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We study the effect of a passive harmonic cavity, introduced to cause bunch lengthening, in an electron
storage ring. We derive a formula for the induced voltage from such a cavity with high Q, excited by a
sequence of bunches, allowing for arbitrary gaps in the sequence and arbitrary currents. Except for a minor
term that can be determined iteratively, the voltage is given in terms of a single mode of the Fourier
transforms of the bunch forms, namely, the mode at the resonant frequency of the cavity. Supposing that the
only wakefield is from the harmonic cavity, we derive a system of coupled Haïssinski equations which
determine the bunch positions and profiles in the equilibrium state. The number of unknowns in the system
is only twice the number of bunches, and it can be solved quickly by a Newton iteration, starting with a
guess determined by path following from a solution at a weak current. We explore the effect of the fill
pattern on the bunch lengthening and also the dependence on the shunt impedance and detuning of the
cavity away from the third harmonic of the main accelerating cavity. We consider two measures to reduce
the effects of gaps: (i) distribution of the gaps around the ring to the greatest extent allowed and (ii) “guard
bunches”with higher charges adjacent to the gaps, compensating for the charge missing in gaps. Results for
parameters of the forthcoming Advanced Light Source upgrade are presented.
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I. INTRODUCTION

In electron storage rings, the phenomenon of Touschek
scattering often limits the lifetime of a stored beam [1]. This
is the aspect of intrabeam scattering in which small trans-
verse momenta are transformed through Coulomb scatter-
ing and a Lorentz boost into one large and one small
longitudinal momentum in the lab frame, sending both
particles outside the momentum aperture of the ring. The
effect may be counteracted by reducing the charge density
in the beam. One way to do that is to increase the bunch size
in the longitudinal direction. This can be done by adding a
cavity with resonant frequency close to a low harmonic of
the main rf frequency, say, the third or fourth harmonic.
This is often called a higher-harmonic cavity (HHC).

The quadratic potential well of a usual rf system can be
turned into a quartic potential well, by arranging the HHC so
as to zero the second and third derivatives of the effectivewell
[2,3]. This condition, often referred to as “ideal”, results in a
flattop equilibrium bunch profile with a substantial bunch
length increase, say, by a factor of 4 or more in cases of
interest, and an increase of the Touschek lifetime by a
comparable factor. However, the flattop is not necessarily
the best configuration, since a further lifetime improvement
can be achieved by “overstretching”, which causes the
appearance of two peaks in the bunch profile. This must
not be carried too far, however, since eventually the average
lifetimewill degrade rather than improvewith overstretching.
Higher-harmonic cavities for bunch lengthening have

long been in use at several third-generation light sources,
including National Swedish Synchrotron Radiation Facility
(MAX-II, now closed) [4], Advanced Light Source (ALS)
[5], Swiss Light Source (SLS) [6], Sincrotrone Trieste
(ELLETRA) [7], Berlin electron-storage ring (BESSY) [8]
and in the Double Annular Φ Factory (DAFNE eþ − e−
collider) [9]. There is now renewed interest driven by the
trend toward ultralow emittance, which is making the
new generation of light sources increasingly sensitive to
scattering effects. A possible installation at National
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Synchrotron Light Source (NSLS-II) is being evaluated
[10–12], and the fourth-generation light source MAX-IV
has a system already commissioned [13]. Forthcoming
fourth-generation machines, including Advanced Light
Source upgrade (ALS-U) [14], Advanced Photon Source
upgrade (APS-U) [15], Brazilian Synchrotron Light Source
(SIRIUS) [16], Upgrade of synchrotron light source at
DESY (Deutsches Elektronen- Synchrotron) (PETRA-IV)
[17], Swiss Light Source upgrade (SLS-2) [18], European
Synchrotron Radiation Facility upgrade (ESRF-EBS) [19],
Diamond Light Source upgrade (Diamond-II) [20], and
Hefei Light Source upgrade (HLS-II) [21] all have har-
monic cavities as essential components.
The harmonic cavity may be passive or actively excited,

but a natural first step is to consider the less expensive
passive option. Our discussion is for the passive case, but our
methods could be adapted to the active system. In the passive
case, the field induced in the cavity by a bunch train depends
strongly on the fill pattern. If the beam has a uniform fill
pattern, e.g., all rf buckets are filled or all the bunches are
separated by a fixed number of empty rf buckets, there exists
a beam equilibrium with all bunches having the same profile
(possibly of the flattop form if the ideal HHC settings are
met). However, if there are significant gaps between bunch
trains (or a long gap following a single-train beam), the
quality of the beam equilibrium can be compromised.
Instead of uniform charge distributions along the train,
one then sees a variation of the bunch form and centroid
position along the train. This may cause severe limitations to
the effectiveness of the HHC system, either because of the
resulting uneven lifetime or/and because of interference with
the functioning of the machine feedback systems used for
beam stabilization, and may prevent the attainment of the
desired bunch lengthening.
There are several reasons for the presence of gaps in the

bunch train. Historically, gaps have been needed for ion
clearing. Another demand arises from the requirements of
synchrotron light users, who may need different fill patterns
for different types of experiments. Experiments needing
precise timing of x-ray pulses generally require more gaps
than those asking for high brilliance. In the ALS-U, gaps are
needed for on-axis injection from the accumulator ring [22].
In this paper, we present a robust and efficient method to

evaluate the beam equilibrium for arbitrary HHC settings
and beam-fill patterns. Our approach, entailing the numeri-
cal solution of a system of nonlinear algebraic equations,
extends the method introduced in Ref. [23] for the
determination of single-bunch Haïssinski equilibria in
the case of short-range wakefields. It is much faster than
macroparticle-based methods and, we believe, an improve-
ment on the method recently introduced by Olsson,
Cullinan, and Andersson [24].
Our immediate objective is to study the effect of the fill

pattern on the bunch densities in the equilibrium state.
While this is a useful first step with rewarding practical

implications, e.g., offering guidance on the choice of HHC
design parameters, our final goal is to understand the
threshold in current for an instability and the time-
dependent behavior beyond the threshold.
The widened potential well has some benefits: The

reduced peak bunch current and increased longitudinal
tune spread may lead to the damping of certain instabilities.
However, other instabilities may be induced, either through
the fundamental or higher-order modes of the HHC
[25–28] or by possibly aggravating the effect of higher-
order modes in the main cavity [29]. The method presented
here is an essential ingredient toward the application of
mode-analysis techniques to the study of beam stability
when HHCs are present.
Besides reports on specific projects as cited above, there

are several papers which discuss the issues that concern us
in a more or less general way, through theory, simulations,
and measurements. Byrd and Georgsson [3] and Hofmann
and Myers [2] treated the situation without HHC beam
loading (i.e., without the cavity wakefield), which is the
starting point for the present work. Towne [30] studied
stability of stretched bunches in the presence of a broad
band impedance together with a high-Q resonator, using
Vlasov-Fokker-Planck simulations and measurements at
the NSLS vacuum ultraviolet ring (VUV). Byrd, De Santis,
Jacob, and Serriere [31] initiated the study of the impact of
gaps in the bunch train. They used the term “transient beam
loading”, which several authors have adopted. (Since a
transient effect is usually thought of as short-lived in time,
not the case here, “inhomogeneous beam loading”might be
a more descriptive term.) A direct antecedent of our work is
the paper of Tavares, Andersson, Hansson, and Breunlin
[32], who were concerned with self-consistency in the
equilibrium bunch densities. The study of this topic was
continued by Olsson, Cullinan, and Andersson [24], who
developed an iterative scheme to find the equilibrium charge
densities. Bassi and Tagger [12] investigated the option of a
superconducting HHC, invoking self-consistent simulations
and emphasizing the importance of beam loading in themain
accelerating cavity for a full picture. Yamamoto, Takahashi,
and Sakanaka [33] propose a special design of theHHCand a
feed-forward system to compensate for gaps. Wüustefeld,
Jankowiak, Knobloch, and Ries [34] and also Tian, Jiao, and
Wang [35] proposed the production of simultaneous long and
short bunches by using two harmonic cavities
The content of the paper is as follows.
Section II describes our choice of coordinates and the

description of the bunch train. Section III and the
Appendix A review the equations of motion.
Section IV states the primary formula for the voltage

induced by the harmonic cavity, and then Sec. V notes that
the induced voltage can be expressed in terms of an
effective wake potential, which is represented by a compact
formula that is the basis for further work. Section VI goes
on to find an explicit formula for the induced voltage from
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an arbitrary bunch train, which is in terms of the Fourier
transforms of the bunch forms at the resonant frequency of
the harmonic cavity.
Section VII states the Vlasov-Fokker-Planck equation

and shows how its steady state solution is given by the
solution of coupled Haïssinski equations. Section VIII
shows that the mean energy transfer in the equilibrium
state is exactly equal to the energy loss per turn. Section IX
calculates the integral of the induced voltage, to get the
potential wells for the Haïssinski system.
Section X describes a Newton iteration for a solution of

the Haïssinski system, while Sec. XI gives the associated
Jacobian matrix, and Sec. XII shows how to follow the
Newton solution as a function of the current.
Section XIII presents numerical results for the param-

eters of ALS-U and a comparison to a macroparticle
simulation. Section XIV estimates Touschek lifetimes as
a function of the cavity detuning.
Appendix B discusses the perturbation of the synchro-

nous phase due to the harmonic cavity and reports that
there is no necessity to base the coordinate system on the
perturbed phase. Appendix C explains how our general
formula for the induced voltage reduces to a known
formula in the case where all bunches are identical.

