
 

Tracking with wakefields in dielectric laser acceleration grating structures
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Due to the tiny apertures of dielectric laser acceleration grating structures within the range of the optical
wavelength, wakefields limit the bunch charge for relativistic electrons to a few femtocoulomb. In this
paper, we present a wakefield upgrade of our six-dimensional tracking scheme DLAtrack6D in order to
analyze these limitations. Simulations with CST Studio Suite provide the wake functions to calculate the
kicks within each tracking step. Scaling laws and the dependency of the wake on geometrical changes are
calculated. The tracking with wakefields is applied to beam and structure parameters following recently
performed and planned experiments. We compare the results to analytical models and identify intensity
limits due to the transverse beam breakup and strong head-tail instability. Furthermore, we reconstruct
phase advance spectrograms and use them to analyze possible stabilization mechanisms.
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I. INTRODUCTION

Dielectric laser acceleration (DLA) structures accelerate
electrons in the optical near-fields of periodic gratings
[1,2]. Powered by ultrafast lasers, they are a promising
concept for compact accelerators due to tenfold higher
gradients as compared to conventional rf accelerators [3,4].
Recently, accelerating gradients of 850 MeVm−1 were
demonstrated at UCLA [5] using 45 fs laser pulses.
Reviews of DLA theory and experiments can be found
in [6–8]. The optimization of the beam dynamics in DLA is
dominated by the question of how to fit a finite emittance
beam into the sub-micrometer apertures of the grating
structures over a length of several thousand periods. A
scheme to confine a beam in the longitudinal as well as in
one transverse plane by alternating the synchronous phase
(APF-scheme) was proposed recently [9], wherein we
described the single electron dynamics of an accelerator,
which is fully scalable in length and energy. However,
intensity effects were not included, yet. These intensity
effects play a major role in relativistic DLA experiments,
where conventional photoinjectors and booster-linacs
are used.
Coherent DLA acceleration requires bunch lengths sig-

nificantly shorter than the optical wavelength. Together with

the small apertures inDLAs, this leads to a strong short-range
wakefield compared to the laser fields. As an example, Fig. 1
shows the wakefield in a dielectric dual pillar structure.
Previous work on wake effects in DLAs has concentrated on
longitudinal effects such as beam loading. This has been
described by simplified analytical models of the structures,
namely an azimuthal symmetrical and longitudinally flat
structure and pointlike bunch distributions [10–15]. The
analysis of metallic periodically corrugated structures like
flat grating-dechirpers [16] has shown that the geometrical
parameters influence the wakefields of particles close to the
structure. Similar outcomes are expected for dielectric
structures, however, additionally to the Smith-Purcell effect
also the Cherenkov effect is present. Distinguishing between
these two is not trivial and depends on geometrical as well as
material parameters of the structure. The effects creating the
Cherenkov wakes can be seen for example in the Cherenkov
cone and the reflections within the Bragg layers in Fig. 1.
They are intensively studied within the context of driving
wakefields in dielectric wakefield accelerators (DWAs)
[17–19]. One of the key findings of thework onDWAs is that
the use of flat beams suppresses the transverse wake. Since
the height of most DLA structures, e.g. pillars, is limited
by the achievable etching depth to a few micron, the
use of flat beams is impractical. Thus, we focus our study
in the following on transversely almost circular bunch
distributions.
Due to the finite emittance of available sources for round

highly relativistic beams, the small apertures of a DLA
grating are almost completely filled by particles. In order to
analyze intensity effects in arbitrary DLA grating struc-
tures, we expand our tracking scheme DLAtrack6D [20] by
kicks due to the charge-distribution dependent wake in
this paper.

