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The Integrable Optics Test Accelerator (IOTA) is a novel storage ring at Fermi National Accelerator
Laboratory designed (in part) to investigate the dynamics of beams in the presence of highly nonlinear
transverse focusing fields that generate integrable single-particle motion with a large spread in the intrinsic
betatron tunes. We describe how contemporary geometrical methods from the theory of integrable
Hamiltonian systems may be used to locate all critical separatrixlike structures in the 4D transverse phase
space, and to construct a complete analysis of the dynamical bifurcations of the system. Application of
these techniques results in a global picture of the nominal on-energy transverse dynamics, revealing a rich
diversity of accessible dynamical behavior. Similar techniques may be applied to future facilities that
exploit the concept of nonlinear integrable optics.
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I. INTRODUCTION

The Integrable Optics Test Accelerator (IOTA) is a
storage ring at Fermi National Accelerator Laboratory
designed (in part) to investigate the dynamics of beams
in the presence of highly nonlinear transverse focusing
fields that generate integrable single-particle motion with
large intrinsic betatron tune spreads (Δνx;y > 0.25) [1,2].
A primary operational goal is to determine the degree to
which the decoherence of transverse oscillations may be
used to mitigate the development of instabilities [3] and
core-halo resonances at high space charge intensity [4,5].
In comparison with nonlinear damping techniques using
octupoles [6,7], integrability of the nonlinear Hamiltonian
motion is enforced by design to improve the transverse
dynamic aperture and beam confinement [1,8].
The nominal transverse dynamics is described by an

integrable Hamiltonian in two degrees of freedom contain-
ing a single dimensionless parameter (the nonlinear insert
strength τ). In this paper, we apply contemporary geometric
techniques developed for studying the singularities of
integrable Hamiltonian systems [9–11] to obtain a global
picture of the qualitative dynamical behavior of this system,
including the fixed points, stable and unstable periodic
orbits, and phase space separatrices. The word “bifurca-
tion” of the title is used in two distinct ways: (1) to refer to

the bifurcation diagram of an integrable Hamiltonian
system, which provides a visual representation of those
values of the invariants of motion where the topology of the
invariant level set changes, and (2) to refer to a sudden
global change in the system dynamics as one or more
parameters in the Hamiltonian is continuously varied (in
this case, the parameter τ). Both meanings are intended
here, and their relationship is considered.
Analysis of integrable Hamiltonian systems is often

performed using one or more sets of action-angle phase
space coordinates. In general, such action-angle coordi-
nates are defined only locally, and break down near critical
phase space structures (e.g., the separatrix of the nonlinear
pendulum). In addition, canonical transformations to such
coordinates are difficult to obtain in explicit form in
even the simplest systems. The techniques described here
do not require the use of action-angle coordinates, and are
sufficiently general to be applied to future machine designs
[12] described by an autonomous Hamiltonian, in which a
second invariant is analytically known. Related techniques
have recently had a major impact in molecular spectros-
copy [13–15], and have been applied to a number of
systems of physical interest [16,17].
The layout of this paper is as follows. In Sec. II, we

describe the IOTA nonlinear magnetic insert and the
Hamiltonian of the associated dynamical system. In
Sec. III, we describe the critical points and the bifurcation
diagram of a general integrable Hamiltonian system, and
we apply these concepts to IOTA. Section IV discusses the
classification of critical points in detail. In Sec. V, we
demonstrate how this information may be used to classify
the orbits of IOTA at nominal operation. In Sec. VI, we
extend this analysis to describe the dependence of these
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dynamical properties on the nonlinear insert strength
parameter, and we consider bifurcations of the dyna-
mical fixed points. The paper ends with a Conclusion,
which includes a summary of key results. There are five
Appendixes.

II. HAMILTONIAN DESCRIPTION
OF THE IOTA RING

The IOTA ring design (for operation of the integrable
optics experiment) consists of a “bare” linear lattice, with
an available 1.8 m long dispersion-free drift space for the
introduction of a magnetic insert [18] with highly nonlinear
transverse fields to provide strong betatron detuning.
Detailed analysis of the IOTA bare lattice optics may be
found elsewhere [2]. In this section, we provide a brief
summary of the Hamiltonian formalism describing the ideal
nonlinear operation [1,19].

A. The IOTA nonlinear magnetic insert

The ideal 2D magnetic field within the nonlinear insert is
given at each longitudinal location s by B⃗ ¼ Bxx̂þ Byŷ
satisfying ∂xBx þ ∂yBy ¼ 0 and ∂xBy − ∂yBx ¼ 0. This
field is most easily expressed in terms of either a magnetic
vector potential A⃗ ¼ Asŝ or a magnetic scalar potential ψ
satisfying B⃗ ¼ ∇⊥ × A⃗ ¼ −∇⊥ψ at each s, where the two
potentials are given by the real and imaginary parts of the
function [19]:

FðzÞ ¼
�

zffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
�
arcsinðzÞ; ð1Þ

in terms of the dimensionless quantities:

t̃F ¼ As þ iψ
Bρ

; z ¼ X þ iY

c
ffiffiffiffiffiffiffiffiffi
βðsÞp ; t̃ ¼ τc2

βðsÞ : ð2Þ

Here τ is a dimensionless parameter characterizing the
strength of the magnet, c ≠ 0 ½m1=2� characterizes the
length scale of the potentials in the transverse plane, Bρ
is the magnetic rigidity, and β ¼ βx ¼ βy is the betatron
amplitude across the drift space in the bare lattice (“insert
drift”) that will contain the magnet, which is given
explicitly by:

βðsÞ
β�

¼ 1þ
�
2s
L

�
2

tan2 πμ0; for −
L
2
≤ s ≤

L
2
: ð3Þ

In (3), L denotes the length of the nonlinear insert, 0 ≤
μ0 < 1=2 denotes the bare lattice tune advance across the
insert drift, and β� denotes the betatron amplitude at the
midpoint of the insert drift, given in terms of the parameters
L and μ0 by:

β� ¼ L
2
cot πμ0: ð4Þ

The function F is analytic in the domain of the complex
plane shown in Fig. 1, which excludes the two branch cuts
(shown in red) and the two singular points z ¼ �1. The
curves in blue denote the corresponding transverse mag-
netic field lines, which coincide with the contours of As.
The magnetic multipole series can be obtained directly
from the power series for (1):

FðzÞ ¼
X∞
n¼1

22n−1n!ðn − 1Þ!
ð2nÞ! z2n; jzj < 1: ð5Þ

In practice, however, one is often interested in the dynamics
well outside the radius of convergence of the series (5).

B. Construction of the integrable Hamiltonian

Since A⃗⊥ ¼ 0 in this model, the single-particle
Hamiltonian within the nonlinear magnetic insert takes
the following form, using the longitudinal coordinate s as
the independent variable [20]:

H ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Pt

β0
þ P2

t − jP⃗j2
s

−As −
1

β0
Pt; ð6Þ

where the transverse momenta P⃗ are normalized by the
design momentum p0 ¼ mcβ0γ0, the longitudinal variables
are T ¼ cΔt and Pt ¼ −Δγ=ðβ0γ0Þ, and As ¼ As=Bρ. In
the paraxial approximation Px; Py ≪ 1, the Hamiltonian
for an on-energy particle (Pt ¼ 0) within the nonlinear
magnetic insert takes the form:

H⊥ðX;Px; Y; Py; sÞ ¼
1

2
ðP2

x þ P2
yÞ −AsðX; Y; sÞ: ð7Þ

FIG. 1. Domain of analyticity of the complex function F, which
defines the vector potential of the nonlinear insert in the trans-
verse plane. The curves in blue denote magnetic field lines. The
dashed circle denotes the circle of convergence of the multipole
series. Singularities occur at the points z ¼ �1.
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After making an s-dependent transformation to the dimen-
sionless phase space variables [1]:

x ¼
�

1

c
ffiffiffi
β

p
�
X; px ¼

�
α

c
ffiffiffi
β

p
�
X þ

� ffiffiffi
β

p
c

�
Px; ð8aÞ

y ¼
�

1

c
ffiffiffi
β

p
�
Y; py ¼

�
α

c
ffiffiffi
β

p
�
Y þ

� ffiffiffi
β

p
c

�
Py; ð8bÞ

where αðsÞ ¼ −β0ðsÞ=2, and using the bare lattice betatron
phase advance ψ (defined by ψ 0 ¼ 1=β) as the independent
variable, the Hamiltonian takes the autonomous form:

Hðx; px; y; pyÞ ¼
1

2
ðp2

x þ p2
yÞ þ Vðx; yÞ; ð9Þ

where the potential function V is given by (z ¼ xþ iy):