II. CHOICE OF VARIABLES AND DESCRIPTION
OF BUNCH TRAIN

Synchrotron motion in a storage ring can be described
in terms of the longitudinal coordinate z ¼ β0ct − s, the
distance to the reference particle. Here, smeasures position
in the laboratory as arc length along a reference trajectory,
and the reference particle has position s0 ¼ β0ct at time t.
Particles leading the reference particle have z < 0. The
opposite sign convention is often adopted, indeed in our
own papers.
For a single bunch, z is familiar as the “beam frame

coordinate”, which is suitable as a phase space coordinate
for equations of motion and the Vlasov equation. In the
case of many bunches, z is a convenient global coordinate
for the description of the total charge density, and merely
by adding constants to zwe can construct local beam frame
coordinates for all the bunches. Moreover, z has the
convenient property of being proportional to s at fixed t
and proportional to t at fixed s. Thus, if we wish to
demonstrate periodicity in s at a fixed time, we have only to
demonstrate periodicity in z.
We consider a sequence of nb bunches, giving a total

charge density of the form

ρtotðzÞ ¼
X∞
p¼−∞

Xnb
j¼1

ξjρjðzþmjλ1 þ pCÞ; ð1Þ

where λ1 is the wavelength of the main rf cavity andC is the
circumference of the ring. Themj are non-negative integers
specifying the filled rf buckets. Without loss of generality,
we take m1 ¼ 0; then mj ≤ h − 1, where h is the harmonic

number, equal to the maximum number of bunches, and
hλ1 ¼ C. We take

R
ρjðzÞdz ¼ 1 and define ξj as the ratio

of the charge in bunch j to the average bunch charge. The
leading bunch in a train, having the most negative z, has the
highest bunch index: j ¼ nb.
The bunch profiles ρjðzÞ are time independent, since we

are concerned with the equilibrium state, and are initially
unknown functions to be determined by the condition of
equilibrium.
The infinite sequence in (1) is intended to mimic the

periodicity of the charge density in a circular storage ring.
We have ρtotðzþ CÞ ¼ ρtotðzÞ, so that at fixed t the density
is periodic in s with period C. At fixed s, it is also periodic
in t with period C=βc. The idealization of supposing that
the charge pattern exists for all t ∈ ð−∞;∞Þ is justified,
given the large storage times of typical machines.
The total voltage seen by a particle at arbitrary z (at an

arbitrary distance from the reference particle) is taken to be

V1 sinðk1zþ ϕ0Þ þ VrðzÞ; ð2Þ
where k1 ¼ 2π=λ1. In the model to be explored, the induced
voltage Vr comes only from the lowest mode of the passive
harmonic cavity, as excited by the bunch train. The relation
of ϕ0 to the synchronous phase, the phase at which the
cavity supplies the mean energy lost per turn, will be
discussed presently.
We define zj, the argument of the density ρj, as

zj ¼ zþmjλ1: ð3Þ
Then by (2) the total voltage as a function of zj is

V1 sinðk1zj þ ϕ0Þ þ Vrðzj −mjλ1Þ; ð4Þ
since the first term in (2) is periodic in z with period λ1.

III. EQUATIONS OF MOTION

The usual equations of motion for a single particle,
subject only to applied rf, describe oscillations in a
potential well with the minimum at the location of the
synchronous particle. Since the harmonic cavity broadens
the well and shifts its minimum, a natural step would be to
modify the equation of motion so that it describes oscil-
lations about the shifted minimum. On the other hand,
this might be an unnecessary complication if the shift is
sufficiently small. The coordinate of the unperturbed
problem might provide a perfectly accurate description,
even if it is not the distance to the minimum.
We first recall the derivation of the standard equations

for a single particle with only applied rf. We first derive
difference equations, referring to changes over a full turn,
and later replace them by differential equations, since the
changes are very small. The salient variable of interest is the
phase ϕ of the applied rf at the time that the particle crosses
the accelerating cavity.
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At the nth turn, the rf kick at phase ϕn restores the energy
loss U0 of the previous turn and also changes the energy of
a generic particle from En to Enþ1:

ðU0 þ Enþ1Þ − En ¼ eV1 sinϕn: ð5Þ
The synchronous phase ϕ0 is that for which the energy
supplied is exactly U0:

eV1 sinϕ0 ¼ U0: ð6Þ
For stable motion, this angle should be in the second
quadrant:

cosϕ0 ¼ −ð1 − sin2ϕ0Þ1=2; ð7Þ
with the square root defined to be positive. Defining

ðΔEÞn ¼ En − E0; ðΔϕÞn ¼ ϕn − ϕ0; ð8Þ
where E0 is the nominal energy of the ring, we write (5) as

ðΔEÞnþ1 − ðΔEÞn ¼ eV1 sin½ðΔϕÞn þ ϕ0� − U0: ð9Þ
The change with n of ðΔϕÞn depends on the revolution

frequency, which in turn depends on ðΔEÞn, these depend-
encies being linear to a good approximation. Invoking the
definition of the momentum compaction factor α, we show
in Appendix A that

ðΔϕÞnþ1 − ðΔϕÞn ¼ αk1C
ðΔEÞn
E0

: ð10Þ

We wish to follow the trajectory of z, namely,

zðtÞ ¼ β0ct − sðtÞ; ð11Þ
which is related to the trajectory of ϕ as follows:

λ1
2π

½ϕðtÞ − ϕ0� ¼ signed distance to the reference particle

¼ zðtÞ; ð12Þ
and, hence,

ðΔϕÞn ¼ k1zn: ð13Þ
The sign in (12) is correct: If ϕðtÞ > ϕ0 at time t when the
particle arrives at the cavity, it has arrived later than the
reference particle, which is to say that sðtÞ < β0ct.
Approximating the difference equations (9) and (10) by

differential equations, with dt ¼ T0 and δ ¼ ðE − E0Þ=E0,
and applying (13), we have

dδ
dt

¼ 1

E0T0

½eV1 sinðk1zþ ϕ0Þ −U0�; ð14Þ

dz
dt

¼ αβ0cδ: ð15Þ

Here, T0 ¼ C=β0c is the nominal revolution time of the
ring. In replacing (9) by (14), we have equated T0 with the
time between successive arrivals at the cavity, but this is
correct at best in an average sense, because different
particles have different revolution times. This approxima-
tion is not usually acknowledged in textbook treatments of
the problem.
The generalization of (14) and (15) to account for many

bunches and the harmonic cavity is obtained by invoking
the total voltage (2) and the replacements z → zi −miλ1,
δ → δi, and, thus,

dδi
dt

¼ 1

E0T0

½eV1 sinðk1zi þ ϕ0Þ þ eVrðzi −miλ1Þ − U0�;

ð16Þ

dzi
dt

¼ αβ0cδi; i ¼ 1;…; nb: ð17Þ

For this, we note that the required relation (10) is derived in
Appendix A with allowance for the presence of Vr. The
derivation requires VrðzÞ ¼ Vrðzþ CÞ, which is assured in
the following formalism.
A new feature is that ϕ0 is no longer the synchronous

phase, since the induced voltage Vr causes an additional
energy increment that must be taken into account. We are
nevertheless free to choose ϕ0 according to (6) and (7), and
we shall indeed make that choice. Some nearby value could
do as well.
In order to clarify the impact of the shifted synchronous

phase, we have also carried out a calculation with the
coordinate system shifted accordingly. We conclude that
there is no need to work in such a system. This issue is
reviewed in Appendix B.

