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In synchrotrons, nonuniform fill patterns, which give rise to beam phase transients and a spread in
synchrotron tune between bunches, have been observed to damp longitudinal coupled-bunch instabilities
driven by higher-order modes in rf cavities. The transients are especially large in the presence of Landau
cavities, which are used commonly in storage-ring light sources and particularly in the new generation
of diffraction-limited storage rings. A method has recently been devised to predict the beam transient
including complex form factors for the different bunches. This has now been extended to accurately predict
the growth-rates and oscillation frequencies of coupled-bunch modes for arbitrary fill patterns, taking the
individual complex form factors and equilibrium phases of the different bunches into account. In this paper,
the extended method is presented and the theory is outlined. For a case with significant transient beam
loading, predictions of the resulting beam transient and bunch profiles are compared to measurements.
Predictions of coupled-bunch mode behavior are then benchmarked against results from the macroparticle
tracking code MBTRACK with good agreement. Finally, the method is used to predict the behavior of
coupled-bunch modes as a function of the fields in passive Landau cavities.
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I. INTRODUCTION

In synchrotron storage rings, rf cavities are used to
return the energy that a charged-particle beam has lost to
synchrotron radiation. They also contain the charged
particles in bunches where they execute stable synchrotron
oscillations inside an enclosing potential. In electron
storage rings used as dedicated sources of synchrotron
radiation, Landau cavities are sometimes used to flatten the
center of this potential [1], thereby lengthening the electron
bunches. Increasing the bunch volume in such a way
increases the Touschek beam lifetime and reduces emit-
tance blow-up due to intrabeam scattering [2]. This is
particularly important in the latest generation of synchro-
tron light sources, so-called diffraction-limited storage
rings (DLSRs), which employ multibend achromats to
reach ultralow horizontal emittances.
Commonly, the fundamental mode of a Landau cavity is

loaded by the beam itself and has a high quality factor so
that its fields have a significant effect on the rf potential. In
this way, the fundamental mode can be seen as a long-range
wakefield that has a significant static effect. Throughout

this paper, beam loading of long-range wakefields is
described as either “static” or “dynamic.” Static loading
refers to cases where the centroid and form of the charged-
particle bunches are stationary relative to their rf bucket and
the wakefield is excited at an exact harmonic of the
machine revolution frequency. Dynamic loading is where
there is oscillation of the bunches within their rf buckets
and so the wakefield is excited at a revolution harmonic
plus or minus the oscillation frequency depending on the
sign of the phase advance from one bunch to the next.
The fundamental mode of a Landau cavity also

couples the motion of the different bunches and in bunch-
lengthening mode, is tuned in such a way that it destabilizes
the Robinson mode (motion of all bunches synchronized).
Machines are therefore designed so that this is compensated
by the Robinson damping from the beam-loaded funda-
mental mode in the main rf cavities, which are typically
tuned to match the beam-loaded cavity to the rf power
generator. The dynamic effects of the Landau-cavity
fundamental mode are in this way minimized.
In both the main and Landau cavities, the beam also

excites unwanted higher-order modes (HOMs) whose
resonant frequencies could be close to revolution harmon-
ics. Without selective damping, these HOMs can have large
quality factors comparable to that of the fundamental cavity
mode. If every rf bucket in the machine is filled with a
bunch of exactly the same charge (an even/uniform fill), the
effect of the static loading of these modes is negligible
because the beam has no frequency content at the revolu-
tion harmonics that are not also harmonics of the rf and if a
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HOM has a resonant frequency that is close to an rf
harmonic, its shunt impedance is typically small compared
to that of the cavity fundamental modes. However, a
HOM can excite a coupled-bunch mode that is nearby in
frequency (and damp its complement h −m where h is the
machine harmonic number and m is the coupled-bunch
mode number). If the resulting growth rate is larger than the
damping rate (which may come from synchrotron-radiation
damping or from a feedback system), that coupled-bunch
mode is unstable. The synchrotron oscillations will typi-
cally saturate at some amplitude due to the nonlinearities in
the longitudinal dynamics but this usually constitutes a
significant increase in the energy spread in the beam with a
resulting deterioration of the synchrotron-radiation bright-
ness. The dynamic loading of a HOM is therefore more
relevant to stability than the static loading.
In addition to mitigating the negative effects of Touschek

and intrabeam scattering, bunch lengthening provided by
Landau cavities also reduces the growth rates of HOM-
driven coupled-bunch modes. This is because longer
bunches have a narrower frequency spectrum with lower
amplitude at the typically high frequencies of the HOMs.
Landau cavities also introduce Landau damping, another
way of preventing the destabilization of coupled-bunch
modes. Landau cavities make the rf potential less harmonic
and so the frequency of synchrotron oscillations becomes
dependent on the amplitude and in this way, the spread of
synchrotron frequencies among the particles in a bunch is
increased. A spread in synchrotron frequency between the
bunches can also be introduced by varying the amount of
charge in each rf bucket. The resulting transient beam-
loading of the fundamental modes in the Landau and main
cavities means that their fields are modulated on the time
scale of a single revolution. Consequently, each bunch is
enclosed in a slightly different potential and finds a
different equilibrium rf phase where it gains no net energy
gain per turn. This has a significant effect on the dynamics
of coupled-bunch modes, as has been observed experimen-
tally at ELETTRA [3] and ESRF [4] where, in both cases,
the effect was positive. Static loading of the HOMs is also
introduced because the machine fill is no longer uniform
and so the frequency spectrum of the beam includes certain
revolution harmonics, depending on the exact fill pattern.
This paper explores the effects of the transient beam

loading of Landau cavities in a synchrotron where HOM-
driven coupled-bunch instabilities dominate in the longi-
tudinal plane. Both the static and dynamic effects are
explored. In order to explore the former, a time-domain
matrix-based method, first presented in [5], is employed. It
is then extended to investigate dynamic effects. Similar
analyses of the latter can be found in [4,6–8] but in all those
references, the assumption is made that, while not being of
equal charge (some bunches may have zero charge), the
different bunches are equally spaced in time (by one rf
period). This assumption is necessary for the conversion to