Vðx; yÞ ¼ 1

2
ðx2 þ y2Þ − τUðx; yÞ;

Uðx; yÞ ¼ Re

�
zffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p arcsinðzÞ

�
: ð10Þ

Note that (10) is characterized by the single dimensionless
parameter τ (nonlinear insert strength). The nonlinear
potential V is shown in Fig. 2 for a typical value of τ.
In the remainder of this paper, the terms “singularity” and
“singular point” refer exclusively to the spatial points
ðx; yÞ ¼ ð�1; 0Þ where the potential V diverges.
The bare lattice optics in IOTA (from the exit of the

nonlinear insert to its entrance) is designed to provide equal
linear focusing in the horizontal and vertical planes, with
corresponding phase advance given by 2πk, for integer k
[21]. As a consequence, the transfer map between passes
through the magnetic insert is described in coordinates (8)

by the identity map, and (9) is sufficient to describe the
dynamics of the IOTA ring.
The Hamiltonian (9) admits an exactly-known integral of

motion (invariant) of the form:

Iðx; px; y; pyÞ ¼ ðxpy − ypxÞ2 þ p2
x þ x2 − τWðx; yÞ;

Wðx; yÞ ¼ Re

�
zþ z̄ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p arcsinðzÞ
�
; ð11Þ

where z̄ denotes the complex conjugate of z ¼ xþ iy. It
may be directly verified that fH; Ig ¼ 0, where f·; ·g
denotes the classical Poisson bracket [19]. In addition,
we will see that ∇H and ∇I are linearly independent
everywhere except on a set of zero measure (phase space
volume), so that the pair ðH; IÞ forms an integrable
Hamiltonian system [22–24]. The remainder of this paper
concerns the dynamics of the system described by (9)–(11).

III. CRITICAL POINTS AND THE
BIFURCATION DIAGRAM

A. The momentum mapping and its critical points

Suppose H is an integrable Hamiltonian for an n degree-
of-freedom system on a phase space M, and let H ¼
f1;…; fn denote its n invariants of motion. The momentum
mapping [9] is the smooth function F∶M → Rn given by:

F ðpÞ ¼ ðf1ðpÞ;…; fnðpÞÞ; p ∈ M: ð12Þ

At any point p ∈ M, the JacobianDFp of (12) using phase
space coordinates ðζ1; ζ2;…; ζ2nÞ is the n × 2n matrix
given by:

½DFp�jk ¼
∂fj
∂ζk ðj ¼ 1;…; n; k ¼ 1;…; 2nÞ: ð13Þ

A point p in M is a critical point of the momentum
mapping F if

rankðDFpÞ < n: ð14Þ
Let K denote the set of critical points. If p ∈ K, its image
F ðpÞ in Rn is called a critical value. The set of all critical
values Σ ¼ F ðKÞ is called the bifurcation diagram of H.
The following observations illustrate the importance of

these concepts.
(i) Since each f1;…; fn is invariant under the Hamil-

tonian flow, each orbit is confined to lie on a level set
of F . These invariant level sets partition the entire
phase space M.

(ii) A regular level set of F is one that contains no
critical points. Its compact connected components
are invariant n-dimensional tori, as described by the
Liouville-Arnold theorem [22].

(iii) A critical level set of F is one corresponding to a
critical value in Σ. The critical level sets include

FIG. 2. Contours of the nonlinear potential (10) for a typical
insert strength τ ¼ −0.4. Singularities occur at the points
ðx; yÞ ¼ ð�1; 0Þ. The potential is continuous away from these
points and real-analytic away from the branch cuts (jxj ≥ 1,
y ¼ 0). Symmetry exists under reflections x ↦ −x and y ↦ −y.
Note the presence of one minimum (black dot) and 4 saddle
points (yellow dots).
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exceptional lower-dimensional tori, fixed points, peri-
odic orbits, and their stable and unstable manifolds.

(iv) The bifurcation diagram Σ contains those values
ðf1;…; fnÞ ∈ Rn where the level sets of F undergo
topological (qualitative) change as the invariants fj
are varied.

The momentum mapping in the case of IOTA is given
explicitly by:

F ðx; px; y; pyÞ ¼ ðHðx; px; y; pyÞ; Iðx; px; y; pyÞÞ; ð15Þ

where H and I are the two invariants of motion given in
(9)–(11). To search for a critical point p ¼ ðx; px; y; pyÞ of
(15), one may check any of the following four equivalent
conditions:

ð1Þ rankðDFpÞ < 2; ð16aÞ

ð2Þ detðDFpÞðDFpÞT ¼ 0; ð16bÞ

ð3Þ ∇HðpÞ and∇IðpÞ are linearly dependent; ð16cÞ

ð4Þ dH ∧ dI ¼ 0 at p: ð16dÞ

Finding the set of critical points using (16) requires
searching for the simultaneous zeros of one or more
functions of four variables. For example, applying con-
dition (16d), which is expressed using exterior differential
forms, results in a set of six functions to be zeroed. In
Appendix A, we provide additional details and summarize
the main families of critical points obtained using this
method.
A detailed classification of the critical points is provided

in Sec. IV. We remark that the theory [9] assumes that fj
ðj ¼ 1;…; nÞ are smooth, while the two functions H and I
have vertical derivatives that are discontinuous across the
two branch cuts. The latter fact has a few (minor)
consequences that will play a role in later sections.

B. Bifurcation diagram of IOTA

Taking the image under F of the set K of critical points
obtained using (16) yields the bifurcation diagram
Σ ¼ F ðKÞ. In general, the points on the bifurcation
diagram must be obtained numerically. In the special case
of the Hamiltonian (9)–(10), an explicit parametrization is
possible, as described in Appendix C. The result consists of
the union of the following four parametrized curves in the
ðH; IÞ plane:

HA ¼ 1

2

�
−1þ 2ξ2 þ τ þ ð−1þ 2ξ2Þτarccoshξ

ξ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
�
;

IA ¼ ξ

�
ξ3 þ ξτ þ τarccoshξffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 − 1
p

�
; ξ ≥ ξmin ð17aÞ

HB ¼ 1

2

�
−1þ 2η2 þ τ þ ð1 − 2η2Þτ arcsin η

η
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
�
; ð17bÞ

IB ¼ η

�
η3 þ ητ −

τ arcsin ηffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
�
; ηmin ≤ η ≤ 1

HC ¼ s; IC ¼ 2s; s ≥ smin ð17cÞ

HD ¼ t; ID ¼ 0; t ≥ tmin ð17dÞ

FIG. 3. Bifurcation diagram Σ for the integrable Hamiltonian
system of IOTA (9)–(11) at the nominal operating value
τ ¼ −0.4, separating the ðH; IÞ plane into four regions with
distinct dynamical behavior. Curves in blue, green, red, and black
correspond to the four curves in (17), respectively. Significance of
the solid-dashed distinction and the large dots is explained in
Sec. IV C.

FIG. 4. Projections of level sets from each of the four regions
shown in Fig. 3 (τ ¼ −0.4). A non-resonant orbit on such a level
set densely fills one of its connected components. (B) One
connected component, not intersecting the branch cuts. (C) One
connected component, intersecting the branch cuts (hole visible).
(G) Four connected components. (A) Empty.
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The values ðξmin; ηmin; smin; tminÞ depend on the nonlinear
insert strength τ. For a value in the nominal range −1=2 <
τ < 0, one has ξmin ¼ 1, smin ¼ tmin ¼ 0, and ηmin ¼ η̄,
where ðξ̄; η̄Þ is the unique solution of HAðξ̄Þ¼HBðη̄Þ,
IAðξ̄Þ ¼ IBðη̄Þ.
Figure 3 illustrates the bifurcation diagram for the case

τ ¼ −0.4. The curves partition the plane into four regions.
All values of ðH; IÞ appearing in the interior of a given
region generate regular level sets F−1ðfðH; IÞgÞ of the
same topological type. Each of these regular level sets is a
2-dimensional surface embedded in the 4-dimensional
phase spaceM, which is readily illustrated via its projection
into the ðx; yÞ plane. (See Appendix B for details.) We find
a total of 7 distinct types of regular level sets, indicated by
the codes A-G. Only four of these are accessible when
τ ¼ −0.4. They are shown in Fig. 4. Values of ðH; IÞ that
lie on the curves in Fig. 3 generate critical level sets that
correspond to transitions between these four cases. These
critical level sets form the skeleton of the global dynamics,
and are treated in subsequent sections.