IV. PRIMARY FORMULA FOR THE
INDUCED VOLTAGE

At an arbitrary z, the induced voltage from the harmonic
cavity will be

VrðzÞ ¼ −eN
Z

∞

−∞
Wðz − z0Þρtotðz0Þdz0

¼ −eN
Z

∞

−∞
Wðz − z0Þ

×
X∞
p¼−∞

Xnb
j¼1

ξjρjðz0 þmjλ1 þ pCÞdz0: ð18Þ

Here, W is the wake potential of the cavity, which for
sufficiently large Q has the form

WðzÞ ¼ ωrRs

Q
θðzÞe−krz=2Q cosðkrzÞ: ð19Þ

ROBERT WARNOCK and MARCO VENTURINI PHYS. REV. ACCEL. BEAMS 23, 064403 (2020)

064403-4



In this formula, ωr ¼ krc is the circular resonant frequency
of the lowest mode of the cavity, Rs is its shunt impedance,
Q is its quality factor, and θðzÞ is the unit step function,
equal to 1 for z ≥ 0 and 0 otherwise. The θ function is an
expression of causality.
The expression (18) satisfies the obvious requirement

that Vr be periodic with period C. To see that, evaluate
Vrðzþ CÞ by changing the integration variable to z00 ¼
z0 − C and the summation variable to p0 ¼ pþ 1.
We suppose that the support of any ρjðzÞ, the region in

which it is nonzero, is much less in extent than λ1, a
condition that is satisfied in any ring of interest for
this study.
To proceed, it is convenient to translate the variable of

integration and reverse the order of integration and sum-
mation, so that the formula (18) takes the form

VrðzÞ ¼ −eN
Z

∞

−∞

X∞
p¼−∞

Wðz − z0 þ pCÞ

×
Xnb
j¼1

ξjρjðz0 þmjλ1Þdz0: ð20Þ

To give an idea of typical parameters for the following
work, we list in Table I a tentative set of parameters for
ALS-U, the forthcoming upgrade of the Advanced Light
Source at Lawrence Berkeley National Laboratory.

V. EFFECTIVE WAKE POTENTIAL

The sum over p in (20) can be thought of as an effective
wake potential WðzÞ which is to be convolved with an
effective charge density ρðzÞ, defined as follows:

WðzÞ ¼
X∞
p¼−∞

Wðzþ pCÞ; ρðzÞ ¼
Xnb
j¼1

ξjρjðzþmjλ1Þ:

ð21Þ

Then the induced voltage may be expressed as

VrðzÞ ¼ −eN
Z

∞

−∞
Wðz − z0Þρðz0Þdz0: ð22Þ

Applying (19) and expanding the cosine by the double-
angle formula, we have

WðzÞ ¼ ωrRs

Q

X∞
p¼−∞

θðzþ pCÞ

× e−krðzþpCÞ=2Q½cosðkrzÞ cosðpkrCÞ
− sinðkrzÞ sinðpkrCÞ�: ð23Þ

The θ function requires p ≥ −z=C, but, since p is an
integer, that means

p ≥ p0 ¼ ⌈ − z=C⌉; ð24Þ

where ⌈x⌉ denotes the ceiling of x, which is the smallest
integer greater than or equal to x. Expressing the sine and
cosine of pkrC in terms of exponentials, we find that

WðzÞ ¼ ωrRs

Q
e−krz=2Q½cosðkrzÞReζðkr; zÞ

þ sinðkrzÞImζðkr; zÞ�; ð25Þ

where

ζðkr; zÞ ¼
X∞
p¼p0

rph ¼ rp0h
X∞
p¼0

rph ¼ rp0h
1

1 − rh
; ð26Þ

with

r ¼ exp½−krλ1ðiþ 1=2QÞ�: ð27Þ

It is convenient to define real polar variables
½ηðkrÞ;ψðkrÞ� such that

1

1 − rh
¼ ηe−iψ : ð28Þ

Then from (26)–(28) we have

Reζ ¼ ηe−p0krC=2Q cosðp0krCþ ψÞ;
Imζ ¼ −ηe−p0krC=2Q sinðp0krCþ ψÞ: ð29Þ

TABLE I. Baseline parameters for ALS-U design.

Ring circumference C 196.5 m
Beam energy E0 2 GeV
Average bunch current Iavg 500 mA
Momentum compaction α 2.11 × 10−4

Natural energy spread σδ 9.43 × 10−4

Natural rms bunch length σz0 3.54 mm
Energy loss per turn U0 0.217 MeV
Harmonic number h 328
Main cavity frequency f1 500.417 MHz
Main cavity voltage V1 0.6 MV
Harmonic cavity
harmonic number

3

Harmonic cavity frequency fr 1501.501 MHz
Harmonic cavity detuning δf ¼ fr − 3f1 0.2502 MHz
Harmonic cavity
shunt impedance

Rs 1.39 MΩ

Harmonic cavity quality factor Q 2 × 104
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Substituting in (25) and applying the double-angle formula
in reverse, we have

WðzÞ ¼ ωrRs

Q
ηðkrÞ exp½−krχðzÞ=2Q� cos½krχðzÞ þ ψðkrÞ�;

ð30Þ

where

χðzÞ ¼ zþ C⌈ − z=C⌉ ¼ zþ nC

for nC < z ≤ ðnþ 1ÞC; n ¼ integer: ð31Þ

The function χðzÞ, plotted in Fig. 1, is periodic with period
C and has a sawtooth form, with its value C at jumps
defined by the limit from the left. It follows that WðzÞ and
the induced voltage VrðzÞ defined by (22) are periodic with
period C.
In (30), we have an appealing, compact formula for the

effective wake potential, which will lead to the induced
voltage after a straightforward evaluation of the integral
(22). One must keep in mind that the integrand in (22) has a
jump at z ¼ z0 owing to the jump in χðzÞ at z ¼ 0.
An important feature of WðzÞ is its behavior as a

function of the detuning parameter Δk=k1, where for a
third-harmonic cavity Δk ¼ kr − 3k1. Figure 2 shows the
real and imaginary parts of the function ζ ¼ η expð−iψÞ
for a typical case. The function resembles a Lorentzian
resonant line form but, in fact, differs substantially from an
actual Lorentzian. The half-width of the peak in the real
part is roughly 3=ð2QÞ. Later, we shall find that a true
Lorentzian with that half-width occurs in the case of a
complete fill with h identical bunches. Since one can show
that ζ approaches a true Lorentzian as Δk tends to zero, the
maximum of η is exactly at Δk ¼ 0.

VI. THE INDUCED VOLTAGE

We are now in a position to compute the induced voltage
from (22). The density ρ, defined in (21), is zero except for
nb isolated peaks, the bunch profiles. We define the interval
Ωi which is to contain the support of the ith bunch, much
shorter than the main rf wavelength:

Ωi ¼ fzj − Σ ≤ zþmiλ1 ≤ Σg; 2Σ ≪ λ1: ð32Þ

This is just to say that the support in terms of the beam
frame coordinate zi is within the region jzij ≤ Σ. Note that
the elements of Ωi are close to z ¼ −miλ1 and, therefore,
decrease with increasing i. Because of the stated restriction
on Σ, no two of the Ωi can intersect:

Ωi ∩ Ωj ¼ ∅; i ≠ j: ð33Þ

Some numerical experimentation may be needed to find an
appropriate and economical value of Σ.
We note that VrðzÞ need be evaluated only at z within the

various Ωi, since the collective force enters the dynamics
only in those regions, through the Haïssinski or Vlasov
equations. Also, ρðz0Þ is nonzero only for z0 in the same
sets. It follows that the function χðz − z0Þ in (30) takes on
only two values:

χðz−z0Þ¼
�
z−z0; z0<z;

z−z0 þC; z0>z;
z∈Ωi; z0∈Ωj: ð34Þ

This follows from the fact that jz − z0j < C. Regardless of
the fill pattern, jz − z0j cannot be greater than a number
C − λ1 þOðΣÞ. (For instance, if we have only two buckets,
C ¼ 2λ1, and then the distance between a particle in one

FIG. 1. The sawtooth function χðzÞ. Its value at jumps is
defined by the limit from the left.