*egenolf@temf.tu-darmstadt.de
†Also at GSI Helmholtzzentrum für Schwerionenforschung

GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 054402 (2020)

2469-9888=20=23(5)=054402(13) 054402-1 Published by the American Physical Society

https://orcid.org/0000-0001-6220-3928
https://orcid.org/0000-0002-7671-980X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.23.054402&domain=pdf&date_stamp=2020-05-07
https://doi.org/10.1103/PhysRevAccelBeams.23.054402
https://doi.org/10.1103/PhysRevAccelBeams.23.054402
https://doi.org/10.1103/PhysRevAccelBeams.23.054402
https://doi.org/10.1103/PhysRevAccelBeams.23.054402
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


DLAtrack6D is based on calculating the longitudinal
kicks from the spatial Fourier harmonics of the laser field
and deriving the transverse kicks by means of the Panofsy-
Wenzel theorem [21]. Subsequently, the kicks are applied
to each particle of a bunch and the tracking is performed by
the symplectic Euler (or leap frog) method. In this paper,
we add wake kicks in a similar way as the external laser
kicks. The paper is organized as follows: The calculation of
the wake kicks is summarized in Sec. II, which is followed
by a description of the simulated grating structures and
scaling laws in Sec. III. Section IV shows tracking results
for different energy ranges and links them to simplified
analytical models of transverse instabilities. Stabilization
mechanisms and intensity limits are also given in this
section. The paper concludes with a summary and an
outlook in Sec. V.

II. WAKE KICKS

The calculation of wake kicks requires solving
Maxwell’s equations in a given structure. Starting from a
periodic grating structure, which is translation invariant in
x-direction, we simulate the wake potential by the time-
domain wakefield solver in CST Studio Suite [22]
(cf. Fig. 1) using open boundary conditions in y- and z-
direction and electric boundary conditions in x-direction.
The number of DLA periods and the spacing to the
boundaries is chosen such that the short range wakefield
per DLA period converges. From the CST simulation we
obtain the wake potential of a longitudinally Gaussian
shaped moving line charge with a predefined bunch length.
In order to get a three-dimensional map of the wake
potential, the wakefield-integration paths are arranged on
a rectangular grid in the gap region and the beam path is
varied along the locations of the integration path in y-
direction (cf. Fig. 2). The simulation is performed for each
position of the source beam. Due to the translation
symmetry of the structure in x-direction, it is sufficient
to have all beam paths at only one x-position.

In order to calculate the wake potential of an arbitrary
bunch distribution, the Green’s function wake w⃗, i.e., the
wake of a single particle excitation is required. However, if
the length of a Gaussian excitation signal is much shorter
than the length of the later used arbitrary bunch distribu-
tion, the wake potential of the corresponding CST simu-
lation is a good approximation of the Green’s function
w⃗ðx − x̃; y; ỹ; s̃Þ, where x̃ and ỹ are the coordinates of the
beam path, x and y are the coordinates of the integral path,
and s̃ is the longitudinal coordinate with s̃ ¼ 0 at the
position of the charge. The convolution with the arbitrary
bunch distribution on an arbitrary transverse position in the
gap results in the wake potential

W⃗ðx; y; sÞ ¼
Z

∞

−∞

Z
∞

−∞

Z
∞

−∞
½w⃗ðx − x̃; y; ỹ; s̃Þ

×λðx̃; ỹ; s − s̃Þ�dx̃dỹds̃; ð1Þ

where the bunch distribution is normalized as
R
V λðx;

y; sÞdV ¼ 1. For simplicity, we assume an uncorrelated
distribution λðx̃; ỹ;s− s̃Þ¼ λxðx̃ÞλyðỹÞλsðs− s̃Þ. This splits
the integral in Eq. (1) in three parts, which can be evaluated
independently. The wake potential is the result of a
convolution over the longitudinal coordinate

FIG. 1. Left: Longitudinal electric field of a 50 nm bunch (at z ¼ 16.565 μm) with 1 fC bunch charge (left) propagating through a
dielectric dual pillar structure with 2 μm period length (right). The dimensions of the structure can be found in Appendix A.