IV. CLASSIFICATION OF CRITICAL POINTS

In (14), the integer 0 ≤ rankðDFpÞ < n is called the
rank of the critical point. Consider the system (9)–(11),
with invariants f1 ¼ H and f2 ¼ I. The rank of a critical
point p ∈ K may also be expressed as:

rankðDFpÞ ¼ dim ðSpanf∇HðpÞ;∇IðpÞgÞ: ð18Þ

Critical points of rank 0 and of rank 1 are discussed below.
It is significant that the dynamical stability of these critical
points can be analyzed using only knowledge of the two
invariants of motion H and I. For a comprehensive
approach to the classification of critical points in a general
integrable Hamiltonian system, see [9–11]. For the system
(9)–(11), we use the simplified classification scheme
described below, which is sufficient for our purposes.

A. Fixed points

Let p ∈ M be a rank-0 critical point of the momentum
mapping F . From (18), it follows that ∇HðpÞ ¼ 0. Since
the Hamiltonian equations of motion take the form
(Appendix D):

_ζ ¼ J∇HðζÞ; ð19Þ

it follows that p is an equilibrium point (fixed point) of
the Hamiltonian flow. Conversely, it is possible to prove
using (9)–(11) that∇HðpÞ ¼ 0 implies∇IðpÞ ¼ 0, and we
conclude from (18) that the set of rank-0 critical points
coincides with the set of dynamical fixed points.
As described in Appendix D, the dynamical stability of a

fixed point is determined by the eigenvalues of the 4 × 4
matrix JS, where S is the Hessian matrix of H at p:

Sij ¼ ðHesspHÞij ¼
∂2H
∂ζi∂ζj ðpÞ; ði; j ¼ 1;…; 4Þ: ð20Þ

For a Hamiltonian of the form (9), we see that p ¼
ðx; px; y; pyÞ is a fixed point if and only if:

px ¼ py ¼ 0; ∇Vðx; yÞ ¼ 0: ð21Þ

The analysis of stability is then reduced to studying the
eigenvalues of the 2 × 2 Hessian matrix of the potential V
(Appendix D).
It is convenient to express the gradient of the potential V

of (10) in the form:

∇Vðx; yÞ ¼ ðx − τReF0; yþ τImF0Þ; ð22Þ

where F is given in (1), and the complex derivative F0 is
evaluated at the point z ¼ xþ iy. The fixed point condition
(21) can then be expressed as the following equation in the
complex plane:

z̄ ¼ τF0ðzÞ; z ¼ xþ iy: ð23Þ

Likewise, the Hessian matrix of second derivatives of V can
be expressed as:

HessðVÞ ¼
�
1 − τReF00 τImF00

τImF00 1þ τReF00

�
; ð24Þ

where F00 is evaluated at the point z ¼ xþ iy. Stability at a
fixed point zc ∈ C satisfying (23) is determined by the two
eigenvalues of (24), given explicitly by:

λ� ¼ 1� τjF00ðzcÞj; zc ¼ xc þ iyc: ð25Þ

Note that one of the values in (25) is always positive, and
the sign of the second value coincides with the sign of the
determinant λþλ−.
Given a fixed point p ∈ M, we say that p is

stable, unstable, or degenerate if detðHesspðVÞÞ > 0,
detðHesspðVÞÞ < 0, or detðHesspðVÞÞ ¼ 0, respectively.
We note that this classification is coordinate-independent.
(That is, any choice of smooth coordinates near p may be
used to evaluate the Hessian matrix.) Examples of stable
and unstable fixed points may be seen in Fig. 2 for the
nominal insert strength τ ¼ −0.4, given by the black and
yellow dots, respectively.

B. Periodic orbits

Next, let p ∈ M be a rank-1 critical point of the
momentum mapping F . It follows from (18) that the
gradients of H and I are parallel at p. Informally, the level
set containing p looks locally 1-dimensional at p. (For
example, the level set may contain a “cusp” along a curve
containing p.) If the level set is compact, this typically
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implies that p lies on a periodic orbit. We refer to such
orbits as critical periodic orbits, to distinguish them from
periodic orbits that lie on those regular level sets with
resonant characteristic frequencies.
To study such a periodic orbit, let S be a 2D Poincaré

section transverse to the periodic orbit of p within the 3D
isoenergy surface. Explicitly, define a set of the form:

S ¼ fζ ∈ M∶HðζÞ ¼ H0; GðζÞ ¼ G0g; ð26Þ
where H0 ¼ HðpÞ, G0 ¼ GðpÞ, and G is any smooth
function on M with:

fH;Ggjp ≠ 0: ð27Þ
Then S defines a smooth 2D surface in a neighborhood of
p, and p is a fixed point of the Poincaré return map on this
surface.
Consider the restriction of the invariant function I to the

surface S, denoted by IjS. Since rankðDFpÞ ¼ 1, it follows
that the function IjS has vanishing derivatives at p, in the
sense thatDðIjSÞp ¼ 0. We say that p is stable, unstable, or
degenerate if det ðHesspðIjSÞÞ > 0, det ðHesspðIjSÞÞ < 0,
or det ðHesspðIjSÞÞ ¼ 0, respectively. It can be shown that
this classification is independent of the choice of G
satisfying (27) in the definition of S, and it is also
independent of the set of coordinates on S used to evaluate
this 2 × 2 Hessian matrix.
This is best illustrated by an example. For the system

(9)–(11), consider a point p ∈ M of the form:

ðx; px; y; pyÞ ¼ ð0; a; 0; 0Þ; a > 0: ð28Þ
We see from Appendix A (case 4) that any such point is a
critical point ofF . Sincepx ¼ a is nonzero, this critical point
has rank 1 and energy H0 ¼ a2=2. It is not difficult to see
(using the symmetry of V) that p lies on a periodic orbit
confined to the ðx; pxÞ plane. In (26), takeGðx; px; y; pyÞ ¼
x and G0 ¼ 0. The criterion (27) is satisfied since:

fH;Ggjp ¼ fH; xgjp ¼ −a ≠ 0: ð29Þ

Then S in (26) defines a smooth 2D surface near p, namely
the Poincaré section H ¼ H0, x ¼ 0, which intersects the
orbit transversely. On this surface, we have:

px ¼ gðy; pyÞ; gðy; pyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðH0 − Vð0; yÞÞ − p2

y

q
:

The restriction of I to this surface is then given [in the
coordinates ðy; pyÞ] by:

IjSðy; pyÞ ¼ Ið0; gðy; pyÞ; y; pyÞ: ð30Þ

Figure 5 shows contours of the function IjS for two values of
H0 at the nominal insert strength τ ¼ −0.4. The periodic
orbit of the point (28) intersectsS at the origin, and it is stable

when H0 < 0.1, unstable when H0 > 0.1, and degenerate
when H0 ¼ 0.1.
A summary of the classification scheme described in

Secs. IVA and IV B is provided in Table I, where a
connection is made with the mathematical literature [11].

C. Interpretation of the bifurcation diagram

The bifurcation diagram Σ encodes valuable information
about the global structure of the integrable Hamiltonian
system [9–11]. For a system with two degrees of freedom,
each point on a well-behaved curve in Σ corresponds to a
level set containing a nondegenerate rank-1 critical point
([9], Prop. 1.16). On the other hand, a “cusp” or intersection
point in the bifurcation diagram generally indicates the
presence of a degenerate rank-1 critical point or a rank-0
critical point (fixed point). For the bifurcation diagram
shown in Fig. 3, information regarding the classification of
critical points is indicated as follows:

(i) A black dot indicates that the level set contains one
or more fixed points, all of which are stable.

(ii) A yellow dot indicates that the level set contains one
or more fixed points, at least one of which is unstable.

(iii) A solid line indicates that the level set contains one
or more periodic orbits, all of which are stable.

FIG. 5. Stable and unstable critical periodic orbits (τ ¼ −0.4).
Contours of the function IjS are shown on the surface S defined
by H ¼ H0, x ¼ 0 near the critical point (28). The periodic orbit
of p pierces the surface S at the origin. (Left) The case
H0 ¼ 0.05, for which p is stable. (Right) The case H0 ¼ 0.5,
for which p is unstable. The visible portion of the level set
containing p is shown in red.

TABLE I. Classification of a critical point p by rank and
stability. The terminology in parentheses is taken from [11].

Type Criterion

Fixed point rankðDFpÞ ¼ 0

stable (elliptic-elliptic) detðHesspðVÞÞ > 0

unstable (elliptic-hyperbolic) detðHesspðVÞÞ < 0

degenerate detðHesspðVÞÞ ¼ 0

Periodic orbit rankðDFpÞ ¼ 1

stable (transversally elliptic) detðHesspðIjSÞÞ > 0

unstable (transversally hyperbolic) detðHesspðIjSÞÞ < 0

degenerate detðHesspðIjSÞÞ ¼ 0
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(iv) A dashed line indicates that the level set contains one
or more periodic orbits, at least one of which is
unstable.