FIG. 2. ζ ¼ η expð−iψÞ as a function of the detuning
parameter Δk=k1. The half-width of the peak in the real
part is roughly 3=ð2QÞ ¼ 0.4 × 10−4.
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bucket and a particle in the other is λ1 plus a quantity of
order Σ.) Thus,

⌈ − ðz − z0Þ=C⌉ ¼
�
0; z0 < z;

1; z0 > z;
ð35Þ

which implies (34).
Let us evaluate VrðzÞ for z ∈ Ωi and divide the terms into

three groups, those for which z < z0, those for which

z > z0, and the one “diagonal” term in which both z<z0
and z > z0 can occur. Thus,

VrðzÞ¼
−eNωrRs

Q
ηðkrÞ½v<ðzÞþv>ðzÞþvdðzÞ�; z∈Ωi;

ð36Þ

where

v<ðzÞ ¼
Xi−1
j¼1

ξj

Z
Ωj

exp½−krðz − z0 þ CÞ=2Q� cos½krðz − z0 þ CÞ þ ψðkrÞ�ρjðz0 þmjλ1Þdz0; ð37Þ

v>ðzÞ ¼
Xnb
j¼iþ1

ξj

Z
Ωj

exp½−krðz − z0Þ=2Q� cos½krðz − z0Þ þ ψðkrÞ�ρjðz0 þmjλ1Þdz0; ð38Þ

vdðzÞ ¼ ξi

Z
z<z0

exp½−krðz − z0 þ CÞ=2Q� cos½krðz − z0 þ CÞ þ ψðkrÞ�ρiðz0 þmiλ1Þdz0

þ ξi

Z
z>z0

exp½−krðz − z0Þ=2Q� cos½krðz − z0Þ þ ψðkrÞ�ρiðz0 þmiλ1Þdz0: ð39Þ

The sums are regarded as empty when the lower limit exceeds the upper.
In each term of (37) and (38), we change the integration variable to zj ¼ z0 þmjλ1, expand the cosine by the double-

angle formula, and recognize the resulting integrals as real and imaginary parts of a Fourier transform at kr. Then we find

v<ðzÞ ¼
Xi−1
j¼1

ξj

Z
Ωj

dzjρjðzjÞ exp½−krðz − zj þmjλ1 þ CÞ=2Q� cos½krðz − zj þmjλ1 þ CÞ þ ψðkrÞ�

¼
Xi−1
j¼1

ξj exp½−krðzþmjλ1 þ CÞ=2Q�
Z
Ωj

dzj expðkrzj=2QÞρjðzjÞ

· fcos½krðzþmjλ1 þ CÞ þ ψðkrÞ� cosðkrzjÞ þ sin½krðzþmjλ1 þ CÞ þ ψðkrÞ� sinðkrzjÞg

¼ 2π
Xi−1
j¼1

ξj exp½−krðzþmjλ1 þ CÞ=2Q�

· fcos½krðzþmjλ1 þ CÞ þ ψðkrÞ�Reρ̂jðkrÞ − sin½krðzþmjλ1 þ CÞ þ ψðkrÞ�Imρ̂jðkrÞg; ð40Þ

where

ρ̂jðkrÞ ¼
1

2π

Z
Ωj

e−krzði−1=2QÞρjðzÞdz: ð41Þ

Carrying out a similar calculation for v>, we may write the sum of the two terms as

v<ðzÞ þ v>ðzÞ ¼ 2π
Xnb
j¼1

ð1 − δi;jÞξj exp½−krðzþmjλ1 þ θi−1;jCÞ=2Q�

· fcos½krðzþmjλ1 þ θi−1;jCÞ þ ψðkrÞ�Reρ̂jðkrÞ
− sin½krðzþmjλ1 þ θi−1;jCÞ þ ψðkrÞ�Imρ̂jðkrÞg; z ∈ Ωi; ð42Þ
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where

θi;j ¼
�
1; i ≥ j;

0; i < j:
ð43Þ

The factor expðkrz=2QÞ is very close to 1 in the present
application. In Table I, we have kr=2Q ¼ 8 × 10−4 m−1,
while jzj is at most about 4 × 10−2 m in (41). Nevertheless,
we shall not replace this factor by 1, since we expect to
apply our formulas to cases with low Q in future work.
The term vd of (39), representing the force on a bunch

due to the field that it itself excited, is a bit more
complicated. It is not an approximate sinusoid, nor is it
expressed in terms of the Fourier transform (41). It is,
however, just one of nb terms, not distinguished in
magnitude compared to the others, because the high Q
of the cavity implies long persistence of the fields excited.
The various terms are distinguished principally in phase,
through the phase shifts mjλ1 in their trigonometric argu-
ments. Barring unexpected cancellations, we can regard vd

as a minor term and try to determine it iteratively.

VII. COUPLED VLASOV-FOKKER-PLANCK
AND HAÏSSINSKI EQUATIONS

The kinetic equation for the phase space density of the
ith bunch is written in terms of the beam frame coordinate
zi ¼ zþmiλ1 of that bunch. It is coupled to the equations
for all other bunches through the induced voltage Vr, which
depends on the charge densities of all bunches. In view of
the single-particle equations of motion (16) and (17), which
define the characteristic curves, the Vlasov-Fokker-Planck
equation for the distribution function fiðzi; δi; tÞ of the ith
bunch takes the form

∂fi
∂t þ αcδi

∂fi
∂zi þ

1

E0T0

½eV1 sinðk1zi þ ϕ0Þ

þ eVrðzi −miλ1Þ −U0�
∂fi
∂δi ¼ LFP

i fi: ð44Þ

The Fokker-Planck term on the right-hand side is

LFP
i fi ¼

2

ωstd

∂
∂δi

�
δifi þ σ2δ

∂fi
∂δi

�
; ð45Þ

where ωs is the circular synchrotron frequency and td is the
longitudinal damping time.
We seek an equilibrium in which ∂fi=∂t ¼ 0 and fi has

the factored Maxwell-Boltzmann form

fiðzi; δiÞ ¼
1ffiffiffiffiffiffi
2π

p
σδ

exp½−ðδi=σδÞ2=2�ρiðziÞ: ð46Þ

Under this hypothesis, the Fokker-Planck term vanishes,
and the spatial density ρi must satisfy

dρi
dzi

ðziÞ ¼
1

αcσ2δE0T0

½eVðziÞ −U0�ρiðziÞ;

VðziÞ ¼ V1 sinðk1zi þ ϕ0Þ þ Vrðzi −miλ1Þ: ð47Þ

By separating variables and integrating, we see that a
solution must have the form

ρiðziÞ ¼ A−1
i exp

�
1

αcσ2δE0T0

Z
zi

0

½eVðζÞ − U0�dζ
�
;

− Σ ≤ zi ≤ Σ; ð48Þ

where Ai is a normalization constant, just the integral of the
numerator over ½−Σ;Σ�.
Noting that cT0 ¼ C, we introduce the definitions

μ ¼ 1

ασ2δE0C
; UiðziÞ ¼ −

Z
zi

0

½eVðζÞ −U0�dζ: ð49Þ

Recalling (47), we then have (48) expressed as

ρiðziÞ ¼
1

Ai
exp½−μUiðziÞ�;

Ai ¼
Z

Σ

−Σ
exp½−μUiðζÞ�dζ; −Σ ≤ zi ≤ Σ; ð50Þ

where

UiðziÞ ¼
eV1

k1
½cosðk1zi þ ϕ0Þ − cosϕ0� þU0zi

þ e2NωrRs

Q
ηðkrÞ

Z
zi

0

½v<ðζ −miλ1Þ

þ v>ðζ −miλ1Þ þ vdðζ −miλ1Þ�dζ: ð51Þ

We refer to Ui as the “potential” for the ith bunch, even
though it has the dimension of an energy times a length.
The system of equations (50) for i ¼ 1;…; nb will be called
the coupled Haïssinski equations.

VIII. MEAN ENERGY TRANSFER IN THE
EQUILIBRIUM STATE

According to (16), the power transferred to a single
particle with coordinate zi in the ith bunch is

PiðziÞ ¼ dEi=dt ¼ E0dδi=dt

¼ 1

T0

½eV1 sinðk1zi þ ϕ0Þ þ eVrðzi −miλ1Þ −U0�:

ð52Þ

The mean value of the power over the equilibrium
distribution is obtained from (47) as
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Z
ρiðziÞPiðziÞdzi ¼ αcσ2δT0

Z
dρi
dzi

dzi ¼ 0; ð53Þ

thus, for every i,

U0 ¼ U1 þ Ur ¼ eV1

Z
sinðk1zþ ϕ0ÞρiðzÞdz

þ e
Z

Vrðz −miλ1ÞρiðzÞdz: ð54Þ

The first term on the right-hand side is the mean energy
supplied by the external rf, while the second term, which is
negative, represents the mean energy lost to the harmonic
cavity per turn. We automatically have energy balance, on
the average, in the equilibrium state.

