þ

where the terms in zn allow modeling the detuning
introduced by the e-cloud (as discussed in Sec. III A)
and the terms in δn allow modelling linear and nonlinear
chromaticity present in the machine. For a detuning

function in this form, the following explicit expression
of ΔΦ can be found by integrating Eq. (22):

ΔΦðr;ϕÞ ¼ −
ω0

ωs

XNP

n¼1

rn
�
An

�
CnðϕÞ − C̄n

ϕ

2π

�

þ
�
ωs

vη

�
n
Bn

�
SnðϕÞ − S̄n

ϕ

2π

��
; ð24Þ

where the functions CnðϕÞ and SnðϕÞ are primitives of
cosn ϕ and sinn ϕ respectively, which can be computed
using the following recursive relations:

C0ðϕÞ ¼ ϕ; C1ðϕÞ ¼ sinϕ; ð25Þ

CnðϕÞ ¼
cosn−1ϕ sinϕ

n
þ n − 1

n
Cn−2ðϕÞ; ð26Þ

S0ðϕÞ ¼ ϕ; S1ðϕÞ ¼ − cosϕ; ð27Þ

SnðϕÞ ¼ −
sinn−1ϕ cosϕ

n
þ n − 1

n
Sn−2ðϕÞ: ð28Þ

The constants C̄n and S̄n need to be chosen so that the
condition in Eq. (20) is fulfilled:

C̄n ¼ Cnð2πÞ − Cnð0Þ; ð29Þ

S̄n ¼ Snð2πÞ − Snð0Þ: ð30Þ

Using Eqs. (18), (23), (22), and (24), it is possible to
express ΔQRðrÞ as

ΔQRðrÞ ¼
XNP

n¼0

rn
�
An

C̄n

2π
þ Bn

�
ωs

vη

�
n S̄n
2π

�
: ð31Þ

Having found a function ΔΦ that satisfies Eq. (22)
allows simplifying Eq. (21), obtaining:

ejΩt
Xþ∞

p¼−∞
fpðJxÞejpθxe−jpΔΦðr;ϕÞ

×
Xþ∞

l¼−∞
Rp
l ðrÞe−jlϕðjΩ − jpω0ðQx0 þ ΔQRðrÞÞ − jlωsÞ

¼ −
ηg0ðrÞ
ωsm0γ

df0
dJx

ffiffiffiffiffiffiffiffiffiffi
2JxR
Qx0

s
sin θxFcoh

x ðz; tÞ: ð32Þ

As discussed in Refs. [17] and [19], it is possible to
identify term by term the harmonics in θx, showing that all
terms with jpj ≠ 1 vanish. Assuming that the transverse
betatron tune is much larger than the synchrotron tune, we
can neglect the fast-oscillation term p ¼ −1, as discussed
in Ref. [9]. This allows retaining only the term p ¼ 1, and
leads to:
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f1ðJxÞ ∝
df0
dJx

ffiffiffiffiffiffiffiffiffiffi
2JxR
Qx0

s
: ð33Þ

Therefore Eq. (17) becomes

ΔψðJx;θx;r;ϕ; tÞ

¼ ejΩtejθx
df0
dJx

ffiffiffiffiffiffiffiffiffiffi
2JxR
Qx0

s
e−jΔΦðr;ϕÞ ·

Xþ∞

l¼−∞
RlðrÞe−jlϕ ð34Þ

(where the proportionality constant in Eq. (33) is absorbed
in the unknowns RlðrÞ), and Eq. (32) simplifies into

Xþ∞

l¼−∞
RlðrÞe−jlϕðΩ −Qx0ω0 − ω0ΔQRðrÞ − lωsÞ

¼ ηg0ðrÞ
2ωsm0γ

e−jΩtejΔΦðr;ϕÞFcoh
x ðz; tÞ: ð35Þ

B. Expressing the coherent force

The dipolar force from the e-cloud can be expressed
using Eq. (5), assuming that the force is distributed
uniformly in the accelerator (smooth approximation):