The stability of each critical periodic orbit is determined by
using an appropriate choice of Poincaré section, as
described in the previous section. The results may be
summarized using the Hessian determinant for a typical
periodic orbit on the level sets obtained along each of the
four parametrized curves given in (17):

detAðHess IjSÞ ¼ 4

�
4ξ4 þ 2ξ2ð−2þ τÞ − τ −

τarccoshξ

ξ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
�
;

detBðHess IjSÞ ¼ 4

�
4η4 þ 2η2ð−2þ τÞ − τ þ τ arcsin η

η
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
�
;

detCðHess IjSÞ ¼ 4 − 8sþ 8τ;

detDðHess IjSÞ ¼ 4þ 8t − 8τ: ð31Þ
Note that the choice of S differs in each case. The above

result is valid for any τ < 0. When τ ≥ 0, the stability
results for case C are modified slightly.

V. DYNAMICS AT NOMINAL INSERT STRENGTH

In this section, we illustrate the relevance of the
information contained in Figs. 3-4 to the dynamics of
IOTA at the nominal insert strength τ ¼ −0.4. To do this,
recall that the phase spaceM is partitioned into level sets of
the momentum mapping F . The critical level sets play a
central role, and their union is given by F−1ðΣÞ, where Σ
denotes the bifurcation diagram. We refer to F−1ðΣÞ as
the set of critical initial conditions in the phase space M.
This set includes all the critical points of F . In addition, it
includes all points whose orbits may approach a critical point
in the limit t→∞ or t→−∞ (stable and unstable manifolds).
We will see that this set divides the phase space M into
regions with qualitatively distinct dynamical behaviors.
In order to visualize the set F−1ðΣÞ in the 4D phase

space M, we take its intersection with the plane defined
by px ¼ py ¼ 0. The resulting network of critical initial
conditions in the ðx; yÞ plane is shown in Fig. 6. The
various curves and points, as well as their colors and
stability indicators (solid, dashed) correspond to those
shown in Fig. 3 under the mapping F . Note that there
are five fixed points: one stable fixed point at the origin
(black dot) and four unstable fixed points (yellow dots),
which correspond also to the five points shown in Fig. 2.
The letter codes correspond to the level set types shown in
Fig. 4. Although only two level set types appear (B and G),
we will see dynamical differences between the regions of
type G. The level set type C does not appear, as no orbit on
such a level set contains a point with px ¼ py ¼ 0.

A. Orbits on regular level sets

Consider the orbit of a particle with initial condition
px ¼ py ¼ 0 and coordinates ðx; yÞ in the transverse plane.

If the point ðx; yÞ does not lie on one of the curves shown in
Fig. 6, then the orbit lies on a regular level set of F
consisting of one or more connected components (Liouville
tori). (See Fig. 4.) Due to the continuity of the Hamiltonian
flow, the orbit is confined exclusively to one of these
connected components. Furthermore, if the characteristic
frequencies are non-resonant, the orbit is dense on this
component, and the projection of the level set into the ðx; yÞ
plane provides a complete picture of the orbit geometry in
this plane.
All such orbits can be classified as shown in Fig. 7. The

three figures illustrate three shaded (gray) regions in the
plane, and initial conditions in distinct regions have distinct
orbit geometry. For reference, the network of critical initial
conditions is shown in black. (The colors that appear in
Fig. 6 have been removed to avoid visual clutter.) Note that
the dashed red arc and the dashed green arc appearing in
Fig. 6 define the boundaries of the shaded regions. Level
sets of F corresponding to three distinct initial conditions
are shown (blue), one from each region. In each case, the
initial condition is located on one of the visible “corners” of
the level set. (These corners correspond to the turning
points where px ¼ py ¼ 0).
For the initial condition ðx; yÞ ¼ ð0.3; 0.6Þ, the orbit

executes motion surrounding the origin, filling densely
a level set that is symmetric about the x- and y-axes
[Fig. 7(a)]. For the initial condition ðx; yÞ ¼ ð0.7; 0.3Þ, the
orbit fills densely the upper component of the level set in
Fig. 7(b), executing motion in the upper half-plane. In this
case, the orbit effectively “bounces” off of the potential
barrier formed by the presence of the singularities.

FIG. 6. Critical initial condition set F−1ðΣÞ, shown in the ðx; yÞ
plane with px ¼ py ¼ 0, for the nominal insert strength
τ ¼ −0.4. Only one quadrant is shown. (Results are symmetric
about the x- and y-axes.) Colors and labels correspond to those
found in Fig. 3. This set includes one stable fixed point (black
dot, origin) and four unstable fixed points (yellow dots, one
visible). The visible singular point is located at (1,0) (purple), but
is not considered part of the phase space M. A particle with its
initial condition on one of the solid curves executes a stable
periodic orbit.
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(Likewise, the orbit of ðx; yÞ ¼ ð0.7;−0.3Þ is confined to
the lower half-plane.) Finally, for the initial condition
ðx; yÞ ¼ ð1.3; 0.2Þ, the orbit fills densely the small right-
most component of the level set in Fig. 7(c), executing
motion in the right half-plane and crossing the branch cut.
(Likewise, the orbit of ðx; yÞ ¼ ð−1.3; 0.2Þ is confined to
the left half-plane).
This behavior was verified by numerical tracking using a

symplectic integrator. For example, Fig. 8 illustrates the
orbit obtained for the initial condition ðx; yÞ ¼ ð0.7; 0.3Þ,
together with the upper component of the level set shown in

Fig. 7(b). The orbit comes arbitrarily close to each point
within the blue boundary as t → ∞. If the initial condition
ðx; yÞ ¼ ð0.7;−0.3Þ is used, the orbit similarly fills the
lower component in Fig. 7(b). Similar behavior occurs for
the other orbits whose geometry is described in Fig. 7.
Note that we have considered orbits initialized from rest.

However, there exist orbits with no turning points (points
where px ¼ py ¼ 0). An example is given by the initial
condition ðx; px; y; pyÞ ¼ ð0; 1; 1; 0Þ. One may verify that
the corresponding point ðH; IÞ lies in the region C of Fig. 3,
and the orbit fills densely a level set of type C (Fig. 4),
encircling the origin.

B. Orbits on critical level sets

For an initial condition with ðx; yÞ located on one of
the solid curves in Fig. 6, the corresponding level set of F
is a 1D closed curve in the 4D phase space, indicating
thatmotion occurs on a stable periodic orbit. For example, in
Fig. 7(a), as the initial condition ismoved toward the vertical
(horizontal) axis, the projection of the level set shrinks
to a vertical (horizontal) line segment. Similar behavior
occurs for the shaded regions shown in Figs. 7(b)–(c). In
these cases, as the black curve is approached the level set
projection shrinks to the union of four segments of an ellipse,
one of which coincides with the orbit.
The behavior of orbits for points on the dashed curves in

Fig. 6 is more complex, as these are associated with
separatrix-like structures in the phase space M. For a
point on the dashed red arc, we obtain a level set that is
intermediate between those shown in Figs. 7(a)–(b),
with upper and lower components merged along a cusp
with y ¼ 0. The dynamics near such a level set ðH; IÞ ¼
ð0.5; 1Þ is illustrated in Fig. 9 using a Poincaré section.

FIG. 7. Level sets (blue) for three distinct initial conditions with
px ¼ py ¼ 0, reflecting three distinct types of orbit geometry at
the nominal insert strength τ ¼ −0.4. The set of critical initial
conditions is shown in black. (a) The orbit is symmetric about the
x- and y- axes. (b) The orbit is confined to the upper half-plane.
(c) The orbit is confined to the right half-plane.

FIG. 8. The orbit obtained by numerical tracking of initial
condition px ¼ py ¼ 0 and ðx; yÞ ¼ ð0.7; 0.3Þ for τ ¼ −0.4 is
shown together with the upper component of the corresponding
invariant level set, which is defined by ðH; IÞ ¼ ð0.39; 0.86Þ. The
boundary of the level set appears in blue. Compare Fig. 7(b).