IX. INTEGRAL OF THE INDUCED VOLTAGE

To express the integral in (51), we define S and C as
follows:

Sðkrz;ϕÞ ¼ kr

Z
z

0

expð−krζ=2QÞ cosðkrζ þ ϕÞdζ

¼
�
expð−krz=2QÞ
1þ 1=4Q2

�
sinðkrzþ ϕÞ − 1

2Q
cosðkrzþ ϕÞ

��
z

0

≈ expð−krz=2QÞ sinðkrzþ ϕÞ − sinϕ; ð55Þ

Cðkrz;ϕÞ ¼ −kr
Z

z

0

expð−krζ=2QÞ sinðkrζ þ ϕÞdζ

¼
�
expð−krz=2QÞ
1þ 1=4Q2

�
cosðkrzþ ϕÞ þ 1

2Q
sinðkrzþ ϕÞ

��
z

0

≈ expð−krz=2QÞ cosðkrzþ ϕÞ − cosϕ: ð56Þ

The large-Q approximation stated here on the right is not used in our code, since we wish to be set up for later applications
with small Q.
Applying this in (42), we find

Z
zi

0

½v<ðζ −miλ1Þ þ v>ðζ −miλ1Þ�dζ

¼ 2π

kr

Xnb
j¼1

ð1 − δi;jÞξj expð−ϕi;j=2QÞ · ½Sðkrzi;ϕi;j þ ψÞReρ̂j þ Cðkrzi;ϕi;j þ ψÞImρ̂j�; ð57Þ

ϕi;j ¼ kr½ðmj −miÞλ1 þ θi−1;jC�: ð58Þ

It remains to calculate

Z
zi

0

vdðζ −miλ1Þdζ; ð59Þ

with vd from (39). After changing the integration variable in (39) to u ¼ z0 þmiλ1, we have

vdðζ −miλ1Þ ¼ ξi

Z
ζ

−Σ
exp½−krðζ − uÞ=2Q� cos½krðζ − uÞ þ ψ �ρiðuÞdu

þ ξi

Z
Σ

ζ
exp½−krðζ − uþ CÞ=2Q� cos½krðζ − uþ CÞ þ ψ �ρiðuÞdu: ð60Þ

We can avoid the double integral in (59) through an integration by parts. After applying the double-angle formula to the
cosine, one of the terms comprising (59) takes the form

ξi

Z
zi

0

expð−krζ=2QÞ cosðkrζ þ ψÞ
Z

ζ

−Σ
expðkru=2QÞ cosðkruÞρiðuÞdu: ð61Þ
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Now in a partial integration the factor expð−krζ=2QÞ cosðkrζ þ ψÞ is integrated by applying (55), while the u integral is
differentiated. Proceeding similarly with the other terms, we eliminate all double integrals.

X. SOLUTION OF COUPLED HAÏSSINSKI EQUATIONS BY NEWTON’S METHOD

Let us multiply (50) by expðkrzi=2QÞ and then take the Fourier transform, as in (41). This yields

ρ̂iðkrÞ −
1

2πAi

Z
Σ

−Σ
exp½−krzði − 1=2QÞ − μUiðzÞ�dz ¼ 0; i ¼ 1;…; nb; ð62Þ

where Ai is defined in (50) and

UiðzÞ ¼
eV1

k1
½cosðk1zþ ϕ0Þ − cosϕ0� þU0zþ

e2NωrRsη

Q

�Z
z

0

vdðζ −miλ1Þdζ

×
2π

kr

Xnb
j¼1

ð1 − δi;jÞξj expð−ϕi;j=2QÞ · ½Sðkrzi;ϕi;j þ ψÞReρ̂j þ Cðkrzi;ϕi;j þ ψÞImρ̂j�
�
: ð63Þ

If the diagonal term in vd were known, the real and
imaginary parts of (62) would constitute 2nb equations in
the 2nb unknowns Reρ̂j and Imρ̂j. Defining a notation for
the diagonal term,

udi ðzÞ ¼
Z

z

0

vdðζ −miλ1Þdζ; ð64Þ

we write (62) more briefly as

Fðρ̂; udÞ ¼ 0; ð65Þ

where F and ρ̂ are complex column vectors with nb
components, in which

Fiðρ̂; udÞ ¼ Aiρ̂i −
1

2π

Z
Σ

−Σ
exp½−krzði − 1=2QÞ

− μUiðz; ρ̂; udÞ�dz: ð66Þ

For given ud, we try to solve (65) by the matrix form of
Newton’s method, namely,

Fðρ̂ðnÞ; udÞ þ ∂Fðρ̂ðnÞ; udÞ
∂Reρ̂ Reðρ̂ðnþ1Þ − ρ̂ðnÞÞ

þ ∂Fðρ̂ðnÞ; udÞ
∂Imρ̂

Imðρ̂ðnþ1Þ − ρ̂ðnÞÞ ¼ 0: ð67Þ

Here, ð∂F=∂Reρ̂; ∂F=∂Imρ̂Þ are complex matrices with
elements ð∂Fi=∂Reρ̂j; ∂Fi=∂Imρ̂jÞ. That is, we linearize F
about iterate ρ̂ðnÞ to define the update ρ̂ðnþ1Þ by (67). In (67),
we have 2nb real linear equations to solve for the incre-
ment ρ̂ðnþ1Þ − ρ̂ðnÞ.

Lacking any better choice, we begin the process with ρ̂ð0Þ
obtained from Gaussians, all with the nominal bunch
length:

ρ̂ð0Þi ðkrÞ ¼
1

ð2πÞ3=2σz

Z
Σ

−Σ
exp½krzð−iþ 1=2QÞ

− ðz=σzÞ2=2�dz; i ¼ 1;…; nb: ð68Þ

Note that we could not use the direction-independent
complex derivative ∂=∂ρ̂i, since Ui is not an analytic
function of ρ̂i, being always real.
To account for the diagonal term, we adopt the simple

device of computing ud in (67) from the previous Newton
iterate. That procedure yields a convergent scheme and
shows that the contribution of the diagonal term is
negligible, at least in the present case of a high-Q cavity.
If our scheme is later applied to a low-Q case, a more
sophisticated method might be needed to determine vd.

XI. EXPRESSION OF THE JACOBIAN MATRIX

Since the exponent Ui is linear in the unknowns ρ̂j, it is
not difficult to write down the Jacobian, the matrix of the
partial derivatives that appears in (67). One must not forget
the derivatives of Ai, which are essential to ensure that
the final ρiðziÞ are automatically normalized to have unit
integral. The complete 2nb × 2nb Jacobian in block matrix
form is

� ∂ReF=∂Reρ̂ ∂ReF=∂Imρ̂

∂ImF=∂Reρ̂ ∂ImF=∂Imρ̂

�
; ð69Þ

where
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∂ReFi

∂Reρ̂j ¼ Aiδij þ μ

Z �
Reρ̂i þ

1

2π
cosðkrzÞekrz=2Q

�

× e−μUiðzÞaijðzÞsijðzÞdz; ð70Þ

∂ReFi

∂Imρ̂j
¼ μ

Z �
Reρ̂i þ

1

2π
cosðkrzÞekrz=2Q

�

× e−μUiðzÞaijðzÞcijðzÞdz; ð71Þ

∂ImFi

∂Reρ̂j ¼ μ

Z �
Imρ̂i −

1

2π
sinðkrzÞekrz=2Q

�

× e−μUiðzÞaijðzÞsijðzÞdz; ð72Þ

∂ImFi

∂Imρ̂j
¼ Aiδij þ μ

Z �
Imρ̂i −

1

2π
sinðkrzÞekrz=2Q

�

× e−μUiðzÞaijðzÞcijðzÞdz; ð73Þ

with

aijðzÞ ¼
2πe2NωrRsη

krQ
ð1 − δijÞξj expf−kr½ðmj −miÞλ1

þ θi−1;jC�=2Qg; ð74Þ

sijðzÞ ¼ Sfkr½zþ ðmj −miÞλ1 þ θi−1;jC�;ψg; ð75Þ

cijðzÞ ¼ Cfkr½zþ ðmj −miÞλ1 þ θi−1;jC�;ψg: ð76Þ

XII. CONTINUATION IN CURRENT

In contrast to experiencewith the Haïssinski equation for a
single bunch, we shall find that the Newton iteration (67)
beginning with (68) does not converge at the desired design
current. This must be because the solution at full current
deviates extremely from the unperturbed Gaussian, whereas
the deviation is relatively small in the single-bunch case.
At a small current, the Jacobian is nearly diagonal and

positive definite, since the off-diagonal terms have a factor
eN. This augurs well for the success of the Newton iteration
at a sufficiently small current. It then seems reasonable to
get a solution with a small current and then take that
solution as the starting point for a Newton iteration at a
somewhat higher current. If the second iteration converges,
we can perhaps repeat the process several times to reach the
required large current.
The calculation could be made more efficient by

extrapolating linearly in the current after each successful
iteration. This should allow a larger increment in the
current. Let us define a convenient current parameter such
as I ¼ Iavg, the average bunch current. Expanding the
notation to include I dependence and suppressing reference
to ud, we write (65) as

F½ρ̂ðIÞ; I� ¼ 0 ð77Þ

and differentiate with respect to I to obtain

∂F
∂Reρ̂

dReρ̂
dI

þ ∂F
∂Imρ̂

dImρ̂

dI
þ ∂F

∂I ¼ 0: ð78Þ

The solution of this linear system for dρ̂=dI affords the
linear extrapolation

ρ̂ðI þ ΔIÞ ¼ ρ̂ðIÞ þ dρ̂ðIÞ
dI

ΔI: ð79Þ

The extrapolation is not a costly step, since the Jacobian
matrix in (78) is already known from the previous Newton
iteration.
It is helpful to redefine the unknown as ρ̃ ¼ Iρ̂, so that

the current appears linearly in the transformed version
of (77), namely,

F̃iðρ̃; IÞ ¼ Aiρ̃i −
I
2π

Z
Σ

−Σ
exp½−krzði − 1=2QÞ

− μŨiðz; ρ̃Þ�dz ¼ 0: ð80Þ

Now even the right-hand side of the equation to be solved,
−∂F̃=∂I, is an integral already computed during the
previous Newton iteration.
Our continuation procedure is an example of a general

method for solving nonlinear problems, called path follow-
ing or executing a homotopy [36]. One follows a known or
easily computed solution as a function of a parameter,
which could be multidimensional. The continuation could
stall or display a bifurcation if a singularity of the Jacobian
were encountered.