Fcoh
x ðz; tÞ ¼ m0γv2

2πR

XN
n¼0

knðzÞ
Z

x̄ðz̃; tÞ hnðz̃Þ
H2

n
dz̃; ð36Þ

where x̄ðz; tÞ is the average position at the longitudinal
position z, which can be written as

x̄ðz; tÞ ¼ 1

λ0ðzÞ
ZZ

dx̃dx̃0
Z

dδ̃ x̃Δψðx̃; x̃0; z; δ̃; tÞ; ð37Þ

λ0ðzÞ being the longitudinal bunch profile.
Substituting the expression of x̄ðz; tÞ from Eq. (37) in

Eq. (36) and using the expression of Δψ given by Eq. (34)
we obtain:

Fcoh
x ðr;ϕ; tÞ ¼ −

Nbm0γvωs

2πηQx0
ejΩt

ZZ
r̃dr̃dϕ̃e−jΔΦðr̃;ϕ̃Þ Xþ∞

l0¼−∞

Rl0 ðr̃Þe−jl0ϕ̃
XN
n¼0

knðr cosϕÞ
hnðr̃ cos ϕ̃Þ

H2
nλ0ðr̃ cos ϕ̃Þ

; ð38Þ

where all quantities have been expressed using polar coordinates, and where we have used the normalization condition
from Eq. (15).
We can finally substitute the expression of the coherent force from Eq. (38) into Eq. (35), obtaining the following integral

equation in the unknowns Ω and RlðrÞ:

Xþ∞

l¼−∞
RlðrÞe−jlϕðΩ −Qx0ω0 − ω0ΔQR − lωsÞ

¼ −
Nbv
4πQx0

ejΔΦðr;ϕÞg0ðrÞ
ZZ

r̃dr̃dϕ̃e−jΔΦðr̃;ϕ̃Þ Xþ∞

l0¼−∞

Rl0 ðr̃Þe−jl0ϕ̃
XN
n¼0

knðr cosϕÞ
hnðr̃ cos ϕ̃Þ

H2
nλ0ðr̃ cos ϕ̃Þ

: ð39Þ

C. Solving the equation

Using the orthogonality property of the harmonic functions ejlϕ we can isolate an individual term of the sum on the l.h.s.
of Eq. (39):

RlðrÞðΩ −Qx0ω0 − ω0ΔQR − lωsÞ ¼ −
Nbv

8π2Qx0
g0ðrÞ

Z
2π

0

dϕejlϕejΔΦðr;ϕÞ
ZZ

r̃dr̃dϕ̃e−jΔΦðr̃;ϕ̃Þ

×
Xþ∞

l0¼−∞

Rl0 ðr̃Þe−jl0ϕ̃
XN
n¼0

knðr cosϕÞ
hnðr̃ cos ϕ̃Þ

H2
nλ0ðr̃ cos ϕ̃Þ

: ð40Þ

Following the standard approach described in
Refs. [10,14,20], we expand the radial functions RlðrÞ
using orthogonal functions:

RlðrÞ ¼ WlðrÞ
Xþ∞

m¼0

blmflmðrÞ; ð41Þ

where WlðrÞ is an arbitrary function, which can be chosen
to improve the convergence properties, and the functions
flmðrÞ need to satisfy the orthogonality condition:Z

flmðrÞflm0 ðrÞwlðrÞdr ¼ Flmδm;m0 ; ð42Þ

wlðrÞ being a suitable weight function.
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We substitute in Eq. (40) the expansion from Eq. (41) and we apply to both sides the integral 1
Flm

R
drwlðrÞflmðrÞ ð�Þ

WlðrÞ,
obtaining:

blmðΩ −Qx0ω0 − lωsÞ −
ω0

Flm

Xþ∞

m0¼0

blm0

Z
drwlðrÞΔQRðrÞflmðrÞflm0 ðrÞ

¼ −
Nbv

8π2Qx0Flm

X
l0m0

bl0m0
XN
n¼0

ZZ
drdϕejlϕejΔΦðr;ϕÞwlðrÞflmðrÞ

g0ðrÞ
WlðrÞ

knðr cosϕÞ

×
ZZ

r̃dr̃dϕ̃e−jl
0ϕ̃e−jΔΦðr̃;ϕ̃Þfl0m0 ðr̃Þ Wl0 ðr̃Þ

λ0ðr̃ cos ϕ̃Þ
hnðr̃ cos ϕ̃Þ

H2
n

: ð43Þ

By introducing the matrices

Mlm;l0m0 ¼ −
Nbv

8π2Qx0Flm

XN
n¼0

ZZ
drdϕejlϕejΔΦðr;ϕÞwlðrÞflmðrÞ

g0ðrÞ
WlðrÞ

knðr cosϕÞ

×
ZZ

r̃dr̃dϕ̃e−jl
0ϕ̃e−jΔΦðr̃;ϕ̃Þfl0m0 ðr̃ÞWl0 ðr̃Þhnðr̃ cos ϕ̃Þ

λ0ðr̃ cos ϕ̃ÞH2
n

; ð44Þ

and

M̃lm;l0m0 ¼ δl;l0
ω0

Flm

Z
drwlðrÞΔQRðrÞflmðrÞflm0 ðrÞ; ð45Þ

we can rewrite Eq. (43) in the more compact form:

blmðΩ−Qx0ω0− lωsÞ¼
X
l0m0

ðMlm;l0m0 þM̃lm;l0m0 Þbl0m0 : ð46Þ

In Eq. (46), we can recognize the structure of an eigenvalue
problem, where the eigenvalues provide the complex
frequencies Ω of the bunch eigenmodes, and the eigen-
vectors blm define the corresponding phase space distribu-
tion through Eqs. (34) and (41).

D. Gaussian bunch

For the practical case of a bunch having a Gaussian
longitudinal distribution:

g0ðrÞ ¼
1

2πσ2b
e
− r2

2σ2
b ; ð47Þ

(where σb is the r.m.s. bunch length) it is convenient to use
the generalized Laguerre polynomials [21] to express the
radial dependence of the eigenmodes:

flmðrÞ ¼ Ljlj
mðar2Þ ð48Þ

as done in [10,14,22], where we choose a ¼ 0.5σ−2b . For
these functions to satisfy the orthogonality condition in
Eq. (42), the suitable weight function wlðzÞ is

wlðrÞ ¼ 2are−ar
2ðar2Þjlj ð49Þ

and the coefficients Flm are

Flm ¼ ðjlj þmÞ!
m!

: ð50Þ

Following Refs. [10,14] we choose the shape function:

WlðrÞ ¼
�
r
rb

�jlj
e−ar

2

; ð51Þ

with rb ¼ 4σb.
With these choices, when the phase-shift term is neg-

ligible, the eigenvector corresponding to a rigid bunch
oscillation has the form:

blm ¼ b00δlδm; ð52Þ

and the corresponding complex tune shift can be found
substituting Eq. (52) into Eq. (46) obtaining:

Ω̄
ω0

−Qx0 ¼
M00;00 þ M̃00;00

ω0

: ð53Þ

We can notice that the tune shift is the sum of two terms, the
first one due to dipolar forces (M00;00=ω0) and the second
one due to quadrupolar forces (M̃00;00=ω0).

V. IMPLEMENTATION, NUMERICAL
EXPERIMENTS AND BENCHMARKS

The implementation of the method described above
essentially consists in the calculation of the matrices
Mlm;l0m0 and M̃lm;l0m0 and in the solution of the eigenvalue
problem in Eq. (46).
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The computation of the matrix Mlm;l0m0 from Eq. (44)
can be optimized using the fact that the matrix is in the
form:

Mlm;l0m0 ¼
XN
n¼0

RlmnR̃l0m0n: ð54Þ

The terms Rlmn and R̃l0m0n are calculated using the
trapezoidal method to compute all the involved integrals.
They are stored in memory to be reused multiple
times in the computation of different elements of the
matrix Mlm;l0m0 .
The computation of the matrix M̃lm;l0m0 is less heavy, due

to the fact that several of its elements are zeros and that only
a single-dimension integration is required. Once the matri-
ces are computed the eigenvalue problem can be solved
using a standard linear-algebra package.