FIG. 9. Poincaré section illustrating the critical level set
ðH; IÞ ¼ ð0.5; 1Þ (red curve). Intersections of several level sets
of F with the surface defined by H ¼ 0.5, x ¼ 0 are shown for
τ ¼ −0.4. Curves in blue correspond to distinct values of I
ranging from I ¼ 0.8 to I ¼ 1.2. The critical level set contains an
unstable periodic orbit, intersecting the surface at the origin.
Black arrows denote the stable and unstable directions associated
with this periodic orbit. In addition, two stable periodic orbits
intersect the surface near ðy; pyÞ ¼ ð�0.7; 0Þ.
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(We examine the intersection of the level sets of F with the
surface S defined in (26) by taking G ¼ x, H0 ¼ 0.5,
G0 ¼ 0.) This level set contains (among others) points
ðx; px; y; pyÞ ¼ ð0.68; 0; 0; 0Þ and ðx; px; y; pyÞ ¼ ð0.95; 0;
0.74; 0Þ that appear on the dashed red curves in Fig. 6.
The first of these points yields an unstable periodic orbit
that intersects the surface S at the origin in Fig. 9. The
second of these points yields an orbit whose intersections
with the surface are confined to the red curve in Fig. 9.
All such orbits on the red curve are homoclinic to the
periodic orbit at the origin. Note that nearby orbits with
I < 2H0 cross the midplane y ¼ 0, while nearby orbits
with I > 2H0 do not. The latter behavior can also be seen
by studying the line H ¼ H0 in Fig. 3.
Similarly, as an initial condition is moved from the

shaded region in Fig. 7(b) or (c) to the dashed green arc
shown in Fig. 6, the upper and lower components of the
level set merge with the right and left components of the
level set. An initial condition exactly on the green arc yields
an unstable periodic orbit that lies on a separatrix-like level
set similar to that shown in Fig. 9.
Finally, the level set containing the 4 unstable fixed

points (yellow dot in Fig. 6) is shown in Fig. 10 via its
projections into the ðx; yÞ and ðx; pxÞ planes. In addition to
the fixed points themselves, the level set contains 8
heteroclinic orbits, each such orbit connecting one pair
of unstable fixed points. This example also shows that a
single level set may contain both rank-0 and rank-1 critical
points.

VI. DEPENDENCE ON THE STRENGTH
PARAMETER

In this section, we study the dependence of the dynamics
on the nonlinear insert strength τ. In particular, we
determine those values τ where bifurcation occurs.

A. Bifurcation of fixed points

Recall from (23) that fixed points of the Hamiltonian
flow occur where px ¼ py ¼ 0 and:

∇Vðx; yÞ ¼ 0 ⇔ z̄ ¼ τF0ðzÞ; z ¼ xþ iy: ð32Þ

It follows from (1) that F0ðzÞ ¼ 0 if and only if z ¼ 0, and
the origin is therefore a fixed point for every τ. To determine
all other fixed points, we may solve for τ in (32) to obtain,
after taking real and imaginary parts:

Re
�

z̄
F0ðzÞ

�
¼ τ; Im

�
z̄

F0ðzÞ
�

¼ 0: ð33Þ

Plotting the contour corresponding to the rightmost equa-
tion in (33) yields the set of black curves shown in Fig. 11.
Contours of the leftmost equation in (33) are indicated by
the dashed red lines, shown for several distinct values of τ.
For a given value of τ, the fixed points appear at the
intersection(s) of these curves. In this figure, one may
follow the locations of the fixed points as τ is decreased
from τ ¼ 1=2 to τ ¼ −9.
We consider a fixed point bifurcation to occur when two

fixed points split/merge from each other as τ is varied, or
when a fixed point splits/merges from one of the singu-
larities ð�1; 0Þ. The former case is accompanied by a
change in stability type. Thus, we determine all values of τ
for which one or more degenerate fixed points is present.
Recall that a degenerate fixed point occurs where (32) is
satisfied and:

detðHessVðx; yÞÞ ¼ 0 ⇔ 1 ¼ �τjF00ðzÞj: ð34Þ

These conditions are satisfied at exactly 3 triples ðx; y; τÞ,
namely those given by:

ðx; y; τÞ ¼
�
0; 0;� 1

2

�
or ðx; y; τÞ ¼ ð0; yc; τcÞ; ð35Þ

where yc ≈ 2.7 and τc ≈ −6.8 are determined by solving:

−3yc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2c

q
þ ð−1þ 2y2cÞasinhyc ¼ 0; τc ¼

1

2
− y2c:

ð36Þ

Likewise, for any fixed point that approaches the singu-
larity z ¼ 1, it follows from (33) that merger occurs at the
insert strength:

(a)

(b)

FIG. 10. Critical level set containing the four unstable fixed
points for the case τ ¼ −0.4. (a) Projection into the ðx; yÞ plane.
Fixed points are shown in yellow. (b) Projection into the ðx; pxÞ
plane. Fixed points are located at the two curve self-intersections.
Black arrows denote stable and unstable directions near the fixed
points. The projection of the level set into the ðy; pyÞ plane has a
similar structure.
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τ ¼ lim
z→1

�
z̄

F0ðzÞ
�

¼ 0; ð37Þ

since F0ðzÞ diverges at z ¼ 1. (The same result holds
for z ¼ −1.)
These fixed point bifurcations can be seen in Fig. 12,

which illustrates the coordinates ðx; yÞ of each fixed point
as a function of τ. The solid lines indicate the coordinates of
those fixed points with either x or y vanishing, while the
dashed lines indicate those fixed points with both x and y
nonzero. The stability type is indicated by color (black—
stable, red—unstable). Moving from right to left (τ
decreasing), one begins with a single fixed point at the
origin. At τ ¼ 1=2, two additional fixed points are created,
which move along the x-axis until colliding with the
singular points at τ ¼ 0. At τ ¼ 0, each of these fixed
points splits into two, resulting in four fixed points (in
addition to the fixed point at the origin). Two additional
fixed points emerge from the origin at τ ¼ −1=2. The latter
two fixed points move along the y-axis until merging with
those located on the dashed curve at τ ¼ τc. Outside the
range τc ≤ τ ≤ 1=2, no additional fixed point bifurca-
tions occur.
There also exist local minima of V that lie along the

branch cuts (Fig. 1) for certain values of τ. At these points,
∂xV ¼ 0, while ∂yV is not defined (as it jumps discontin-
uously across the branch cut). We refer to these points as
pseudofixed points. At each of these points,

y ¼ 0; jxj > 1; ∂xV ¼ 0: ð38Þ

Note that for x > 1,

∂xVðx; 0Þ ¼ xþ τx
x2 − 1

−
τarccoshx

ðx2 − 1Þ3=2 : ð39Þ

Pseudofixed points occur at those values of x where
(39) vanishes. Equation (39) has one root x > 1 when
τ < −3=2. This pseudofixed point may merge with the
singularity (1,0). To see this, note that a finite one-sided
limit exists as the singular point is approached along the
line y ¼ 0, x > 1, since:

lim
x→1þ

∂xVðx; 0Þ ¼ 1þ 2τ

3
: ð40Þ

Note that (40) vanishes when τ ¼ −3=2. Thus, the pseu-
dofixed point emerges from the singularity at τ ¼ −3=2 and
moves toward increasing jxj as τ decreases.
The complete set of values τ at which fixed point

bifurcations occur is therefore given by:

τ ∈ f1=2; 0;−1=2;−3=2; τcg; ð41Þ
where τc is the value given by (36). Table II summarizes the
number and type of fixed points present as τ is varied. Note
that the origin is only stable in the range −1=2 < τ < 1=2.

B. Extended bifurcation diagram

The bifurcation diagram Σ (defined in Sec. III. A)
itself undergoes topological changes as the insert strength

FIG. 11. Contours of the real (red dashed) and imaginary (solid
black) parts of the complex function in (33), illustrating the
locations of fixed points in one quadrant of the transverse plane
for all values of τ. The origin is always a fixed point. The
remaining fixed points move over the solid black curves as τ
varies. Dashed red curves are shown for decreasing values of τ
ranging from τ ¼ 0.5 to τ ¼ −1 (in decrements of 0.1) and from
τ ¼ −1 to τ ¼ −9 (in decrements of 1).