XIII. NUMERICAL RESULTS FOR
PARAMETERS OF ALS-U

A. Complete train without gaps

We first present results for a complete train without gaps,
for which nb ¼ h ¼ 328, at the nominal current of 500 mA.
The calculation starts at a current of 150 mA and proceeds
to the desired current in three equal increments, by means
of the algorithm of the previous section. The convergence
criterion for a Newton iteration is in terms of a sum of
normalized residuals of the equation [Eq. (65)] that is to be
satisfied:

ϵ ¼
Xnb
i¼1

jReFij þ jImFij
AiðjReρ̂ij þ jImρ̂ijÞ

: ð81Þ

With convergence defined by ϵ < 10−12, the Newton
iterations converge in at most seven steps, and the CPU
time for the whole calculation is 25 s on a laptop PC.
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The program is a serial code in FORTRAN, using the Intel
Math Kernel Library for the linear algebra. As is typical
of Newton’s method, the convergence is very rapid at the
last steps, with ϵ bounded by ϵ2 of the previous step. The
number of mesh points for the integrals on z was 201, and
the mesh covers ½−6σz0; 6σz0�. The solution with twice as
many points is the same to graphical accuracy and takes
twice the CPU time.
Figure 3 shows the resulting charge density of 328

identical bunches, for the parameters of Table I, together
with the Gaussian low-current solution having the natural
bunch width σz0 ¼ 3.54 mm. At full current, the harmonic
cavity increases the rms width to 4.08σz0 and causes a
centroid displacement of −4.74 mm.
The shunt impedance and detuning in Table I were

chosen to maximize the bunch lengthening at the nominal
current while keeping a flattop in the density. At higher
impedance or lower detuning, one can achieve a larger
bunch lengthening but at the expense of getting a density
with two maxima. The bunch in this situation is sometimes
described as being “overstretched”. Figure 4 shows the

effect of decreasing the detuning and lists the correspond-
ing rms bunch lengths.
It is important to note that all bunch forms turn out to

be the same, merely by putting nb ¼ h, even though the
equations contain no explicit constraint that they be the
same. This is gratifying and as it should be by physical
intuition, but the mathematical mechanism for it to happen
is somewhat obscure.

B. Train with a single gap

Next, we consider a train with a single gap of 44 empty
buckets, thus 284 filled buckets in a row. The average
current, i.e., the total charge divided by the revolution time,
is taken to be the same as before, corresponding to the
individual bunch charge being larger by a factor of
328=284. With an initial average current of 150 mA,
increased to 500 mA in three steps, the convergence is
even better than in the previous example.
In Fig. 5, we show representative bunch forms near

the front, middle, and end of the train. Each bunch is given
as a function of its beam frame coordinate zj ¼ zþmjλ1.

FIG. 4. Charge density for complete fill at 500 mA, for decreasing values of the detuning δf ¼ fr − 3f1 ¼ ð0.2502; 0.24;
0.23; 0.22Þ MHz, with corresponding bunch lengths σ ¼ ð4.08; 4.47; 4.86; 5.27Þσ0.

FIG. 3. Charge density for complete fill at 500 mA (blue curve), with rms width σ ¼ 4.08σz0 and centroid hzi ¼ −4.74 mm. Gaussian
solution at a low current (red curve) with σz0 ¼ 3.54 mm.
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There is much less bunch lengthening than in the complete
fill and a large centroid shift varying linearly along the
train. In Fig. 6 (left), we show the variation of bunch length
(divided by the natural bunch length) along the train, while
Fig. 6 (right) shows the variation of the centroid position.
The maximum centroid shift is 7 times larger than in the
complete fill.

C. Train with distributed gaps

The sharp reduction in bunch lengthening induced by a
single gap leads to the idea of distributing the empty
buckets around the ring as much as possible [37]. This
has a chance of resembling more closely the complete fill.
For ALS-U, the minimum acceptable gap consists of
four empty buckets, since a gap of 10 ns is required to
accommodate the rise and fall times of the fast kicker
that does on-axis injection from the accumulator ring.
With such gaps, we need nine trains of 26 bunches
and two of 25 to account for 328 buckets in total:
9 × 26þ 2 × 25þ 11 × 4 ¼ 328.
We consider case C2 of Ref. [37], in which the two trains

of 25 are as far apart as possible. This was found to be
slightly more helpful than putting those two side by side.
Figure 7 shows the result for six bunches out of a train of
26, including the initial and final bunches. Figure 8 shows
the ratio of the rms bunch length to the natural bunch length
vs bunch number, while Fig. 9 displays the centroid vs

bunch number. Fortunately, the average bunch lengthening
now has a value near the case of the complete fill.
Furthermore, the big centroid displacement of the single-
gap case is gone. There is a small and linear centroid
displacement along each subtrain, but its magnitude is
similar to that of the complete fill.
Although maximal distribution of the gaps is a step in the

right direction, it leaves us with a strong variation of bunch
form along the train and some highly skewed charge
distributions. We should then look for further means to
imitate the complete fill as much as possible.

D. Guard bunches to compensate the damage from gaps

If bunches at or near the ends of a train are given greater
charge, enough to equal the missing charge due to the gap,

FIG. 6. Results for a single gap of 44 empty buckets. In the left
plot, the ratio of rms bunch length to the natural bunch length vs
bunch number, head of the train on the right. In the right plot, the
corresponding graph of the centroid position.

FIG. 7. Results for distributed gaps, each consisting of four
empty buckets. Plots of six bunches out of a train of 26.

FIG. 8. Ratio of bunch length to natural bunch length vs bunch
number, with distributed gaps.

FIG. 5. Results for a single gap of 44 empty buckets. On the
right, seven bunches within the first 24; in the middle, seven
bunches within the middle 24; on the left, seven bunches within
the last 24.
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the inner bunches may feel less perturbation from the gap.
This idea was advanced by Byrd et al. [31] in 2002 and
reinvented at the Argonne APS in 2017 [38]. These
enhanced bunches have come to be called guard bunches.
We first modify the setup of the previous subsection by
increasing the charge in the first and last bunches of each of
the 11 subtrains by a factor of 3 [for example, so that
ξð1Þ ¼ ξð25Þ ¼ 3], thus trying to compensate for four
missing bunches. (Of course, it is no longer necessary to
increase the total charge to compare with the complete fill.)
Remarkably, this causes all of the inner bunches to be
identical to graphical accuracy, with a perfect flattop as in

the complete fill. Only the guard bunches differ from this
pattern, as is seen in Fig. 10.
Such highly intense guard bunches could suffer a micro-

wave instability, or have a reduced lifetime, or be undesir-
able for their impact on the synchrotron light pattern. It
therefore becomes interesting to distribute the guard charge
over several bunches. As an example, we take four guard
bunches at the beginning of the train and four at the end,
each with 50% more charge than the inner bunches
(ξ ¼ 1.5). As is shown in Figs. 11–13, the inner bunches
again are flattopped, while there is a gradual transition in
the guard sequence from the end bunch form to the inner.
Rather than a uniform distribution of charge in the guard

segment, one could try some kind of taper, for instance, a
power law with an arbitrary exponent:

FIG. 10. A train of 26 with a guard bunch at its beginning (on
the right) and at its end (on the left). The guard bunches have 3
times the charge of the inner bunches, to compensate for the
charge missing in four gaps. The 24 inner bunches (in red) are
nearly identical.

FIG. 11. The four guard bunches at the end of a train of 26, each
with ξ ¼ 1.5. These lean forward.

FIG. 12. The four guard bunches at the beginning of a train of
26, each with ξ ¼ 1.5. These lean backward.