the frequency domain, where the problem is considered in
terms of coupled-bunch modes ordered by resonant fre-
quency. Therefore, if the whole analysis is restricted to the
time domain, this limitation can be avoided. Once the static
beam-loading transient has been evaluated, including
equilibrium longitudinal profiles and form factors for each
bunch, the results can be used to calculate the stability of
the HOM-driven coupled-bunch modes. This is done using
an extension to the method that includes the uneven spacing
and spread in synchrotron tune between bunches and,
unlike previous works, the individual bunch form factors
as well. The output of the first step can be used directly as
the input to the second step so no post-processing is
required. In this way, HOM-driven coupled-bunch modes
in a synchrotron with any arbitrary fill pattern can be fully
evaluated in a computationally efficient way. The form
factors used in both steps can either be complex (have
both real and imaginary components) or purely real of
which, the former is more accurate. The latter is referred
to as the scalar approximation in [9] and is also discussed
in [5]. In this paper, where form factors are used, they are
always complex.
The 3 GeV ring at the MAX IV laboratory in Lund,

Sweden, the first of the aforementioned DLSRs, has been
used to test this method. The relevant machine parameters
are listed in Table I. The MAX IV 3 GeV ring is also unique
in that Landau cavities were included from the conceptual
design stage for the reasons mentioned previously and with
the knowledge that it would help stabilize the beam against
coupled-bunch instabilities both longitudinally and trans-
versely [10] by introducing synchrotron-tune spread and
reducing the overlap of the beam spectrum with that of the
main driving impedances by lengthening the bunches. It is
also a machine where HOMs in the normal-conducting

TABLE I. Nominal parameters of the MAX IV 3 GeV
ring in delivery including the definition used for the shunt
impedance Rs where V and P are the voltage and power in
the cavity respectively.

Parameter Value

Energy E0 3 GeV
Circumference 528 m
rf frequency frf 99.931 MHz
rf voltage V0 1.251 MV
Current 250 mA
Harmonic number h 176
Energy loss per turn U0 363.8 keV
Radiation damping time T 0 25.194 ms
Momentum compaction αc 0.000306
Natural normalized energy spread 0.000769
Landau cavity (LC) harmonic 3
Total LC shunt impedance Rs ¼ V2=ð2PÞ 8.25 MΩ‘
LC quality factor 20800
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main and Landau cavities (which have no HOM dampers)
are the main driving forces for longitudinal coupled-bunch
mode instabilities. Extensive temperature-tuning has been
necessary to move the HOMs away from the revolution
harmonics and obtain stable beam with the help of Landau
damping and synchrotron-radiation damping. No feedback
is used to stabilize the beam longitudinally except for a
mode-0 damper [11,12].
In Sec. II, the theory behind the new two-step method

is outlined, starting with a summary of the theory from [5]
in Sec. II A that is used for the first step of predicting
the static beam transient. This theory has now been
extended, as outlined in Sec. II B, to evaluate the growth
rates of coupled-bunch modes, the second step. In Sec. III,
predictions of the static beam transient are compared
with experimental observations. Next, the method for
predicting the growth rates of HOM-driven coupled-bunch
modes is benchmarked against the macroparticle-tracking
code MBTRACK [13] in Sec. IV. Finally, in Sec. V, the effect
of the Landau cavities at the MAX IV 3 GeV ring is
investigated by evaluating the growth rates of coupled-
bunch modes for different Landau-cavity fields. Landau
damping due to the synchrotron-frequency spread within
each bunch (intrabunch) is not treated by the theory
and is neglected. As shown later, for the particular
nonuniform fill and parameter range studied here, the
effect is small compared to the damping due to bunch-
to-bunch (interbunch) synchrotron-frequency spread and
this is likely to be the case for most nonuniform fills.
Theories developed by Krinsky [14], later followed up by
Lindberg [15] and Venturini [16], cover, for even fill
patterns, cases where the intrabunch frequency spread
dominates and in particular, the flat-potential condition
defined in [1,9].
Another important consideration that is not treated by the

theory is the short-range wakefield and the single-bunch
instabilities that may arise as a result. It is important to
evaluate these independently because, in some cases, they
may be a limiting factor in the use of Landau cavities for
bunch lengthening [17].

II. THEORY

A. Static transient

The theoretical method used to determine the static
transient in a nonuniform machine fill is outlined in [5]
and is briefly summarized here. Based on an iterative
matrix formulation, it is a self-consistent, semianalytical
method for determining the time offsets of the different
bunches relative to some initial estimate of the synchronous
phase ϕs of the main rf. The longitudinal charge profiles of
the different bunches are also determined. The extension
for determining the growth rates of HOM-driven coupled-
bunch modes is outlined in Sec. II B and makes use of
many of the same definitions.

The aforementioned time offsets are collected in a
vector τl and starting from τl ¼ 0, a correction δτl can
be estimated, which is the time offset from some point of
equilibrium where the net energy change per turn of a
single particle is zero. The sources of energy change that
are dependent on τl, namely the voltage due to the long-
range wakefield from another bunch Vbðτl; τjÞ and the rf
voltage VrfðτlÞ¼V0 sinð2πfrfτlþϕsÞ, are Taylor expanded
to first order and the first-order terms are collected on the
left-hand side of the following matrix equation:

Xh−1
j¼0

Re

�∂Vb

∂τj ðτl; τjÞ þ V 0
rfðτjÞδjl

�
δτj

¼ −
U0

e0
þ VrfðτlÞ −

Xh−1
j¼0

Re½Vbðτl; τjÞ� − kjFljql: ð1Þ

The right-hand side contains the constant terms from the
Taylor expansions and the energy lost to synchrotron
radiation U0 and to the short-range wake according to
the fundamental theorem of beam loading kjFljql. Here, e0
is the elementary charge, δlj is the Kronecker delta, k is the
loss factor defined below, ql is the charge of bunch l (empty
buckets may be included by setting ql ¼ 0) and Fl is its
form factor.
The beam-loading voltage Vbðτl; τjÞ in bucket l due to

the charge in bucket j is calculated by summing the long-
range wake potential from that bucket over infinite
turns. Here, only resonant wakefields are considered and
these can each be parametrized by a resonant angular
frequency ωr, a damping parameter α and a point-charge
loss factor k. A complex wake function is used because this
simplifies the subsequent mathematical expressions but the
imaginary part has no physical significance and is ulti-
mately neglected in Eq. (1). The total wake function is then
given by