A. Application to LHC case

We applied the method described in Sec. IV to the case
of the LHC instabilities presented in Sec. II.
The bunch stability is studied as a function of the

“e-cloud strength,” defined as a scaling factor that is
applied on all the e-cloud forces acting on the beam.
Such a quantity can represent the fraction of the accel-
erator length in which the e-cloud is developing or, in
first approximation, the electron density. In the results
presented in this section, an e-cloud strength equal
to one corresponds to the e-cloud parameters reported
in Table I.
The e-cloud dipolar forces, the intra-bunch phase shift

due to the term ΔQΦ, and the detuning with longitudinal
amplitude ΔQR are introduced in steps, to identify the
effect due to each of them. Based on convergence checks,
in all calculations based on the Vlasov method we
considered terms up to jlj ¼ 7 and m ¼ 40.
Figure 6(a) shows the tune shifts of the eigenmodes

(obtained from the real part of the computed eigenvaluesΩ)
for the case in which only the e-cloud dipolar forces are
considered, while the quadrupolar effects are not included
(ΔQΦ ¼ ΔQR ¼ 0). The color code represents the growth
rate of the eigenmode, as obtained from the imaginary part
of Ω, while the orange dashed line shows the “rigid-bunch”
tune shift estimated from Eq. (53).
The tune deviation of the strongest unstable modes with

respect to the unperturbed tune is observed to be negative.
The bunch is essentially stable for an e-cloud strength
below 0.8, while for larger strength instabilities are trig-
gered by mode coupling. The instability threshold is visible
also in the blue continuous line in Fig. 9, showing the
growth rate for the most unstable mode as computed by the
Vlasov method.
In Fig. 7(a) we show the results of computations

obtained by introducing the phase shift from the e-cloud

detuning (ΔQΦ ≠ 0) while we keep no detuning with
longitudinal amplitude (ΔQR ¼ 0). We observe that, while
the tune shift for most of the modes is similar to the case
with no quadrupolar forces, the coupling-decoupling
behavior of the modes is affected by the phase-shift.
This results in a faster instability, as visible from the
continuous orange line in Fig. 9.
The effect of introducing also the term responsible

for the e-cloud detuning with longitudinal amplitude
(ΔQR ≠ 0) is much more visible, as shown in Fig. 8(a).
Modes with different radial distributions receive different
positive tune shifts from the quadrupolar forces. This
generates characteristic “fans of modes” (indicated by
red arrows in Fig. 8) associated to each synchrotron
sideband. The negative tune shift introduced by the
dipolar forces on the “rigid-bunch” eigenmode is fully
canceled by the quadrupolar effect. In fact, as a net effect
of the two forces, it becomes slightly positive, as shown
by the orange dashed line in Fig. 8(a). Also, the mode
coupling behavior changes with respect to Fig. 7(a) and a
larger number of unstable lines is observed. The growth
rate for the most unstable mode as a function of the
e-cloud strength is shown by the green line in Fig. 9. For
strengths below 1.0, a slight increase in the growth rate is
observed with respect to the case with ΔQΦ ≠ 0 and
ΔQR ¼ 0, while a decrease of the growth rate is observed
for higher strengths.

B. Benchmark against macroparticle simulations using
the linearized e-cloud model

In order to validate the method described in Sec. IV and
the corresponding implementation, the bunch dynamics in
the configurations described in Sec. VA has been simulated
with macroparticles using the PyHEADTAIL code, applying
the same linearized model for the e-cloud dipolar and
quadrupolar forces.
This simulation method is in itself an interesting

alternative to the PIC simulations, as it has a much
reduced computational burden (for the tests presented in
this work we experienced a gain in computational time
of more than one order of magnitude) and allows easily
including effects that are difficult to model with the
Vlasov approach, e.g., external transverse nonlinearities,
complex feedback systems, or nonlinear longitudinal
motion.
To compare against the eigenmode tune shifts found

with the Vlasov method, we use the Sussix algorithm
[23] to identify the different spectral components on the
simulated bunch motion. In order to be able to detect
also lines that would not be visible on the motion of the
bunch centroid, we use the information on the transverse
position along the bunch, which is recorded at each turn
by the simulator. For this purpose, we apply the Sussix
algorithm to the following auxiliary quantity computed
at each turn n:
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FIG. 8. Same as Fig. 6 for the case ΔQR ≠ 0, ΔQΦ ≠ 0. (a) Eigenvalues from linearized Vlasov equation, (b) PyHEADTAIL simulations
(linearized e-could model).

FIG. 7. Same as Fig. 6 for the case ΔQR ¼ 0, ΔQΦ ≠ 0. (a) Eigenvalues from linearized Vlasov equation, (b) PyHEADTAIL simulations
(linearized e-could model).