FIG. 9. Centroid vs bunch number, with distributed gaps.
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ξðjÞ ¼ 1þ aj−b; j ¼ 1; 2;…ng;

ξðjÞ ¼ 1þ aðnt þ 1 − jÞ−b;
j ¼ nt; nt − 1;…; nt − ng þ 1; ð82Þ

for a train of nt bunches with ng guard bunches at either
end. We might try a sharply peaked distribution with large b
in order to imitate the case of a single guard bunch but with
less peak charge. For instance, putting b ¼ 1.7 and ng ¼ 13

in a train with nt ¼ 26, we get the result in Fig. 14. The
bunch population ξðjÞ of (82) is plotted in Fig. 15. With
30% less charge in the end bunches, we get a pattern very
similar to that of a single guard bunch, in that most of the
interior bunches are close to flattopped and have markedly

less charge than the four guard bunches with uniform
population as considered above (Figs. 11–13).

E. Comparison to a macroparticle simulation

We have applied the code ELEGANT [39] to make a
macroparticle simulation for comparison to results of the
present method. This was part of an exploration of
parameter space, and the parameters are different from
those of Table I in the following choices:

α ¼ 2.07 × 10−4; σδ ¼ 1.14 × 10−3;

σz0 ¼ 4.43 mm; U0 ¼ 3.29 × 105 eV;

Rs ¼ 106 Ω; Q ¼ 1.67 × 104;

δf ¼ 2.27 × 105 Hz: ð83Þ

Also, in (16) we take eV sinϕ0 ¼ ð9=8ÞU0, following
Eq. (B10) in Ref. [27]. The simulation used the cavity
wakefield description provided by ELEGANT and was done
with 10 000 macroparticles per bunch. The fill pattern is
that of Sec. XIII C, with 284 bunches and distributed gaps
of four buckets each.
Results are shown in Figs. 16–18. The agreement is good

enough both to provide a check on our semianalytic scheme
and to affirm the viability of a macroparticle simulation. It
is extremely surprising that the agreement is much better on
the tails of the distribution than in the core.

XIV. INCREASE IN THE TOUSCHEK LIFETIME

Following Refs. [3,40], we note that in Piwinski’s
analysis [1] the Touschek lifetime is inversely proportional
to the integral of the square of the longitudinal charge
density. Under bunch lengthening, the lifetime should then
increase by a factor

FIG. 13. The 18 normal bunches in the middle of the train, each
with ξ ¼ 1.

FIG. 14. A train of 26 with the charge distribution of Eq. (82),
b ¼ 1.7, and ng ¼ 13.

FIG. 15. The bunch population factor ξðjÞ of Eq. (82) for b ¼
1.7 and ng ¼ 13.
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R ¼ τ

τ0
≈
R
ρ20ðzÞdzR
ρ2ðzÞdz ; ð84Þ

where ρ and ρ0 are the charge densities with and without,
respectively, the action of the harmonic cavity. The
approximation in (84) consists of not including the ratio
of momentum acceptances for the two cases, which Byrd
and Georgsson [3] judge to be of the order of 1. Taking ρ0
to be a Gaussian with the nominal (zero current) bunch
length, we compute R by (84) for the case of distributed
gaps, as in Sec. XIII C, without guard bunches.
Figure 19 shows the variation of R along a train of 26, for

various choices of the cavity detuning to demonstrate the
effect of overstretching. At the nominal detuning of
δf ¼ 250.2 kHz, there is an almost uniform increase of

lifetime along the train, by a factor of 4.2. This occurs in
spite of the substantial variation in the bunch form,
suggesting that a flattopped distribution is not a primary
requirement as far as lifetime is concerned.
With smaller detuning and consequent overstretching,

we get a further increase in lifetime, but with increasing
variation along the train. At the smallest detuning of
Fig. 19, δf ¼ 185 kHz, any advantage of overstretching
is gone, since for half of the train the lifetime is smaller than
for δf ¼ 235 kHz.

XV. CONCLUSIONS AND OUTLOOK

We have described an effective scheme to determine the
equilibrium state of an arbitrary bunch train, subject to the

FIG. 17. ρðzÞ of the last bunch in a train of 26, by macroparticle
simulation (red dots) and Haïssinski solution (blue curve).

FIG. 18. Centroids of a train with distributed gaps, by macro-
particle simulation (red dots) and Haïssinski solution (blue dots).

FIG. 19. Ratio of Touschek lifetime to that without HHC, with
decreasing detuning. Distributed gaps with no guard bunches.

FIG. 16. ρðzÞ of the first bunch in a train of 26, by macroparticle
simulation (red dots) and Haïssinski solution (blue curve).
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wakefield from a passive harmonic cavity in its funda-
mental mode. The calculation proceeds by an iterative
method with extremely robust convergence. The compu-
tation time is negligible, and the results agree with macro-
particle simulations, which are much heavier calculations
and also much more noisy.
The quick computation allows a convenient exploration

of parameter space and, in particular, an examination of
schemes to counter the bad effects of gaps in the bunch
train. We have seen that, by distributing the empty buckets
around the ring as much as possible, the bunch lengthening
and centroid displacement can be made comparable to
those of the complete fill. Although there is then consid-
erable deviation from the flattopped distribution achieved
in the complete fill, that turns out not to harm the Touschek
lifetime. Also, most of the bunches can be given a
flattopped form by invoking guard bunches adjacent to
the gaps.
We have adopted a minimal physical model, with the

only induced voltage (wakefield) coming from a single
resonant mode of the harmonic cavity. With this, we could
illustrate the power of a new technique in the simplest way.
The next step toward a realistic model should be to include
the induced voltage from the main accelerating cavity
(beam loading). Since our formalism allows any number of
resonators, this is a straightforward extension. In fact, we
have revised the code to include the main cavity and have
found that the iterative solution works as well as before,
with only a factor of 2 increase in computer time.
Another refinement that could be significant is to include

the effect of the usual short range wakefields from vacuum
chamber corrugations. The magnitude of the effect on
bunch lengthening can probably be judged by invoking a
broadband resonator model of the machine impedance,
which is normally applied with a Q of the order of 1.
We have shown how to accommodate a low Q in our
formalism, by retaining exponential factors that could have
been set to 1 in the present high-Q calculations. We have
not presented the full equations for low Q, but those follow
after replacing (19) by the well-known formula for a
broadband resonator [41] and proceeding with nearly the
same steps as before. Our iterative determination of the
diagonal term vd of Sec. VI might have to be revised.
One could also include higher-order modes of cavities

and whispering gallery modes describing coherent syn-
chrotron radiation [42].
Besides improving the physical model of the equilibrium

state, an urgent matter is to study the stability of the
equilibrium. This can, of course, be done by macroparticle
simulations, but we would like to appeal as much as
possible to the direct solution of the Vlasov-Fokker-
Planck equation by the method of local characteristics,
which proceeds with very low numerical noise [43]. The
present study suggests possible reduced models of trains
with gaps, in which the identity of some of the bunches

would be enforced in one way or another. Our technique of
exploiting geometric sums can help to simplify expressions
for the induced voltage.
A special point of interest is the effect of overstretching

on thresholds of instability. We have seen, without account-
ing for stability, that overstretching can give an additional
increase in the Touschek lifetime.
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APPENDIX A: SECOND EQUATION
OF MOTION

To derive the second equation of motion, note that the
azimuthal location of a particle with revolution frequency
ω0 þ Δω is

θ ¼ ðω0 þ ΔωÞt; θ ¼ 2πs=C: ðA1Þ

If the cavity is at θ ¼ 0, the nth passage of the cavity occurs
at time tn such that

2πn ¼ ðω0 þ ΔωÞtn: ðA2Þ

At that time, the cavity phase is

ϕn ¼ ω1tn ¼ ω1

2πn
ω0 þ Δω

≈ 2πn
ω1

ω0

�
1 −

Δω
ω0

�
¼ 2πnh

�
1 −

Δω
ω0

�
: ðA3Þ

The term 2πnh on the right-hand side can be dropped,
since it does not affect the applied voltage V1 sinϕn nor the
induced voltage Vr½ðϕn − ϕ0Þ=k1 −mjλ1�. Indeed, under
substitution of that term, the argument ϕn=k1 ¼ ϕnλ1=2π
takes on the value nhλ1 ¼ nC. Since Vr is periodic with
periodC, it is not changed by the presence of the term 2πnh
in ϕn.
With the definition (8), we then have

ðΔϕÞnþ1 − ðΔϕÞn ¼ −2πh
Δω
ω0

: ðA4Þ

For highly relativistic particles above transition, the
momentum compaction factor α can be written as
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α ¼ −
E0

ω0

Δω
ΔE

: ðA5Þ

Hence, with δ ¼ ðEn − E0Þ=E0, we have

1

T0

½ðΔϕÞnþ1 − ðΔϕÞn� ¼ 2π
h
T0

αδ ¼ 2π

λ1

hλ1
T0

αδ ¼ k1cαδ:

ðA6Þ

Passing to the corresponding differential equation, we
obtain (15).