WðtÞ ¼ −
XM
m¼0

2kme−ðiωr;mþαmÞt ð2Þ

where the summation is overM different resonances whose
individual parameters are indexed with the m subscript.
From here on, only one resonance is considered so that the
summation over m can be dropped but it can easily be
reintroduced later at any stage. The parameters k and α are
used for compactness and can be calculated from the
resonant frequency, the loaded shunt impedance RL and
the quality factor QL of a resonator as

k ¼ ωrRL

2QL
ð3Þ

α ¼ ωr

2QL
: ð4Þ
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The form factor of each bunch must also be calculated at
the resonant frequency of the wake as

Fl ¼ jFljeiφl ¼
Z

∞

−∞
e−iωrðτ−τlÞρðτ − τlÞdτ ð5Þ

where ρ is the normalized charge density of the bunch
over the time offset τ. The form factor approximates the
convolution of the wake function with the longitudinal
bunch profile ρ for the case of a resonant wake function
whose amplitude does not change significantly during the
length of the bunch. The form-factor phase ϕl accounts for
the phase shift that results from convolution of the wake
function with an asymmetric bunch profile. An in-depth
discussion of the form factor can be found in [9].
Similarly to in [18], the infinite sum to determine the

voltage in bucket l due to the charge in bucket j is evaluated
to give

Vbðτl; τjÞ ¼
X∞
n¼0

FlqlW½nT0 þ Δtðτl; τjÞ�

¼ −2kFlql
1 − eð−iωr−αÞT0

e−ðiωrþαÞΔtðτl;τjÞ ð6Þ

where the time between the two bunches Δtðτl; τjÞ is
given by

Δtðτl; τjÞ ¼
(
τj − τl þ ðl − jþ hÞ=frf for l ≤ j

τj − τl þ ðl − jÞ=frf for l > j
: ð7Þ

The derivative with respect to τj is then simply

∂Vb

∂τj ðτl; τjÞ ¼ −ðiωr þ αÞVbðτl; τjÞ: ð8Þ

Equation (1) can be iterated, each time recalculating the
voltages with the updated equilibrium phases. The form
factors can also be calculated and updated every iteration
using the method described in [5] and [9]. In this way, a
self-consistent solution for the equilibrium time offsets can
be obtained.
The charge in a bunch will be distributed around the

equilibrium time offset but it may not be the location of the
centroid or a peak in the charge distribution in cases where
the bunch is overstretched or asymmetric. Furthermore,
two equilibrium time offsets may exist within one rf bucket,
of which this method will only find one. Provided a
complex form factor is used, it does not make the method
invalid but it will be more difficult for it to reach
convergence in the vector τl so another method, such as
macroparticle tracking, may be considered.
Reintroducing the summation over multiple resonant

wakefields from Eq. (2) allows the consideration of
any combination of resonant wakefields from just the

fundamental mode of a Landau cavity to the fundamental
modes of several Landau cavities and multiple higher order
modes in Landau cavities and main cavities. The funda-
mental mode in the main cavities may also be considered
although in this case, the rf voltage V0 and phase ϕs would
usually have to be adjusted to mimic the effect of a slow rf
feedback that keeps the total field amplitude and phase of
the main-cavity fundamental mode constant.

B. Coupled-bunch motion

This section describes the method used to evaluate the
dynamic effect of a single long-range resonant wakefield
but, as above, can be extended to treat several of them.
Attention is turned from evaluating the constant time offset
τl of each bunch l to its motion rl. For this, each bunch is
assumed to be a harmonic oscillator whose motion in
longitudinal phase space over time is given by

rlðtÞ ¼ r̂leiΩt ð9Þ

where r̂ and Ω are complex. When the forces acting on
bunch l are substituted into the equation of motion for a
driven harmonic oscillator [19], the following is obtained:

r00l − i
2

T 0

r0lþω2
s;lrl

¼ αc
E0T0

Xh−1
j¼0

X∞
n¼0

rjðnT0ÞRefF�
l FjqjW0½nT0þΔtðτl;τjÞ�g

ð10Þ

Here, ωs;l is the incoherent synchrotron frequency of the
bunch in bucket l, which characterizes the rf potential for
that bucket and, as commonly defined, is the frequency at
which individual particles with a small energy offset from
the synchronous particle, perform synchrotron oscillations.
The right-hand side of Eq. (10) is a sum of the dynamic
effect of the long-range wakefield from the charge in the
other buckets. As in Section II A, a Taylor expansion has
been performed, of which, this is the first order term. The
constant term has been dropped because it only gives rise to
a constant time offset, which it was the goal of the previous
section to evaluate. In this section, it is assumed that the
equilibrium time offsets have been evaluated already. The
imaginary part of the wake function is again neglected
because it has no physical significance. The second term
on the left hand side accounts for the radiation damping
where T 0 is the radiation damping time. Each bunch is still
assumed rigid with a fixed form factor so diffusion due to
the random nature of radiation emission and quantum
excitation is neglected.
The infinite sum over previous turns is evaluated to give

analytical expressions for the elements of a matrix that can
be inserted into the right-hand side of Eq. (10).
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Mlj ¼
X∞
n¼0