FIG. 12. Spatial coordinates ðx; yÞ of the dynamical fixed
points lying in one quadrant of the transverse plane are shown
as functions of the parameter τ, illustrating the fixed point
bifurcations discussed in Sec. VI A. Each figure must be extended
by symmetry to x < 0 or y < 0. (Black) Stable fixed point. (Red)
Unstable fixed point. Compare the summary in Table II.
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parameter τ is varied. The τ-dependence of Σ can be studied
systematically by working in an extended phase space
with one additional degree of freedom, as described in
Appendix E. This procedure results in an extended bifur-
cation diagram Σ3 in the 3D parameter space ðH; I; τÞ.
Because the structure of Σ3 is difficult to visualize, we
consider its intersection with several planes of the form
τ ¼ τ0. Such an intersection yields the bifurcation diagram
Σ for the value τ ¼ τ0. We consider a set of values τ0 that is
sufficient to demonstrate the range of topologically distinct
behaviors for Σ.
The extended bifurcation diagram Σ3 divides the param-

eter space ðH; I; τÞ into 8 distinct regions, separating a total
of 7 distinct types of regular level sets of F , which will be
denoted by the letter codes A-G. Four of these types were
shown in Fig. 4. The remaining three are shown in Fig. 13,

via their projections into the ðx; yÞ plane. Note that a regular
level set may have 0, 1, 2, 3, or 4 connected components,
and that all such level sets are bounded in the spatial
variables ðx; yÞ.
For each τ ∈ R, Σ is defined by the four curves given in

(17) and their intersections, where the values ðξmin; ηmin;
smin; tminÞ are defined piecewise for all τ ∈ R as follows:

ξmin ¼
�
1; τ ≥ −3=2;
ξ > 1 zero IAðξÞ − 2HAðξÞ; τ < −3=2

ηmin ¼

8>>><
>>>:

0; τ ≥ 1=2;

η > 0 zero IBðηÞ − 2HBðηÞ; 0 < τ < 1=2;

solution HA ¼ HB; IA ¼ IB; τc < τ < 0;

0; τ < τc

smin ¼

8>>><
>>>:

−∞; τ > 0;

0; −1=2 ≤ τ ≤ 0;

1=2þ τ; −3=2 ≤ τ < −1=2;
HAðξminÞ; τ < −3=2;

tmin ¼
�
0; τ ≥ −1=2;
HAðξdÞ; ξd > 1 zero IAðξÞ ¼ 0; τ < −1=2;

Figures 14–19 illustrate the bifurcation diagram Σ
obtained using 7 representative values of τ. Information
about the classification of critical points is indicated using

FIG. 13. Projections of three additional level set types, com-
pleting the collection (A-G) begun in Fig. 4. In each figure, the
numerical triple denotes ðH; I; τÞ. A nonresonant orbit on such a
level set densely fills one of its connected components. (D) Two
connected components, not intersecting the branch cuts.
(E) Two connected components, intersecting the branch cuts.
(F) Three connected components.

TABLE II. Number and stability of fixed points (PF denotes
pseudofixed point).

Parameter Fixed points Origin stable?

ðτ > 1=2Þ 1 unstable N
ð0 < τ < 1=2Þ 1 stable, 2 unstable Y
ð−1=2 < τ < 0Þ 1 stable, 4 unstable Y
ð−3=2 < τ < −1=2Þ 2 stable, 5 unstable N
ðτc < τ < −3=2Þ 2 stable, 5 unstable, 2 PF N
ðτ < τcÞ 3 unstable, 2 PF N

FIG. 14. Bifurcation diagram Σ for the insert strength value
τ ¼ 2, dividing the ðH; IÞ plane into five distinct regions. (Upper)
Default view, showing all available regions. (Lower) Scaled-up
view near ðH; IÞ ¼ ð0; 0Þ.
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the scheme described in Sec. IV C. In several of these
figures, a second illustration of the bifurcation diagram is
shown at a larger scale, in order to highlight features that
are difficult to resolve by eye. Each fixed point bifurcation,
as described in the previous section, results in a topological
change in the bifurcation diagram Σ. One additional
topological change of Σ, which is related to the periodic
orbits instead of the fixed points, occurs at τ ¼ 3=2.
When τ > 0, the singularities at ð�1; 0Þ are attractive,

and the two values H and I are not bounded below. In
particular, for τ > 3=2, we see from Table II that there is
one unstable fixed point at the origin, which is reflected by
the yellow dot in Fig. 14. As τ decreases through τ ¼ 3=2, a
new region appears with level sets of type F (Fig. 15), and a
new family of unstable periodic orbits appears (dashed
green). A fixed point bifurcation occurs at τ ¼ 1=2, and the
region of type F intersects the line I ¼ 2H (red curve). The
diagram changes suddenly when τ < 0, asH and I are now
bounded below, and the regions of type D and F disappear,
replaced by a new region of type G. At τ ¼ −1=2, the fixed
point bifurcation results in a new region of type E,
containing values with H < 0 and I < 0. Once τ decreases
through the value −3=2, the cusp at the lowermost values of
ðH; IÞ transitions to a level set containing the pseudofixed

FIG. 15. Bifurcation diagram Σ for the insert strength value
τ ¼ 1, dividing the ðH; IÞ plane into six distinct regions. (Upper)
Default view. (Lower) Scaled-up view near ðH; IÞ ¼ ð0; 0Þ, in
which the region of type F is visible.

FIG. 16. Bifurcation diagram Σ for the insert strength value
τ ¼ 0.4, dividing the ðH; IÞ plane into six distinct regions. (Upper)
Default view. (Lower) Scaled-up view near ðH; IÞ ¼ ð0; 0Þ, in
which the region of type F is visible.

FIG. 17. (Upper) Bifurcation diagram Σ for the insert strength
value τ ¼ −0.4, dividing the ðH; IÞ plane into four distinct
regions. (Lower) Bifurcation diagram Σ for the insert strength
parameter τ ¼ −1, dividing the ðH; IÞ plane into five distinct
regions. The cusp at ð−1=2;−1Þ corresponds to the pair of
singular points, excluded from the phase space M.
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point. At τ ¼ τc, a final fixed point bifurcation occurs, and
a new family of unstable periodic orbits appears (on the
boundary between regions C and E). No additional topo-
logical changes occur outside the range τc ≤ τ ≤ 3=2.

C. Critical initial conditions

In this subsection, we comment on the τ-dependence of
the set of critical initial conditions F−1ðΣÞ defined in

Sec. V. The set of critical initial conditions ðx; yÞ with px ¼
py ¼ 0 is shown in Fig. 20 for the two values τ ¼ −1 and
τ ¼ 0.4, showing one case with an unstable origin, and one
case with reversed insert sign (attractive singularities).
(Compare Fig. 6.) Rather than providing similar figures
for all 7 cases shown in Figs. 14–19, we note that many
features of F−1ðΣÞ are reflected in the corresponding
bifurcation diagram Σ. For this purpose, it is helpful to
note that all points with px ¼ py ¼ 0 on the horizontal axis
map under F to the curve (17c) (shown in red), and all
points on the vertical axis map under F to the black curve
(17d) (shown in black).
For a beam on-axis in the nonlinear magnet, the

dynamics of primary interest is motion about a stable fixed
point at the origin. Recall that the origin is stable for
−1=2 < τ < 1=2. In this case, one is interested in those
critical structures in the phase space that are nearest the
origin. Write Σ ¼ Σs ∪ Σu ∪ Σd, where Σs (Σu, Σd) denotes
the image under F of all stable (unstable, degenerate)
critical points in K. We then define the distance (within the
plane px ¼ py ¼ 0) to the innermost unstable critical
structure by:

FIG. 18. Bifurcation diagram Σ for the insert strength value
τ ¼ −2, dividing the ðH; IÞ plane into five distinct regions. The
open dot at ð−3=2;−3Þ denotes the level set containing the pair of
pseudo-fixed points, described in Sec. VI A.

FIG. 19. Bifurcation diagram Σ for the insert strength value
τ ¼ −8, dividing the ðH; IÞ plane into five distinct regions.
(Upper) Default view. The open dot has the same meaning as
in Fig. 18. (Lower) Scaled-up view showing clearly the stability
of boundaries between regions of type C, G, and E.

FIG. 20. Critical initial condition set F−1ðΣÞ, shown in the
ðx; yÞ plane with px ¼ py ¼ 0, for insert strengths τ ¼ −1
(upper) and τ ¼ þ0.4 (lower). Only one quadrant is shown.
Colors and labels correspond to those found in Figs. 16–17.
Black dot—stable fixed point. Yellow dot—unstable fixed point.
Purple dot—singular point (not considered part of the phase
space M).
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dðτÞ ¼ inf
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

∶ðx; 0; y; 0Þ ∈ F−1ðΣuÞ
o
: ð42Þ

When −1=2 < τ < 0, it is apparent from Fig. 6 that the
innermost unstable structure occurs on the x-axis, where
the red curve transitions from solid (stable) to dashed
(unstable). When 0 < τ < 1=2, it is apparent from Fig. 20
that the innermost unstable structure occurs at the location
of the unstable fixed point (yellow) on the x-axis. Figure 21
illustrates (42) as a function of τ, showing how this distance
shrinks as the magnetic insert strength is increased.