FIG. 2. Integration paths (blue dots) and beam paths (red dots)
in the CST simulation. For each beam path the simulation is
performed and the resulting wakefields are recorded in every
integration path.
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W⃗ðx; y; sÞ ¼
Z

∞

−∞
W⃗λxλyðx; y; s̃Þλsðs − s̃Þds̃; ð2Þ

where the integrals over the transverse coordinates are

W⃗λxλyðx; y; s̃Þ ¼
Z

∞

−∞
W⃗λyðx − x̃; y; s̃Þλxðx̃Þdx̃ ð3Þ

and

W⃗λyðx − x̃; y; s̃Þ ¼
Z

∞

−∞
w⃗ðx − x̃; y; ỹ; s̃ÞλyðỹÞdỹ: ð4Þ

We will now discretize the above integrals, i.e., approxi-
mate them as sums. The integral over the transverse
coordinate ỹ is, for example, approximated as

W⃗λyðx − x̃; y; s̃Þ ≈ Δỹ
X
nỹ

½w⃗ðx − x̃; y; nỹΔỹ; s̃Þ×λyðnỹΔỹÞ�:

ð5Þ

The sum can be interpreted as a tensor product with all
coordinates replaced by representative indices

W⃗λyðx − x̃; y; s̃Þ ≈ W⃗
λy
nx;nx̃;ny;ns̃ ð6aÞ

¼ Δỹ
X
nỹ

w⃗nx;nx̃;ny;nỹ;ns̃λ
y
nỹ : ð6bÞ

The discrete representation of Eq. (1) follows as

W⃗ðnx; ny; nsÞ
¼ Δs̃Δx̃Δỹ

X
ns̃

X
nx̃

X
nỹ

w⃗nx;nx̃;ny;nỹ;ns̃λ
y
nỹλ

x
nx̃λ

s
ns̃;ns ; ð7Þ

which can be implemented in a very efficient manner.
The calculation of the wake kicks in each grating period

starts with particle binning to determine the bunch distri-
bution. Three tensor products as shown in Eq. (6b) yield
the position dependent discrete wake potential for the
bunch passing through one grating period. Evaluating the
wake potential at the particle coordinates ðxp; yp; spÞ,
the wake kicks for each particle can be calculated as

Δx0ðxp; yp; spÞ ¼
q qbunch
pz0βrefc0

Wxðxp; yp; spÞ; ð8aÞ

Δy0ðxp; yp; spÞ ¼
q qbunch
pz0βrefc0

Wyðxp; yp; spÞ; ð8bÞ

Δδðxp; yp; spÞ ¼
q qbunch
E0;ref

Wsðxp; yp; spÞ ð8cÞ

with the particle charge q, the bunch charge qbunch, the speed
of light c0, the reference energy E0;ref, the reference velocity
βref , and the reference momentum pz0. The changes in
transverse and longitudinal momenta can be combined by
the Panofsky-Wenzel theorem [21]

∂sΔp⃗⊥ ¼ −∇⊥Δps; ð9Þ

FIG. 3. Longitudinal and transverse wake potential per grating period in the left and right plot, respectively. The plot in the center
shows the normalized difference between the left end the right-hand side of the Panofsky-Wenzel theorem [Eq. (11)] calculated for the
simulated data of a Gaussian bunch distribution with standard deviation given by the black ellipse.
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which is applicable under periodic boundary conditions
[20]. Inserting the kicks [Eq. (8)] with Δx0 ¼ Δpx=pz0,
Δy0 ¼ Δpy=pz0 and Δδ ¼ Δpsβc=E0;ref , Eq. (9) becomes

∂sW⃗⊥ ¼ −∇⊥Ws; ð10Þ

i.e. the same property as for the laser kicks also holds for the
wake kicks. Equation (10) is a generally known result in
wakefield research (see, e.g., [23]); here we use it as
validation of Eqs. (8) and also of the numerical simulations
and postprocessing steps. The relative error in fulfilling
Eq. (9) is written as

fPWðx; y; sÞ ¼

��� ∂Ws∂y ðx; y; sÞ þ ∂Wy

∂s ðx; y; sÞ
������ ∂Wy

∂s ðx; y; sÞj þ j ∂Ws∂y ðx; y; sÞ
��� ð11Þ

with fPWðx; y; sÞ ≪ 1, which is plotted in Fig. 3. The plot in
the center shows that the numerical difference in the
Panofsky-Wenzel theorem is well below 1% except for
one spotwhere both derivatives of thewake are zero and thus
artifacts of the finite differences blow up the relative error.
The wake kicks [Eqs. (8)] are added to the kicks by

the external laser field (cf. Eq. (23) in [20]). The prior
implementation of DLAtrack6D runs in MATLAB [24]. For
the presented extension, DLAtrack6D was migrated to
PYTHON [25]. All convolutions are implemented as matrix
multiplications, which makes the calculation fast and
efficient, such that it can run on an ordinary PC.