RefF�
l FjqjW0½nT0 þ Δtðτl; τjÞ�g

rjðnT0Þ
r̂j

¼ −kjFljjFjjqj
�ðiωr − αÞeðiωr−αÞΔtðτl;τjÞþiðφj−φlÞ

1 − eðiωr−αþiΩÞT0

þ ð−iωr − αÞeð−iωr−αÞΔtðτl;τjÞ−iðφj−φlÞ

1 − eð−iωr−αþiΩÞT0

�
ð11Þ

In practice, the approximationΩ ¼ hωs;li is substituted into
Eq. (11). This prevents the final eigenvalue equation from
having to be solved self-consistently and, as discussed in
[15], is justified for the specific case of a HOM impedance.
Equation (11) is similar to that found by Thompson and
Ruth [6] but with individual complex bunch form-factors
included and the general expressions for the time between
bunches given by Eq. (7).
Putting Eq. (11) into Eq. (10) and evaluating the left-

hand side gives�
Ω2 − i

2Ω
T 0

− ω2
s;l

�
r̂l ¼ −

αc
E0T0

Xh−1
j¼0

Mljr̂j: ð12Þ

A common next step would be to invoke the approxima-
tion Ω ≈ hωs;li and then write Ω2 − i 2ΩT 0

− ω2
s;l ≈ 2ωs;lðΩ −

i=T 0 − ωs;lÞ so that the following eigenvalue equation is
obtained:

Ωr̂l ¼−
αc

E0T0

Xh−1
j¼0

1

2ωs;l

�
Mljþ

�
ωs;lþ

i
T 0

�
δjl

�
r̂j: ð13Þ

The advantage of this method is that the eigenvalue Ω is
directly the complex coherent frequency of a corresponding
mode (eigenvector). However, one of the consequences of
bunch-lengthening Landau cavities is that the synchrotron
frequency is reduced and may become comparable to the
frequency shift due to the other long-range wakefields
making the above approximation invalid. It is preferable,
therefore, to not make this approximation so that the
eigenvalue equation is instead�

Ω2 − i
2Ω
T 0

�
r̂l ¼ −

αc
E0T0

Xh−1
j¼0

½Mlj þ ω2
s;jδjl�r̂j: ð14Þ

The eigenvalue λ is then given by

λ ¼
�
Ω2 − i

2Ω
T 0

�
: ð15Þ

The resonant frequency of the corresponding eigenmode
can then be found as

ReðΩÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðλÞ−1=T 2

0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðReðλÞ−1=T 2

0Þ2þ ImðλÞ2p
2

s

ð16Þ

and the total growth rate is

ImðΩÞ − 1

T 0

¼ ImðλÞ
2ReðΩÞ : ð17Þ

It can be noted from Eq. (16) and Eq. (17) that inclusion
of the radiation damping makes little difference beyond
reduction of the evaluated mode growth rate, provided that
one period of oscillation is much shorter than the radiation
damping time and consequently ReðλÞ ≫ 1=T 2

0. This is
neglecting all diffusion effects as previously stated.
In summary, three aspects are included here that

make the theory more general than in the references
mentioned in the Introduction [4,6–8]. The first is the
use of the individual complex form factor for each bunch
which allows the accommodation of any bunch profile with
a single synchronous phase and accounts for variation in
the bunch lengths and longitudinal profiles along the train.
The second is that the assumption Ω ≈ hωs;li is not made
and this allows for large shifts in the coherent frequency of
coupled-bunch modes from the incoherent synchrotron
frequency averaged over all bunches. Finally, at no point
is the assumption made that the bunches are equally
separated in time. This is usually required for a conversion
to the frequency domain. Here, however, no conversion to
the frequency domain is attempted.
Once the eigenvalue-mode pairs have been determined, it

may be desirable to interpret them in the frequency domain
in order to assign numbers to the unstable coupled-bunch
modes and compare with experimental observations. This
can be done with a discrete Fourier transform of the
eigenvector r̂l, perhaps weighted by the bunch charges,
but it should be noted that this does not give an accurate
frequency-domain representation of the eigenmode in
cases where the bunches are not equally spaced in time.
In addition, unlike with a uniform fill, it will typically not
be possible to fully describe the eigenmode by associating
it with a single revolution harmonic. Nevertheless, an
approximate frequency spectrum can be obtained, which
may be compared to the results of applying similar
operations to experimental data.
As will be shown later, the assumption of harmonic

motion holds well, even with considerable Landau-cavity
fields. However, unlike the method outlined in Sec. II A,
validity is lost when the Landau-cavity fields are very large
so that the rf potential becomes flat at the equilibrium time
offset. The assumption of harmonic motion then begins to
break down and it becomes difficult to define a single
incoherent synchrotron frequency for the bunch. When the
bunches are overstretched and there are two equilibrium
time offsets, the method certainly becomes invalid.

III. STATIC TRANSIENT

The method to determine static transients has been
extensively benchmarkedas reported in [5] and its predictions
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have been compared to measurements of modest beam
transients at the MAX IV 3 GeV ring. Here, its predictions
are compared to more recent measurements of a much larger
beam transient also at the MAX IV 3 GeV ring where a
nonuniform fill pattern is used to reliably prevent HOM-
driven instabilities. The machine parameters are listed in
Table I and are the same as those currently used for actual
delivery of light to users (except that the energy loss per turn is
without insertion devices, which were fully open during the
experiment so that their impact was negligible). The exact fill
pattern is initially determined by the method used for
injection. Each pulse of the full-energy linac injector accel-
erates a train of buncheswhose length corresponds to roughly
nine rf buckets in the ring. After each train is injected, the
delay of the linac relative to the ring revolution trigger is
stepped so as to distribute the injections among the different
ring rf buckets. This process continues until the delay exceeds
the requested number of buckets, at which point, it wraps
around and steps the remainder at the beginning of the train so
that the process does not always start from zero. The step in
delay is deliberately chosen to not be a factor of the number of
buckets requested to avoid seeing a periodicity in the bunch
charges in the ring that mirrors the charge profile of the linac
train. Tapers in bunch charge then arise at the ends of the
bunch train in the ring because these buckets are injected into
less often than the others. In addition, the different bunches in
the train have different bunch lengths and therefore, different
Touschek lifetimes, which means that after several top-up
injections, the longer bunches have more charge in them
than the shorter bunches. The fill pattern, as measured by
integrating the sum signal of a BPM, is shown in Fig. 1where
a simplemodel bunch trainwhich also features taperingof the
bunch charge at each end is also shown. The model train is
introduced here because it is later used to test the theory
outlined in Sec. II B. It is used instead of the measured train
for this purpose because it is free from noisewhichmakes the
predictions of the theory easier to interpret. It should be noted
that the temporal resolution of the BPM measurement is not