VII. CONCLUSIONS

Any accelerator system designed to a strongly nonlinear
working point requires theoretical tools that are sufficient
for understanding the nominal single-particle dynamics.
For rings based on nonlinear integrable optics [1,2], tools
from the geometric theory of integrable Hamiltonian
systems may be applied [9–11] that do not require the
use of special coordinates or action-angle variables, and
which extend to any number of degrees of freedom. In
particular, the geometry of orbits is clarified by studying
how the phase space is partitioned into connected compo-
nents of the level sets of the invariants of motion (the
Liouville foliation). The critical level sets contain all of the
phase space structures of qualitative dynamical interest,
including the fixed points, critical periodic orbits, and
separatrixlike structures. We have described how these may
be determined and visualized using the bifurcation diagram
Σ. Key results are summarized as follows:

(i) The single-particle nominal on-energy dynamics in
IOTA is described by the integrable Hamiltonian
(9)–(10) with second invariant (11).

(ii) A global analysis of the orbits is achieved
by studying the momentum mapping (15) (its level
sets, critical points, and critical values). This begins
with a search for its critical points (16).

(iii) The bifurcation diagram (Fig. 3) contains critical
values of the momentum mapping, where the geom-
etry of the level sets (and hence, the geometry of the
orbits) changes qualitatively.

(iv) The critical points include dynamical fixed points
and critical periodic orbits, and these may be
classified in a way that reflects the local stability
of motion (Table I).

(v) Level sets corresponding to critical values (critical
level sets) partition the phase space into regions with
distinct dynamical behavior (Figs. 6–7).

(vi) Analysis of the fixed point condition (32) can be
used to study the number and stability of fixed points
as the nonlinear insert strength τ is varied [(12) and
Table II].

(vii) A global picture of the dynamics for all values of τ is
obtained by extending the bifurcation diagram to the
3D parameter space ðH; I; τÞ. Figs. (14–19).

The application of these methods to the IOTA ring reveals a
rich diversity of accessible dynamical behavior that could
be explored experimentally, subject to the limitations of the
physical aperture. Understanding the dynamical depend-
ence on the system parameters ðH; I; τÞ may also indicate
new machine operating points and help to guide future
accelerator designs [12] based on similar nonlinear mag-
netic elements. While we have not addressed the compu-
tation of characteristic orbital frequencies in this paper, we
remark that this information may be obtained from the
momentum mapping F , by evaluating a set of appropri-
ately defined integrals over paths that lie within the level
sets of F . This is a topic of ongoing research.
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APPENDIX A: SPECIAL FAMILIES OF
CRITICAL POINTS

Expressing the forms dH and dI in the local phase space
coordinates ðζ1; ζ2; ζ3; ζ4Þ ¼ ðx; px; y; pyÞ gives:

dH ¼
X4
j¼1

�∂H
∂ζj

�
dζj; dI ¼

X4
k¼1

� ∂I
∂ζk

�
dζk: ðA1Þ

Taking the wedge product gives, after using the antisym-
metry of ∧:

FIG. 21. Distance (42) from the origin to the innermost unstable
critical structure in the plane px ¼ py ¼ 0 as a function of τ.
The origin itself is unstable when jτj > 1=2. When τ ¼ 0, the
dynamical system described by (9) is linear and stable, with
dðτÞ ¼ ∞.
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dH∧ dI¼
X4
k¼2

Xk−1
j¼1

�∂H
∂ζj

∂I
∂ζk−

∂H
∂ζk

∂I
∂ζj

�
dζj ∧ dζk: ðA2Þ

The critical points of F occur where (A2) vanishes, which
occurs if and only if each of the six coefficients in
parentheses in (A2) vanishes. Rather than solving this
system of 6 equations in 4 unknowns directly, it is simplest
to search for solutions of (A2) satisfying the following
special conditions (reducing the problem from four to two
unknowns).
(1) Critical points located in the plane px ¼ py ¼ 0:
This is the set of all points ðx; yÞ satisfying:

ðx − τ∂xUÞðτ∂yWÞ þ ðy − τ∂yUÞð2x − τ∂xWÞ ¼ 0; ðA3Þ

where U and W are the functions appearing in (10)–(11).
This set includes, in particular, all of the dynamical fixed
points.
(2) Critical points located in the plane x ¼ y ¼ 0:
This is the set of all points ðpx; pyÞ with either px ¼ 0

or py ¼ 0.
(3) Critical points located in the plane x ¼ px ¼ 0:
All points in this plane are critical points.
(4) Critical points located in the plane y ¼ py ¼ 0:
All points in this plane are critical points.
(5) Critical points located in the plane y ¼ px ¼ 0:
This is the set of all points ðx; pyÞ with either py ¼ 0 or

xp2
y − ðx − τ∂xUÞðx2 − 1Þ ¼ 0; ðA4Þ

where U is the function appearing in (10).
(6) Critical points located in the plane x ¼ py ¼ 0:
This is the set of all points ðpx; yÞ with either px ¼ 0 or

yp2
x − ðy − τ∂yUÞðy2 þ 1Þ ¼ 0; ðA5Þ

where U is the function appearing in (10).
Next, note that the Hamiltonian flow maps critical

points to critical points. To see this, let p ∈ K be a critical
point, and let ϕt ðt ∈ RÞ denote the Hamiltonian flow. The
fact that f1;…; fn are invariant under ϕt implies that
F ∘ ϕt ¼ F . Applying the chain rule to the Jacobian at
p gives:

DFp ¼ DðF ∘ ϕtÞp ¼ DFϕtðpÞDðϕtÞp: ðA6Þ
Since DðϕtÞp is a symplectic matrix, it is invertible. Thus
(A6) implies,

rankðDFϕtðpÞÞ ¼ rankðDFpÞ: ðA7Þ
Since p satisfies (14), so does ϕtðpÞ, and there-
fore ϕtðpÞ ∈ K.
Thus, the orbits of the points defined by (1)–(6) consist

entirely of critical points. It follows from the structure of the
level sets (Appendix B) and their symmetry under x ↦ −x
and y ↦ −y that the orbit of every critical point must

intersect at least one of these six planes, and this exhausts
the set K of critical points.

APPENDIX B: LEVEL SETS

We wish to visualize the level set F−1ðfðH0; I0ÞgÞ in the
4D phase space M, corresponding to invariant values
H ¼ H0 and I ¼ I0. This can be done through intersection
with a 2D surface to yield a Poincaré section, as described in
Sec. IV B, or by projection into one or more planes. Below,
we consider projection into the ðx; yÞ plane,which also yields
a convenient 2D parametrization of the level surface.
Solving for the magnitude of momentum in the equation

H ¼ H0 gives:

jpj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½H0 − Vðx; yÞ�

p
; Vðx; yÞ ≤ H0: ðB1Þ

A real solution of (B1) exists for all values of ðx; yÞ
satisfying the inequality. Define

ðpx; pyÞ ¼ ðjpj cosϕ; jpj sinϕÞ; t ¼ e2iϕ: ðB2Þ

The equation I ¼ I0 then takes the form of an equation
for t:

Aðx; yÞt2 þ Bðx; yÞtþ Cðx; yÞ ¼ 0; ðB3Þ

where

Aðx; yÞ ¼ C̄ðx; yÞ ¼ jpj2
4

ð1 − x2 þ y2 þ 2ixyÞ; ðB4Þ

Bðx; yÞ ¼ jpj2
2

ð1þ x2 þ y2Þ þ x2 − τWðx; yÞ − I0; ðB5Þ

and jpj is given by (B1). A solution of (B3) for t exists on
the unit circle for all values of ðx; yÞ satisfying:

Bðx; yÞ2 − 4jAðx; yÞj2 ≤ 0: ðB6Þ

Using such t in (B1)–(B2) gives the value(s) of ðpx; pyÞ that
lie on the desired level surface over the point ðx; yÞ.
The projection of the level set into the ðx; yÞ plane

is therefore given by the set of points satisfying simu-
ltaneously the two inequalities in (B1) and (B6). It is
convenient that (B6) factors when expressed in elliptic
coordinates to give:

F1ðξÞF2ðηÞ ≤ 0; ðB7Þ

where the coordinates ðξ; ηÞ are related to ðx; yÞ by:

ðx; yÞ ¼
�
ξη;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ2 − 1Þð1 − η2Þ

q �
ðB8Þ

and the two functions F1 and F2 are:
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F1ðξÞ ¼ I0 þ ξ2ð−1− 2H0 þ ξ2Þ þ 2τξ
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
arccoshðξÞ;

F2ðηÞ ¼ I0 þ η2ð−1− 2H0 þ η2Þ þ 2τη
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− η2

q
arcsinðηÞ:

Points on the boundary of the level set in the ðx; yÞ plane
occur only where equality holds in (B7), so that

F1ðξÞ ¼ 0 or F2ðηÞ ¼ 0: ðB9Þ

Solution of (B9) yields an ellipse ðξ ¼ ξ0Þ or hyperbola
ðη ¼ η0Þ in the ðx; yÞ plane, with foci located at the two
singular points ðx; yÞ ¼ ð�1; 0Þ. The boundary of the
projected level set then consists of one or more segments
of these ellipses and hyperbolae, as constrained by the
additional inequality (B1).