III. STRUCTURES AND SCALING

Equipped with the simulation tools to calculate the
wakefields and the resulting kicks we investigate an
example of a relativistic DLA structure as shown in
Fig. 1. It consists of two rows of pillars made of fused
silica (εr ¼ 2.13) with a Bragg mirror on one side to
symmetrize the external accelerating fields [26]. The
vacuum gap as channel for the electrons between the
two pillar rows has a width of 1.2 μm. The period length
equals the laser wavelength of 2 μm, i.e. the structure is
matched to β ¼ 1. The dimensions of the pillars are
optimized in terms of acceleration gradient and can be
found in Appendix A.
If we change the geometric parameters of a structure, we

have to repeat the expensive wakefield simulations for each
parameter change. This effort can be significantly reduced
by using scaling laws. If all dimensions of the grating
structure are modified by a scaling factor α, i.e., s̃ ¼ αs, the
Green’s function wake per period scales as α−1 [27], i.e.,
w̃ðs̃Þ ¼ α−1wðsÞ. For a longitudinal bunch distribution,
which is also scaled as λ̃ðs̃Þ ¼ α−1λðsÞ, the wake potential
scales the same as the Green’s function wake. This follows
from the convolution

W̃ðs̃Þ ¼
Z

∞

−∞
λ̃ðs̃ − ˆ̃sÞw̃ð ˆ̃sÞd ˆ̃s ð12aÞ

¼ α−1
Z

∞

−∞
λðs − ŝÞwðŝÞdŝ ð12bÞ

¼ α−1WðsÞ: ð12cÞ

Scaling the period length of a grating structure and the
laser wavelength for β ≈ 1 is almost equivalent to modi-
fying all dimensions since a change in period length causes
a change in acceptable bunch length for coherent accel-
eration and also a change in the decay length of the
evanescent fields in the channel. We will use this to scale
the wakefields of DLA experiments performed at λ0 ¼
800 nm to the same structure at λ0 ¼ 2 μm, i.e., α−1 ¼ 2.5.
The loss factor is defined as

kloss ¼
Z

∞

−∞

Z
∞

−∞

Z
∞

−∞
Wsðx; y; sÞλðx; y; sÞdxdyds: ð13Þ

An increase of the gap width lowers the wakefield and thus
the loss factor significantly. However, the acceleration
gradient expressed by the first Fourier coefficient e1 of
the external field Ez in the center of the gap [20],

e1 ¼
1

βrefλ0

Z
βrefλ0=2

−βrefλ0=2
EzðzÞe

2πiz
βref λ0dz; ð14Þ

also decreases with the gap width. Figure 4 shows the loss
factor indicating the strength of the wake effects in
comparison to je1j for the grating described previously
as function of the gap width. The plateau in the first Fourier
coefficient represents a robust optimum for the vacuum gap
in the range of the previously chosen value of 1.2 μm.
Values, that fulfill a Bragg condition are resonant, as e.g. at
a gap of 0.6 μm. Thus, they are not robust and also impede
the use of short laser pulses due to the limited bandwidth.

FIG. 4. Loss factor indicating the strength of wake effects as
function of the vacuum gap compared to the absolute value of the
first Fourier coefficient indicating the accelerating gradient in the
center of a fused silica dual pillar structure with 2 μm period
length for a given external field strength.
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In contrast to geometrical changes, modifications in the
relative permittivity only slightly affect the loss factor,
since it constitutes an average over a large frequency band.
The narrow-band external laser drive, however, is very
sensitive to material changes, which in turn requires
geometrical optimization.
Recent experiments use different dual-layer rectangular

grating structures [5,28]. If we optimize the teeth of a
fused-silica dual-layer rectangular grating with the same
vacuum gap as the analyzed dual pillar structure in terms of
acceleration gradient, we reach a gradient 40% lower than
for the dual pillar structure. The dimensions of the
optimized structure are given in Appendix A. Figure 5