FIG. 6. (a) Frequencies of the eigenmodes computed with the Vlasov method for the case ΔQR ¼ ΔQΦ ¼ 0 (the color code is
proportional to the mode’s growth rate). (b) Spectrum of the transverse motion for the same configuration, computed using PyHEADTAIL
macroparticle simulations with the linearized e-cloud model. The arrows in the plots highlight distinctive features (behavior of certain
modes, observation of mode coupling) that are visible with both methods.
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Xn ¼
XNk

k¼0

Z Lbkt
2

−Lbkt
2

x̄nðzÞej2πkz=Lbktdz; ð55Þ

which is built by summing projections of the intrabunch
position over sinusoids of increasing frequency (a
similar approach has been used to study transverse
mode coupling driven by impedances in [24]). In the
considered cases, terms of the sum with k > 10 are
found to be negligible.

The resulting spectra are shown in Figs. 6(b), 7(b),
and 8(b), respectively for the case with no quadrupolar
forces, with the phase-shift term alone and with the full
quadrupolar forces. It can be noticed that, for large e-cloud
strengths the instability becomes very fast, making the
spectral analysis less accurate. Very good agreement is
found when comparing these spectra against the eigenmode
frequencies predicted by the Vlasov method, which are
displayed in Figs. 6(a), 7(a), and 8(a). The arrows in the
plots highlight distinctive features (behavior of certain
modes, observation of mode coupling) that are visible
using both methods.
The instability growth rate has been estimated from the

PyHEADTAIL simulations by applying an exponential fit on
the recorded centroid motion. The result of the fits in the
different cases are shown by the dots in Fig. 9. The dashed
lines are obtained by applying a standard smoothing
algorithm (Savitzky-Golay [25]) to remove the noise
introduced by the fit uncertainty and by fluctuations in
the initial macroparticle distribution. We can observe that
indeed the dashed lines obtained in this way from the
macroparticle simulations agree well with the continuous
lines obtained with the Vlasov method.

C. Comparison against particle-in-cell simulations and
effect of transverse non-linearities

In the Sec. V B we have compared the results of the
Vlasov method against macroparticle simulations imple-
menting our linearized description of the e-cloud.
To check whether the linearized description is indeed

appropriate to describe the behavior of a realistic e-cloud,
we now compare the same results against conventional

FIG. 10. (a) Spectrum of the transverse motion obtained from PyHEADTAIL macroparticle simulations performed with the PIC method.
(b) Spectrum of the transverse motion obtained from macroparticle simulations performed with the linearized model and a static non-
linear map to model the e-cloud transverse nonlinearities. In the range in which the instability is very fast, the strongest spectral
component is highlighted in red.

FIG. 9. Instability growth rate estimated with the Vlasov
method (continuous lines) and with macroparticle simulations
using the linearized model (dots). The dashed lines are a
smoothed version of the data represented by the dots.
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“brute-force” simulations in which the full dynamics of the
e-cloud is simulated by macroparticles, and the PIC method
is used to compute the forces generated by the beam and by
the e-cloud. In these simulations the nonlinearities of the
e-cloud field with respect to the transverse position are also
present, while this aspect is neglected by the linearized
model used for all results shown in Secs. VA and V B.
For comparison, we apply to the bunch motion from the

PIC simulations the frequency analysis method introduced
in Sec. V B. The resulting spectrum as a function of the
e-cloud strength is shown in Fig. 10(a) and the observed
instability growth rate is shown by the red curve in Fig. 11.
In spite of the mentioned approximations, several key

features are correctly predicted by the Vlasov method:
(i) An excellent agreement is observed on the tune shift for
the rigid-bunch mode, as shown in Fig. 12. The tune shift
expected from the Vlasov method shown by the blue line is
estimated using Eq. (53), while for the simulation the tune
is obtained applying the Sussix algorithm on the recorded
bunch-centroid position. The orange and green lines in
Fig. 12 show the tune shift that would be expected with
dipolar forces alone (obtained by imposing ΔQðr;ϕÞ ¼ 0