sufficient to accurately resolve the charge of each individual
bunch and so some smoothing of the train current profile
is expected. For example, it is known from the optical
sampling oscilloscope measurements introduced below, that
one bucket contains practically zero charge and this does not
show up in the BPM-based charge measurement.
Figure 2 shows the measured beam transient in

comparison to the prediction from the theory outlined
in Sec. II A. An optical sampling oscilloscope from
Hamamatsu was used to take measurements of longitudinal
bunch profiles, from which the measured data are extracted.
The detector head of this device has a streak tube for the
sampling followed by a photomultiplier tube. This is not a
single-shot measurement and multiple turns are required to
acquire each bunch profile. To acquire the whole train took
close to two hours with regular pauses for top-up injections.
Furthermore, not all profile measurements were successful,
most likely due to a feedback used to compensate for
thermal drifts in the experimental setup, which moved a
mirror motor during the sweep of the oscilloscope. These
points were identified from the difference in the extracted
bunch length to those of the neighboring buckets and in
total, 136 out of 176 data points were kept. All the results in
this section are from the same series of bunch-profile
measurements.
In the calculation, the beam-loading of the main cavities

was neglected. This is justified because the time derivative
of the beam-loading field in the main cavities is much
smaller due to the lower frequency and smaller tuning
angle. Predictions have been made for both the model
bunch train and the measured bunch charges assuming a
Landau cavity detuning of þ60 kHz, which was found to
well reproduce the measured data. This is slightly smaller
than the detuning that would be used to obtain flat potential
with a uniform fill. The predicted transient based on the
measured bunch charges is less steep at the ends of the train
than the one based on the model and it is also slightly closer
to the measured data. This is a consequence of the higher

FIG. 1. Bunch-train current profiles used in the reconstruction
of the beam transient.

FIG. 2. Comparison of the predicted beam transient for differ-
ent train current profiles with measured bunch time offsets.
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charges stored in the longer bunches in the middle of the
train. Both predictions overestimate the measured transient
and this is likely due to inaccuracies in the train current
profile, since the difference between the two predictions is
of similar magnitude to the discrepancy. Alternatively, it
could be because of the profiles of the bunches in the taper,
which tend to be overstretched to the extent that they
consist of two distinct bunches. These profiles are not so
well reproduced by the theory, as discussed later, and this
could also be a cause of the aforementioned discrepancy.
It is also not excluded that multiple, physical solutions
exist to the problem. Nevertheless, the agreement between
measurement and theory is good.
Figure 3 shows the bunch lengths along with predictions

made for the same two bunch trains as in Fig. 2 using the
theory outlined in Sec. II A. Results corresponding to the
same 136 data points that appear in Fig. 2 are included and
they show a smooth variation in the bunch length along the
train, which is well reproduced by the theory. However, the
measured data also include variations with a shorter period.
These are physical and caused by the transient beam
loading of one or more higher-order modes in the cavities

as discussed in [5]. Finally, the underestimation of the
bunch lengths in the middle of the train is most likely due to
residual coupled-bunch motion, which has been detected
but which is not large enough to have a measurable impact
on the energy spread.
As demonstrated in [5], the theory is not only able to

reproduce beam transients and bunch lengths but also the
precise bunch profiles. Several examples of this are shown
in Fig. 4, where the measured bunch train has been used.
For certain bunches, the two profiles appear to be displaced
from one another in time. This is a result of the theory
overestimating the beam transient as mentioned previously.
Overall, however, the agreement between the theory and
the measurement is very good. In the tapers of the train
where the bunches are overstretched (bunch 171, for
example), the theory correctly predicts the existence of
two distinct bunches but does not correctly predict their
separation or relative sizes. Still, the profile of the larger
bunch lines up with the theory very well. One assumption
made in the theory is that the beam loading field does not
change significantly over the length of one single bunch.
This assumption may explain the difference in the case of
an overstretched bunch such as this one because small
differences in the beam loading can lead to large differences
in the bunch profile.

IV. BENCHMARKING

Before moving on to evaluate the growth rates of coupled
bunch modes in the presence of the transient evaluated in
Sec. III, the method of determining growth rates was
benchmarked against the macroparticle tracking code,
MBTRACK, for the simple case of a uniform fill pattern, a
single HOM and no Landau cavities. MBTRACK has
previously been benchmarked against theory [20]. The
machine parameters in Table I were used and in MBTRACK,
one macroparticle per bunch was selected so that no
discrepancy arose due to the dynamics within each bunch,
which are not treated by the theory. The HOM used
in the simulation is close to the revolution harmonic at
1.09413 GHz so that it drives coupled-bunch mode

FIG. 3. Comparison of the predicted bunch lengths for different
train current profiles with measured values.