APPENDIX B: PERTURBED
SYNCHRONOUS PHASE

To determine the perturbed synchronous phase, we put
k1zi þ ϕ0 ¼ ϕ0i in (16). We then see that the synchronous
phase ϕ0i for the ith bunch is defined by

eV1 sinϕ0i þ eVr

�
ϕ0i − ϕ0

k1
−miλ1

�
¼ U0;

cosϕ0i ¼ −ð1 − sin2ϕ0iÞ1=2: ðB1Þ

It is the phase at which the force is zero, at the center of the
distorted potential well.
In (B1), we have a nonlinear equation to solve for ϕ0i.

If Eq. (B1) can be solved, one can work out the dynamics
for a new variable z̃i defined by

k1z̃i ¼ ϕi − ϕ0i; ðB2Þ

where ϕi is the dynamical phase of the applied voltage
when the particle arrives. That is, the applied voltage takes
the form V1 sinðk1z̃i þ ϕ0iÞ, and z̃i is zero at the minimum
of the distorted potential well.
The scheme now involves a two-part iteration. In an

iterate of part 1, the synchronous phases ϕ0i are determined
by solving (B1) with a given function Vr. In a succeeding
iterate of part 2, those ϕ0i are used to calculate the charge
densities and, thus, to form a new value of Vr, by the
algorithm described in Sec. X.
We programmed this scheme and found that it converges

at a moderate current but runs into difficulty near the design
current, because at that current we are getting close to the
situation in which (B1) does not have a unique solution,
owing to the advent of a doubly peaked charge density.
At a moderate current, the results agree quite precisely with
those from the simpler scheme based on the current-
independent ϕ0 and the original variables zi.
Since the simpler scheme works at any current up to the

design current and even far beyond, we have applied it for
all further work. It is not necessary to base the coordinate
system on the synchronous phases, but they can be found
a posteriori as the location of the minima of the distorted
potential wells computed using the zi as coordinates.

APPENDIX C: REDUCTION TO THE CASE
WITH ALL BUCKETS FILLED

Here, our task is to reduce our general formula for the
induced voltage to its form when all rf buckets are filled.
We shall find that the resulting expression agrees to a close
approximation with a formula well known in the literature.
Thus, the following slightly complicated calculation serves
as a good check on the preceding work.
In the equilibrium state, the bunches will all have the

same charge density ρðzÞ. We adapt the methods of
Secs. IV and V. The total charge density will be

ρtotðzÞ ¼
X∞
p¼−∞

Xh
j¼1

ρ½zþ ðj − 1Þλ1 þ pC�: ðC1Þ

By translating the integration variable, we get the induced
voltage as

VrðzÞ

¼−eN
Z

Wðz− z0Þ
X∞
p¼−∞

Xh
j¼1

ρ½z0 þ ðj− 1Þλ1þpC�dz0

¼−eN
Z

Σ

−Σ

�Xh
j¼1

X∞
p¼−∞

W½z− z0 þ ðj− 1Þλ1þpC�
�
ρðz0Þdz0:

ðC2Þ

In the notation of (21), the sum over p in this expression is

W½z − z0 þ ðj − 1Þλ1�; ðC3Þ

which can be calculated from the formula (30). To apply the
formula, we first show that

χ½z − z0 þ ðj − 1Þλ1� ¼ z − z0 þ ðj − 1Þλ1; ðC4Þ

to an excellent approximation. Since 0 ≤ j − 1 ≤ h − 1 and
jzj; jz0j < Σ, we have

−
1

C
ð2Σþ C − λ1Þ <

1

C
½z − z0 þ ðj − 1Þλ1� <

2Σ
C

: ðC5Þ

From this, we can evaluate the ceiling function that appears
in the definition (31) of χ. At the lower and upper bounds of
its argument from (C5), we have

⌈ − 1þ ðλ1 − 2ΣÞ=C⌉ ¼ 0; since 2Σ ≪ λ1; ðC6Þ

⌈2Σ=C⌉ ¼ 1: ðC7Þ

The evaluation (C7) occurs only for j ¼ 1 and only for the
part of the integration where z0 − z > 0. Since there are
several hundred terms of similar magnitude in the sum
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over j, this case may safely be ignored. Thus, only the
evaluation (C6) occurs, which implies that (C4) is correct.
Using (C4) in (C3) and (30), we now have (C2) reduced

to a single sum:

VrðzÞ ¼ −
eNωrRsη

Q

Z
dz0ρðz0Þ

×
Xh
j¼1

exp

�
−

kr
2Q

½z − z0 þ ðj − 1Þλ1�

· cosfkr½z − z0 þ ðj − 1Þλ1� þ ψg
�
: ðC8Þ

Once again, we have a geometric sum.Writing the cosine in
terms of exponentials, one readily shows that

VrðzÞ ¼ −
eNωrRsη

Q

Z
dz0ρðz0Þ exp

�
−

kr
2Q

θ

�

× ½cos θReζ̃ þ sin θImζ̃�; ðC9Þ

θ ¼ z − z0 þ ψ ;

ζ̃ðkrÞ ¼
1 − rh

1 − r
; r ¼ exp½−krλ1ðiþ 1=2QÞ�: ðC10Þ

Note that r is the same as in (28).
In analogy to (28), we define real polar variables by

ζ̃ ¼ η̃e−iψ̃ : ðC11Þ

Writing

cos θ ¼ cosðkrzþ ψÞ cosðkrz0Þ þ sinðkrzþ ψÞ sinðkrz0Þ;
ðC12Þ

and the analogous expression for sin θ, and applying the
definition (41), we see that

VrðzÞ ¼ −
2πeNωrRsηη̃

Q
expð−krz=2QÞ

× ½cosðkrzþ ψ þ ψ̃ÞReρ̂− sinðkrzþ ψ þ ψ̃ÞImρ̂�:
ðC13Þ

Now note the following identities and definitions:

ηη̃ ¼
				 1

1 − rh

				
				 1 − rh

1 − r

				 ¼
				 1

1 − r

				≕ κ;

ψ þ ψ̃ ¼ − arg

�
1

1 − rh

�
− arg

�
1 − rh

1 − r

�
¼ − arg

�
1

1 − r

�

¼ argð1 − rÞ≕φ: ðC14Þ

To evaluate 1 − r, notice that (for a third-harmonic cavity)

krλ1 ¼ 3k1λ1 þ Δkλ1 ¼ 6π þ Δkλ1;

Δk ¼ kr − k3; k3 ¼ 3k1;

sinðkrλ1Þ ≈ Δkλ1; cosðkrλ1Þ ≈ 1; ðC15Þ

and

1− r≈ 1− ð1− krλ1=2QÞð1− iΔkλ1Þ≈ krλ1=2Qþ iΔkλ1:

ðC16Þ

From this, it follows that

κ ¼
				 1

1 − r

				 ¼ f1
½ðωr − ω3Þ2 þ ðΓ=2Þ2�1=2 ;

Γ
2
¼ ωr

2Q
;

ðC17Þ

where ω ¼ kc and f1 ¼ c=λ1 is the rf frequency. Thus, we
have Lorentzian resonant behavior, with half-width Γ=2.
Also

φ ¼ argð1 − rÞ ¼ tan−1
�
ωr − ω3

Γ=2

�
: ðC18Þ

Since the average current is Iavg ¼ eN=T1 ¼ eNf1, we
may write (C13) as

VrðzÞ ¼ −4πIavgRsjρ̂ðkrÞj
Γ=2

½ðωr − ω3Þ2 þ ðΓ=2Þ2�1=2
× cos½krzþ φþ argðρ̂ðkrÞ�: ðC19Þ

This is to be compared with a formula that is often
quoted in the literature; see, for instance, Eq. (A7) and its
derivation in Ref. [27]. By (A2) and (A5) of that paper and
our definition (41),

cosψω3
≈ cosφ ¼ Γ=2

½ðωr − ω3Þ2 þ ðΓ=2Þ2�1=2 ;

ρ̂ðkrÞ ≈
1

2π
ρ̃ðω3Þ� ¼

1

2π
Fe−iΦ: ðC20Þ

Also, krz ≈ ω3τ so that (C19) becomes (with neglect of
terms higher order in Δk)

VrðzÞ ¼ −2IavgRsF cosφ cosðω3τ þ φ −ΦÞ; ðC21Þ

in agreement with (A7) of Ref. [27].
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