and therefore M̃lm;l0m0 ¼ 0) and with quadrupolar forces
alone (obtained by imposing knðzÞ ¼ 0 and therefore
Mlm;l0m0 ¼ 0). It is evident that both forces from the
e-cloud need to be taken into account in order to correctly
predict the tune shift. (ii) The frequency spectrum from the
PIC simulations [Fig. 10(a)] confirms the existence of “fans
of modes” associated to each synchrotron sideband, which,
as discussed in Sec. V B, are a direct result of the e-cloud
quadrupolar forces. (iii) The strong instability observed in
the PIC simulations for e-cloud strengths above 1.25 has a
frequency in the range −1 < ðQ −Q0Þ=Qs < 0, which is

very similar to that of the most unstable modes identified
by the Vlasov method in Fig. 8. We underline that
including the quadrupolar forces from the e-cloud was
fundamental to correctly predict this feature. (iv) The
instability growth rate observed in the PIC simulation for
e-cloud strengths above 1.25 is similar to that of the most
unstable mode identified by the Vlasov method, as it can
be observed comparing the Fig. 11 (red line) and Fig. 9
(green line).
The main difference observed between the PIC simu-

lations and the results from the Vlasov method concerns
other unstable modes which are found by the Vlasov
method in the range 0 < ðQ −Q0Þ=Qs < 4. These unstable
modes are also visible in the macroparcoparticle simula-
tions performed with the linearized model [Fig. 8(b)] but
not in the spectra from the PIC simulations [Fig. 10(a)].
Our hypothesis is that those modes are damped by the

e-cloud transverse non-linearities (such a stabilizing
effect of the e-cloud is also mentioned in [26]). We used
macroparticle simulations with the e-cloud linearized
model to verify this assumption. For this purpose, we
added to the linearized simulation model with dipolar and
quadrupolar forces [the one used to produce the results in
Fig. 8(b)] a static non-linear map independent on the z
coordinate. The latter is obtained from the field map of the
simulated electron pinch after removing the linear part
(already included in the linearized model), and averaging
along z. The transverse spectrum obtained by these
simulations is shown in Fig. 10(b). Comparing Fig. 10(b)
against Fig. 8(b) confirms that the introduction of the
transverse nonlinearities strongly suppresses the spectral
lines in the range 0 < ðQ −Q0Þ=Qs < 4 resulting in a
spectrum very similar to the one obtained by the PIC
simulations [Fig. 10(a)]. Furthermore, the instability

FIG. 11. Dots: Instability growth rate obtained by macroparticle
simulations with the PIC method (in red), and with the linearized
model and a static non-linear map to model the e-cloud transverse
nonlinearities (in green). Dashed lines: smoothed version of the
data represented by the dots.

FIG. 12. Tune shift of the “rigid-bunch” mode estimated with
the Vlasov approach (continuous lines) and obtained by macro-
particle simulations performed with the PIC method.
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growth rate is found to be similar, as it can be observed by
comparing the two curves in Fig. 11.

VI. SUMMARY AND CONCLUSIONS

We have introduced a linearized model to describe
dipolar and quadrupolar forces from an e-cloud. A poly-
nomial has been used to describe the detuning forces along
the bunch, and a small set of one-dimensional response
functions has been used to describe the dipolar forces
resulting from a transverse distortion of the bunch
distribution.
Using a realistic LHC case, we have shown that our

linearized model is capable of reproducing the effect on the
bunch at the level of a single turn.
We have then developed a Vlasov method to study the

effect of the linearized e-cloud on the long-term stability of
the bunch. In this framework, it has been found convenient
to decompose the detuning along the bunch in two terms,
one responsible for a phase-shift and the other responsible
for detuning with longitudinal amplitude. We have shown
that both these terms play a relevant role in defining the
spectral properties of the bunch motion, as well as the
growth rate of the unstable modes.
The proposed Vlasov method has been benchmarked

using macroparticle simulations based on the linearized
model and the results have been compared against conven-
tional “brute-force” simulations, in which the coupled
dynamics of the bunch and the e-cloud is computed using
the PIC method. The proposed approach is found to
correctly predict different features observed in the PIC
simulations: the tune shift for the rigid bunch mode agrees
very well with the prediction from the Vlasov method; the
transverse spectrum obtained by the PIC simulation shows
the “fans of modes” that are predicted by the Vlasov
method as a result of the e-cloud quadrupolar forces; the
instabilities observed in the PIC simulations have frequen-
cies and rise times that are very similar to those of the
strongest mode identified by the Vlasov method.
Weaker unstable modes that are predicted by the Vlasov

solver and shown by macroparticle simulations with
the linearized model are not observed in the PIC simu-
lation. These modes are in fact stabilized by the e-cloud
non-linearities, as has been shown using macroparticle
simulations with the linearized model and adding a static
nonlinear map as a simplified model of the cloud
nonlinearities.
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encouragement and support to this research and for
numerous suggestions and discussions on this subject.
We would like to thank Gianluigi Arduini, Hannes
Bartosik, Kevin Li, Giovanni Rumolo and Michael
Schenk for providing valuable input and support.