FIG. 4. Four different bunch profiles as measured using the synchrotron light in comparison with profiles predicted by the theory
taking the measured bunch train as an input.
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number 167. It is based on a HOM that has been measured
in one of the cavities in the MAX IV 3 GeV ring and that
also shows up in electromagnetic simulations. The quality
factor of 24000 was obtained from transmission measure-
ments on the cavity using a network analyzer. According to
electromagnetic simulations, the HOM in question should
then have shunt impedance of 325 kΩ but for the bench-
marking, a value of 160 kΩ was used so that the growth
rate on resonance was small enough to be easily extracted
from the results of the macroparticle simulations. This was
done by demodulating the time-domain data by sampling
the positive and negative peak time offsets of each bunch
every synchrotron period, averaging the absolute values
over all bunches, taking the natural logarithm and then
performing a linear fit. Radiation damping was neglected
for the purposes of this benchmarking. Figure 5 shows
that the time-domain matrix method predicts very similar
growth rates to those obtained using MBTRACK for the same
HOM parameters.
Next, the model nonuniform fill from Sec. III was

simulated in the presence of the same HOM, still with only
one macroparticle per bunch in the tracking and neglecting
the form factor in the theory. The Landau cavities were also
reintroduced with a detuning ofþ64 kHz. The synchrotron
frequency of each bunch ωs;l was calculated from the
derivative of the local total rf voltage, as described in [5].
The spread in synchrotron tune has a large effect and so here,
the calculation of the incoherent synchrotron tune for
each bunch is important. The results of this calculation
are shown in Fig. 6.
In this scenario, the bunch motion is highly nonlinear

and the growth of the coupled-bunch modes is not
exponential, which means that it is not possible to deter-
mine the growth rates from the MBTRACK results using the
method described above. Instead, the theoretical calculation
was iterated to obtain numerically a threshold value for the

shunt impedance above which, the least stable coupled-
bunch mode has a growth rate that is larger than the
radiation damping rate. Radiation damping was also
included in the macroparticle simulations, although quan-
tum excitation could not be included because there is only
one macroparticle per bunch and a coherent excitation
would be unphysical. The results are shown in Fig. 7. It can
be seen that, once again, the theory agrees well with the
macroparticle simulations. However, the agreement is not
perfect, particularly when the HOM frequency is lower than
the nearest revolution harmonic. Two assumptions made in
the theory might explain this difference. The first is that the
motion of the bunches is perfectly harmonic and the second
is that the HOM has no effect on the static transient or the
incoherent synchrotron frequency when in reality and in the
MBTRACK simulations, it does have a static effect, albeit a
small one. It is actually possible to include this effect in the
theory by including the HOM in the calculation of the static

FIG. 5. Growth rates predicted for a uniform fill with point
bunches compared to results obtained using MBTRACK. The
horizontal axis is the offset in frequency of the HOM from the
closest revolution harmonic at 1.09413 GHz.

FIG. 6. The synchrotron frequency calculated for each bunch
from the derivative of the total local rf voltage.

FIG. 7. Bunch motion observed in macroparticle tracking
compared to the threshold shunt impedances predicted by theory
for point bunches. The black pixels are points for which no
simulation was run.
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transient. However, this would increase the calculation
time significantly because the transient would have to be
reevaluated for every HOM detuning and shunt impedance.
If the HOM is neglected in the calculation of the static
transient, this calculation only needs to be performed once.
Evaluating the coupled-bunch modes, which is far less
demanding than the static-transient calculation in terms
of computing time, can then be done separately for each
HOM detuning.
It can be seen in the results of both the macroparticle

simulations and the theory that when the HOM is tuned to
lower frequencies than the nearest revolution harmonic,
the threshold shunt impedances are slightly lower than at
the same positive frequency offsets. This arises from the
interplay between the real and imaginary part of the
coherent frequency shift in Eq. (16) and Eq. (17). If
Eq. (13) is used instead, no such asymmetry is obtained,
which highlights the importance of not making this
common approximation in this case. A similar asymmetry
was observed in [15].
Figure 8 shows the results of the same calculation where

the finite bunch size has been included in both the simu-
lation, through increasing the number of macroparticles per
bunch to 10000, and in the theory by including the complex
form factors of each bunch. Here, quantum excitation is
additionally included in the macroparticle simulation to
stop the energy spread in the bunch going below the nominal
value. One difference with the results shown in Fig. 7 is
that the threshold shunt impedances are slightly higher
across the full frequency range because the bunch form
factors are less than unity. The inclusion of a finite bunch
length has improved the level of agreement compared to the
simpler case where the bunch form factors were neglected.
The level of agreement justifies the assumptions and
approximations made, including in the calculation of the
incoherent synchrotron frequency for each bunch.

V. EFFECT OF LANDAU-CAVITY FIELDS

To illustrate the utility of the developed method, it was
applied to evaluate the effect of the HOM used in Sec. IV,
with the more accurate shunt impedance of 325 kΩ, on the
delivery conditions at the MAX IV 3 GeV ring. The effect
of this HOM was estimated using the theory outlined in
Sec. II B for different values for the detuning of the Landau
cavities. It was assumed that the same HOM was present in
two of the main cavities and could be detuned independ-
ently, as is achieved in reality by using different operating
temperatures for each cavity. Again, the beam loading of
the fundamental mode in the main cavities is neglected, as
is the effect of the HOM on the static transient. Figure 9
shows the predicted growth rate and coherent frequency
of the fastest-growing coupled-bunch mode for three
different scenarios. The blue and orange curves correspond
to cases in which both HOMs are detuned by 175 kHz in
the same direction, higher or lower than the neighboring
revolution harmonic (respectively referred to as “high” and
“low” in the legend). The green curves are for the case in
which the two HOMs are detuned by 175 kHz but in
opposite directions (referred to as “combination” in the
legend). As could be expected from the results in Sec. IV,
the growth rates are larger when both HOMs are detuned to
lower frequencies than when both are detuned to higher
frequencies.
In all three scenarios, above a certain Landau-cavity

voltage, the coherent frequencies start to increase and the
growth rates start to decrease. The interplay between the
coherent frequency and the growth rate of the coupled-
bunch modes is not surprising because the two are linked
according to Eq. (16) and Eq. (17). The decrease in the
growth rate is particularly sharp in the case of the two
HOMs being detuned in opposite directions. In this

FIG. 8. Bunch motion observed in macroparticle tracking
compared to the threshold shunt impedances predicted by theory
including the effect of the bunch forms and lengths. The black
pixels are points for which no simulation was run.