APPENDIX C: BIFURCATION DIAGRAM

The setK of critical points satisfying (16) must generally
be obtained by searching numerically for the simultaneous
zeros of a set of real-valued functions on the phase space, as
in Appendix A. Evaluating the invariants at the locations of
these numerically determined critical points then yields the
bifurcation diagram Σ ¼ F ðKÞ.
In the special case of the Hamiltonian (9)–(10), one

may also use the results of Appendix B to obtain an explicit
parametrization of the bifurcation diagram as follows. The
boundary of each level set’s projection into the ðx; yÞ plane is
determined by the zeros of the two functionsF1 andF2 (B9).
The topology of the level set therefore changes at each value
of ðH0; I0Þ that coincides with a change in the number of
zeros of F1 or F2. This coincides with the presence of a
double root, where F1 ¼ F0

1 ¼ 0 or F2 ¼ F0
2 ¼ 0. Also, the

boundary ellipse ðξ ¼ ξ0Þ or hyperbola ðη ¼ η0Þ becomes
degenerate at the limiting values ξ0 ¼ 1, η0 ¼ 0, or η0 ¼ 1.
The topology of the level set may change at any value of
ðH0; I0Þ for whichF1 orF2 has a root at one of these values.
One then obtains the parametrization (17) as follows:
(A) Solve F0

1 ¼ 0 for H0, to obtain the parametrization
of HA. Substitute H0 ¼ HA into F1 ¼ 0, and solve
for I0 to obtain the parametrization of IA.

(B) Solve F0
2 ¼ 0 for H0, to obtain the parametrization

of HB. Substitute H0 ¼ HB into F2 ¼ 0, and solve
for I0 to obtain the parametrization of IB.

(C) Note that:

lim
ξ→1

F1ðξÞ ¼ lim
η→1

F2ðηÞ ¼ −2H0 þ I0: ðC1Þ

Setting (C1) to zero yields I0 ¼ 2H0, giving ðHC; ICÞ.
(D) Note that:

lim
η→0

F2ðηÞ ¼ I0: ðC2Þ

Setting (C2) to zero yields I0 ¼ 0, giving ðHD; IDÞ.
Finally, the values ðξmin; ηmin; smin; tminÞ are defined by

the intersection points of the four curves (17a)–(17d).

This procedure yields the same results as a direct evalua-
tion of Σ ¼ F ðKÞ based on the results of Appendix A. In
particular, taking the images of the 6 families of critical
points in Appendix A gives the following result:
(1) In the plane px ¼ py ¼ 0, solving (A3) numerically

for ðx; yÞ and evaluating ðH; IÞ at these points yields
critical values lying on the four curves (A)-(D) of
(17). This was verified numerically for a range of τ,
including τ ¼ −0.4.

(2) In the plane x ¼ y ¼ 0, the case px ¼ 0 gives by
direct evaluation that I ¼ 0 (on curve D). Similarly,
the case py ¼ 0 gives I ¼ 2H (on curve C).

(3) In the plane x ¼ px ¼ 0, direct evaluation gives that
I ¼ 0 (on curve D).

(4) In the plane y ¼ py ¼ 0, direct evaluation gives that
I ¼ 2H (on curve C).

(5) In the plane y ¼ px ¼ 0, the case py ¼ 0 gives I ¼
2H (on curve C). Otherwise, solve (A4) for p2

y and
substitute into ðH; IÞ. If jxj > 1, taking x ¼ ξ gives
the curve ðHA; IAÞ. If jxj < 1, taking x ¼ η gives the
curve ðHB; IBÞ.

(6) In the plane x ¼ py ¼ 0, the case px ¼ 0 gives
I ¼ 0 (curve D). Otherwise, solve (A5) for p2

x and
substitute into ðH; IÞ. Taking y¼�

ffiffiffiffiffiffiffiffiffiffiffi
ξ2−1

p
gives the

curve ðHA; IAÞ.
It follows that all critical points have invariant values

ðH; IÞ that lie on the four curves defined in (17).

APPENDIX D: DYNAMICAL STABILITY

A general Hamiltonian flow on a phase space of
dimension 2n is described by the equations of motion:

_ζ ¼ J∇HðζÞ; ðD1Þ
where ζ ¼ ðq1; p1;…; qn; pnÞ, and J denotes the 2n × 2n
matrix of the symplectic form:

J ¼ diagðJ1;…; J1Þ; J1 ¼
�

0 1

−1 0

�
: ðD2Þ

Let ζd denote an orbit of (D1) with period T ≥ 0. (In this
Appendix, we consider both periodic orbits and fixed points,
where for a fixed point we set T ¼ 0.) Dynamical stability is
determined by linearizing (D1) about the orbit ζd, yielding
the variational equations:

δ_ζ ¼ JSðtÞδζ; SðtÞ ¼ HessζdðtÞðHÞ: ðD3Þ
The solution of (D3) takes the form δζðtÞ ¼ RðtÞδζð0Þ,
where the linear transport matrix R satisfies the matrix
equation [20]:

_R ¼ JSðtÞR; Rð0Þ ¼ Id; ðD4Þ
and Id denotes the 2n × 2n identity matrix. By the Floquet-
Lyapunov theorem ([25], 2.5.2 and 2.1.1), there exist a real
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symplectic matrix PðtÞ and a real symmetric matrix B
such that:

RðtÞ ¼ PðtÞetJB; Pð0Þ ¼ Id; ðD5Þ
whereP is periodic in twith period T or 2T. The eigenvalues
of JB are called the characteristic exponents of the orbit
ζd. The orbit ζd is said to be (spectrally) stable if JB
is diagonalizable and all of its eigenvalues are purely
imaginary. In this case, solutions of (D3) remain bounded
for all t ∈ R ([25], 5.1.1). Note that, if λ ∈ C is a character-
istic exponent, then so are �λ, �λ̄ ([25], 2.3.1).
At a fixed point ζd, the matrix SðtÞ is independent of t.

It follows that we may take B ¼ S and P ¼ Id in (D5), and
the stability problem is reduced to studying the eigenvalues
of JS. For a Hamiltonian in two degrees of freedom of the
form (9), the eigenvalues σ of JS are the roots of:

detðJS − σIdÞ ¼ detðHessðVÞ þ σ2IdÞ ¼ 0: ðD6Þ
If λ1, λ2 denote the eigenvalues of HessðVÞ, it follows that
the 4 characteristic exponents are given by:

σð�Þ
j ¼ �iλ1=2j ; ðj ¼ 1; 2Þ: ðD7Þ

Since HessðVÞ is a symmetric matrix, each λj ∈ R. It then
follows from (D7) that a fixed point of the system (9) is
(spectrally) stable if and only if λ1; λ2 > 0.

APPENDIX E: EXTENDED PHASE SPACE

We may extend the theory of Sec. III to treat the
τ-dependence of the Hamiltonian (9) as follows. Let M4

denote the usual 4D phase space, with its canonical
coordinates ðx; px; y; pyÞ. We define an extended phase
spaceM6 ¼ M4 × S1 ×R, where S1 denotes the unit circle,
with canonical coordinates ðx; px; y; py; θ; τÞ. Here θ is an
angle variable with eiθ ∈ S1, and τ ∈ R is the nonlinear
insert strength. Define a Hamiltonian H̃ on the phase space
M6 using the expression (9), where τ is now a dynamical
variable, and define a function Ĩ onM6 using the expression
(11). Then H̃, Ĩ, and τ are functionally independent onM6,
and one may verify that:

fH̃; τg ¼ 0; fĨ; τg ¼ 0; fH̃; Ĩg ¼ 0: ðE1Þ
This defines an integrable Hamiltonian system on the
extended phase space M6, with invariants of motion
f1 ¼ H̃, f2 ¼ Ĩ, and f3 ¼ τ, to which the theory of
Sec. III can be applied. In this way, we obtain an extended
bifurcation diagram Σ3 in the parameter space ðH̃; Ĩ; τÞ.
The diagram Σ3 consists of four parametrized 2-surfaces
and their intersections in three-dimensional space, given
by the expressions in (17), where τ is now treated as a
parameter. The surfaces in Σ3 divide R3 into distinct
regions (chambers), separating the 7 types of regular level

sets shown in Figs. 4, 13. In Sec. VI B, we study the
bifurcation diagram Σ3 by illustrating its intersections with
the planes τ ¼ τ0 (slices) at several fixed values of τ0.
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