APPENDIX: APPLICATION TO CONVENTIONAL
AND GENERALIZED WAKEFIELDS

Although the method described in Sec. IV has been
introduced to treat e-cloud effects, it can in fact be
applied to different kinds of collective effects, in par-
ticular conventional wakefields, Perevedentsev’s general-
ized wakefields, and feedback systems. For this purpose
we notice that, if the dipolar forces are described by a
generalized wakefield [14]:

Δx0 ¼ 2πR
m0γv2

Fcoh
x ¼ e2

m0γv2

Z
dz̃λ0ðz̃Þx̄ðz̃ÞWdip

x ðz; z̃Þ; ðA1Þ

the response functions knðzÞ can be written as:

knðzÞ ¼
e2

m0γv2

Z
dz̃λ0ðz̃Þhnðz̃ÞWdip

x ðz; z̃Þ: ðA2Þ

Conversely, if the response functions knðzÞ are known, an
equivalent generalized wakefield can be written as:

Wdip
x ðz; z̃Þ ¼ m0γv2

e2λ0ðz̃Þ
XN
n¼0

knðzÞ
hnðz̃Þ
H2

n
; ðA3Þ

as can be seen by comparing Eq. (5) against Eq. (A1).
Using these expressions it is possible to verify that,
for the special case in which the e-cloud quadrupolar
forces are neglected, the expression of the coupling
matrix in Eq. (44) coincides with the one derived in
Ref. [14]. Moreover, for the special case of a conven-
tional wakefield:

Wdip
x ðz; z̃Þ ¼ Wdip

x ðz̃ − zÞ; ðA4Þ

in the absence of detuning effects apart from linear
chromaticity, the expression of the coupling matrix in
Eq. (44) coincides with the one implemented in the
DELPHI code [10]. This is a consequence of the fact that
in Sec. IV we have chosen the same basis functions as
in Refs. [14] and in [10] to expand the perturbation on
the bunch distribution.
The Vlasov method described in Sec. IV can also be used

to model the effect of quadrupolar wakefields [27], in
particular by computing beforehand the detuning intro-
duced by the quadrupolar wakefield along the bunch and
expressing it in the form given by Eq. (1). This feature is of
particular interest since most of the available Vlasov
solvers (DELPHI, MOSES [28], NHTVS [29]) do not handle
this source of detuning. This possibility has been success-
fully tested for the case of a broad-band resonator wakefield
[9] having frequency fr ¼ 2 GHz, shunt impedance
Rs ¼ 75 MΩ, and quality factor Q ¼ 1, using the beam
and machine parameters in Table I, with no e-cloud. The
results obtained with the dipolar wakefield alone and with a
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FIG. 14. Same as in Fig. 13 for the case WquadðzÞ ¼ −WdipðzÞ. (a) Eigenvalues from linearized Vlasov equation (b) PyHEADTAIL
simulations.

FIG. 15. Same as in Fig. 13 for the case WquadðzÞ ¼ þWdipðzÞ. (a) Eigenvalues from linearized Vlasov equation (b) PyHEADTAIL.

FIG. 13. (a) Frequencies of the eigenmodes computed with the Vlasov method for the case of a broad-band resonator wakefield in the
absence of quadrupolar forces, WquadðzÞ ¼ 0 (the color code is proportional to the corresponding growth rate). (b) Spectrum of the
transverse motion for the same configuration, computed using macroparticle simulations with the PyHEADTAIL impedance module.
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quadrupolar wakefield equal or opposite to the dipolar
one are shown in Figs. 13–15. The results obtained with
the Vlasov method are successfully compared against the
transverse spectra from macroparticle simulations per-
formed with PyHEADTAIL’s impedance modules.
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