FIG. 9. Growth rates and coherent frequencies of coupled-
bunch modes driven by two similar HOMs either detuned
similarly or in opposite directions from the nearest revolution
harmonic. The black dashed line shows the radiation damping
rate of 40 s−1.
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scenario, the growth rate goes below the radiation damping
time and reaches the lowest values shown in the figure. At
higher Landau-cavity voltages, there is a discontinuity in the
curve of the coherent frequency of the least-stable coupled-
bunch mode. The reason for this discontinuity is that in
addition to changing the eigenfrequencies, the change in the
Landau-cavity voltage also changes the eigenmodes them-
selves, as shown in Fig. 10.When the Landau-cavity voltage
is lower than 377 kV, the point of the discontinuity on the
horizontal axis, the least-stable eigenmode maintains a
somewhat constant form where all bunches oscillate with
roughly the same amplitude. At higher Landau-cavity
voltages, on the other hand, the form is markedly different:
the coupled-bunchmotion is mostly confined to the bunches
in the middle of the train. At Landau-cavity voltages below
370 kV, detuning both HOMs to higher frequencies delivers
the lowest growth rates.

The behavior shown in Fig. 9 can be understood by
looking at the incoherent frequency of the bunches in the
train, which are shown in Fig. 11. The incoherent synchro-
tron frequencies are obtained from the results of the static-
transient calculation and so, since the HOMs were
neglected in this calculation, the same frequencies (as well
as bunch profiles and lengths) were used in the second step
for all three scenarios. To begin with, for increasing
Landau-cavity fields, the incoherent frequency is decreas-
ing for all bunches, same as for the coherent frequency of
the least stable coupled-bunch modes in Fig. 9. Then, at just
above 360 kV of Landau-cavity voltage, the incoherent
synchrotron tunes of the bunches close to the ends of the
bunch train start to increase while the tunes of the middle
bunches continue to decrease. This is accompanied by a
significant increase in the spread in synchrotron frequency
to almost 100 Hz RMS.
As pointed out in [16], for Landau damping to occur,

the “frequency of the [coupled-bunch] mode of interest
should overlap with the system natural frequency spread.”
We can see by comparing Fig. 9 with Fig 11 that this is
only true in the case of the two HOMs being tuned to
opposite sides of the nearest revolution harmonic. This is
because, in this case, the reactive impedances of the two
HOMs cancel and so the resulting frequency shift is close
to zero. Landau damping is therefore only realized in this
case. This is an important conclusion that should be kept
in mind when dealing with HOMs in rf systems with
multiple cavities.
In order to justify neglecting intrabunch Landau

damping, the tune spread within each bunch was calcu-
lated using the theory in the appendix of [9] for the
highest Landau-cavity voltage shown in Fig. 9 and is
compared with the interbunch tune spread in Fig. 12. For
all bunches, the intrabunch tune spread is below 16 Hz
and the average value (weighted by bunch charge), is
10 Hz. As can be seen on the figure, this is almost a

FIG. 10. The real component of normalized eigenvectors that
correspond to the least stable coupled-bunch mode at three of the
different Landau-cavity voltages that appear in Fig. 9 for the case
of two HOMs tuned differently.

FIG. 11. Incoherent synchrotron tune spread within the bunch train as a function of Landau cavity voltage: 3D plot on the left and
projection on the right.
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factor of ten smaller than the tune spread between
bunches for the same nonuniform fill and a factor of
six smaller than the intrabunch tune spread when flat-
potential conditions are satisfied. Comparing the tune
spreads in this way is not an accurate comparison of
the amount of damping present (to what extent this can
be done is discussed in [15]) but it does support the
assumption that, for this particular nonuniform fill, the
damping due to the frequency spread between bunches is
dominant. This assumption is also supported by the good
agreement shown in Fig. 8 between macroparticle
tracking, a method that includes both intrabunch and
interbunch tune spreads and theoretical predictions that
neglect the intrabunch component. It is likely that this
assumption applies more generally to nonuniform fills
where the bunch-lengthening is significantly reduced
compared to flat-potential conditions, although each case
should be evaluated individually.
As well as being a turning point for the incoherent

synchrotron frequency, for Landau-cavity voltages above
370 kV, the bunches in the middle of the train are
longer than those at the edge, as shown in Fig. 13.
A similar phenomenon was observed in [5], although in
that case it was the length of the bunch train that was
being varied.
Another advantage of the method used here to

evaluate the growth rates is the ease with which certain
effects can be separated so that the impact of each can
be gauged, even if it is not possible in reality to
maintain one of the effects without eliminating the
other. The results of such an exercise for the third case
in Fig. 9 are shown in Fig. 14. It can be seen that the
aspect that has the largest impact is the tune spread
between the bunches. When this is removed, the steep
drop in growth rate when the Landau cavity field is
above 360 kV is not seen and instead, the decrease is
more gentle, similar to in the other two cases in Fig. 9.
It is only when the tune shift due to the increase

in Landau cavity field is also removed that the effect of
the bunch lengthening shows up. In this case, the
growth-rate curve mimics the change in the average
form factor of the bunches in the train and is at a
minimum around 370 kV Landau cavity voltage where
all of the bunches have roughly the same length.
Another case that was tried was removing the phase
transient by giving all the bunches the same time offset.
This is not shown in the figure as it was found to make
very little difference for the following reason. In a
coupled-bunch mode in a uniform fill, there is a fixed
phase advance between the oscillations of consecutive
bunches. In a nonuniform fill, on the other hand, the

FIG. 12. Intrabunch RMS synchrotron tune spread within each
bunch with 402 kV Landau-cavity voltage.

FIG. 13. Bunch length for different bucket numbers for three
different Landau-cavity voltages that appear in Fig. 9.

FIG. 14. Growth rates and coherent frequencies of coupled-
bunch modes driven by two HOMs detuned in opposite directions
from the nearest revolution harmonic. The impact of two effects
are investigated. First, the tune spread is removed by setting the
tune of each bunch to the average value hωs; li. Second, the tune
shift due to the increased fields in the Landau cavities is removed
by setting the tune of each bunch to the average value for all
bunches and all Landau cavity fields in the figure. The cases are
otherwise identical.
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phase advance varies because the temporal separation
from one bunch to the next is not fixed. This varying
phase advance allows the HOM to remain approximately
resonant with the beam, even though the transient is
large compared to the bandwidth of the HOM.
For comparison, calculations for the same HOMs have

been performed for the case of a uniform fill with the
flat-potential condition satisfied, which can be achieved
with a Landau-cavity voltage of 397 kV. The rf potential
around each bunch is then quartic [1] and the RMS
synchrotron-tune spread within each bunch is 60 Hz, as
shown in Fig. 12 and there is no tune spread between the
bunches. The theory for this case as presented in [15] has
been applied and the results are shown in Fig. 15. The
theory assumes that the tune shift is small and for the
cases where both HOMs are tuned to the same side
of the resonance, this is clearly not the case. This
approximation is also the reason that for all three cases,
the same growth rate is predicted in the absence of
Landau damping. Nevertheless, similar to the nonuni-
form-fill case, when the HOMs are tuned to the same side
of resonance, their reactive impedance means that the
coherent tune of the least-stable coupled-bunch mode is
outside of the natural tune spread within the bunch and
so the beam is more likely to be unstable. When the two
HOMs are tuned differently, their reactive impedances
cancel so the coherent tune shift is small and the Landau
damping is strong. In this case, the results predict that the
Landau damping provided by a quartic potential is also
enough to prevent a coupled-bunch mode from being
unstable.
A uniform fill and the flat-potential condition is the

antithesis of the case of a nonuniform fill with transient

beam loading in that it is the intrabunch tune spread that
dominates where as in the latter, it is the interbunch tune
spread that dominates. However, it is not excluded that a
situation could arise where both effects are equally
important and in this case, neither the theory presented
in Sec. II B nor the theory used to produce Fig. 15
would be sufficient to solve the problem completely.
The appendix of [15] does discuss how one would go
about doing this, particularly for the case of two or
more bunch trains, but it does not go so far as to
evaluate the dispersion relation for a realistic scenario
and for the specific cases that are explored in depth in
[15], namely harmonic motion, weakly nonlinear poten-
tial and flat potential, the evaluation involves some loss
of generality and the assumption of a small coherent
tune shift.

VI. CONCLUSION

A method has been developed to accurately evaluate
the stability of coupled-bunch modes in a synchrotron
storage ring in the presence of an arbitrary fill pattern.
The method builds upon and extends previous work and
evaluates not only the static but also the dynamics
effects of nonuniform fills accounting for the uneven
spacing of the different bunches and their different
charge profiles. The transient beam loading, which is
particularly pronounced when Landau cavities are in
use, leads to a spread in the synchrotron tune between
bunches and this can damp coupled-bunch instabilities.
The first step in the new method is to evaluate a self-
consistent solution for the effects of the transient beam
loading in terms of the phase transients and the variation
in the lengths and profiles of the different bunches. This
is done through the use of a complex form factor and
produces results that agree well with experimental
observations. From these results, the growth rates and
coherent frequencies of the different coupled-bunch
modes can then be calculated directly. The ease of
the transition from the first step to the second can be
seen in the similarities of the matrices in Eq. (1) and
Eq. (11) which mean that in practice, computer code
used to compute the result of the first step can be reused
in the second. The profile of each individual bunch is
also accounted for in the second step through the use of
individual complex form factors.
As an alternative, input to this second calculation could

be obtained from macroparticle tracking or experiment,
either of which could be used to determine the equilibrium
time offsets of the bunches and their longitudinal profiles.
However, both of these sources are affected by noise and
the discretization may not be optimal for calculation of the
bunch form factors so additional post-processing would be
inevitable. Furthermore, as mentioned in [5], all steps in
this method can be carried out on a laptop or personal
computer in contrast to macroparticle simulations, which

FIG. 15. Growth rates against frequency shift of coupled-bunch
modes driven by two similar HOMs either detuned similarly or in
opposite directions from the nearest revolution harmonic for
bunches in a flattened rf potential. The points correspond to
results for the three different cases while the curves are stability
contours: anything below the curve is stable due to Landau
damping.
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typically require computing clusters when dealing with
multiple bunches. The total computation time for the new
method is dominated by the first step so the comparison
made in [5] is also valid here (5.5 minutes on a laptop
compared to 28 minutes on a node with 20 cores for the
macroparticle tracking). Within this, the numerical inte-
gration to determine the longitudinal bunch profiles and
form factors is the most time consuming so the computation
time increases almost linearly with the number of rf
buckets. Once the first step is complete, the evaluation
of the growth rates and coherent frequencies takes less than
a third of a second for MAX IV. This would increase with
the square of the number of buckets but a machine would
have to have over 2000 rf buckets for the computation to
take more than one minute. There is, therefore, a lot to be
gained in terms of computing resources from using this
method instead of macroparticle tracking, particularly
when evaluating the effects of HOMs in large storage rings.
The extended method for evaluating dynamic effects has

been thoroughly benchmarked against the results of macro-
particle tracking simulations. For cases with nonuniform
fill patterns, the threshold shunt impedances of a HOM
driving coupled-bunch modes were calculated for the
comparison. This gives confidence, not only in the accu-
racy of the results, but also that the new method can be used
alongside macroparticle tracking, making the most of the
advantages that the former has with regards to computing
resources and that the latter has with regards to compre-
hensive inclusion of multiple phenomena.
Finally, the method has been used to investigate the

effects of selective HOM tuning on coupled-bunch mode
stability. It is predicted that, in the case of the same HOM
existing in two cavities, it is beneficial to tune the HOM
differently in each when the Landau cavity field is high.
This is because the reactive impedances cancel and so the
coherent frequency is within the spread of the natural
frequencies of the system, which is a necessary condition
for Landau damping [16]. This raises the more general
point that in any system that relies on Landau damping for
stability, the reactive impedance should be minimized
because the system will lose stability if there is a large
shift in the coherent tune. At low Landau-cavity fields,
tuning both HOMs to higher frequency is beneficial. To get
a more accurate prediction for a given ring, the exact nature
of the HOMs in all cavities must be known. Work is
currently ongoing at MAX IV to obtain such a model for
the cavities in the 3 GeV ring [21].
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