compares the short range longitudinal wake of both grating
structures for a Gaussian shaped line charge, where good
agreement between the curve shapes is visible. However, in
contrast to the acceleration gradient, the wake of the dual
pillar structure is slightly weaker. Furthermore, an addi-
tional Bragg mirror breaks the symmetry of the grating
structure. If the distance of the Bragg mirror is much larger
than the vacuum gap, it does not affect the short-range wake
and can thus have only multibunch effects. If the Bragg
mirror is located near to the vacuum gap or one pillar row is
even replaced by the Bragg mirror, it affects also the short-
range wake. In this case, the short-range wake is almost
equal to the rectangular grating but additional effects in the
long-range wake occur. Breaking the symmetry generates
especially a nonvanishing transverse wake deflecting an on-
axis bunch (cf. Fig. 6).

IV. TRANSVERSE WAKE EFFECTS

A. Previous estimations

In [29] we have calculated the wakefields and the beam
loading limit for the dual pillar structure described pre-
viously. The tracking results of a transversely small bunch
verify these results in the range of a few femtocoulombs.
However we have also shown that the wake of bunches
which fill the whole aperture of the structure depends
strongly on the transverse position of each source particle.
That has created the demand to add 3D wakefields to
DLAtrack6D in order to analyze transverse instabilities.

B. Beam breakup

Caused by the potential at constant synchronous phase,
the particles in a bunch undergo synchrotron motion. The
synchrotron frequency is [28]

Ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2πeG sinðϕsÞ

λ0β
3γ3me

s
; ð15Þ

where G is the accelerating peak gradient, ϕs the synchro-
nous phase, λ0 the laser wavelength, β and γ the relativistic
factors and me the electron rest mass. Consider parameters
achievable at the DLA experiment at SwissFEL [30,31], i.e.
a 3 GeV electron beam accelerated with a peak gradient of
G ¼ 1 GeVm−1 and a synchronous phase ϕs ¼ 135°, the
synchrotron frequency is Ωs ≈ 43.9 × 106 s−1. The syn-
chrotron period is thus λs ≈ 42.87 m. On the other hand,
the DLA grating is outlined to be only up to 1.5 mm long.
Thus the synchrotron motion can be considered frozen
within the DLA grating. Using the APF-scheme to confine
the beam, the frequencies of longitudinal motion and
transverse betatron motion are equal by construction [9].
This distinguishes a DLA from conventional high energy
linacs and also from synchrotrons, where the trans-
verse betatron frequency is significantly larger than the

FIG. 6. Transverse wake per grating period of a Gaussian bunch
distribution passing a dual pillar structure with a Bragg mirror
(blue) and a single-row pillar structure, where the second row is
replaced by a Bragg mirror (yellow) on-axis. The inset shows an
enlargement of the short-range wake and the reference bunch
distribution in black.

W

FIG. 5. Longitudinal wake per grating period of a Gaussian
bunch distribution passing on-axis through a dual-layer rectan-
gular grating structure (blue), a dual pillar structure (green) and a
single-row pillar structure, where the second row is replaced by a
Bragg mirror (yellow). The reference bunch distribution is shown
in dashed gray.
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longitudinal synchrotron frequency. Consequently, the
betatron motion can also be considered frozen in the
1.5 mm long DLA grating. However, transverse wakes
can cause particle loss by defocusing or deflection. This can
be described analytically by dividing the bunch distribution
λðsÞ in N slices with a center at sn and a width Δs. For a
given initial offset ŷ0 of the whole bunch, a deflecting force
acts on each slice given by

y00n ¼
qeqbunch

pz0βrefc0λz
Wyðsn; ŷ0Þ: ð16Þ

The nth slice has an offset of

ynðzÞ ¼ ŷ0 þ
qeqbunch

2pz0βrefc0λz
Wyðsn; ŷ0Þz2 ð17Þ

with the longitudinal position z of the bunch. This is equal
to Chao’s two-particle model [32] in the limit kβz ¼
2πz=λβ ¼ 2πz=λs ≪ 1. Figure 7 shows the tracking results
of a 16 fC Gaussian bunch with σs ¼ 50 nm and σy ¼
σx ¼ 75 nm injected with an offset of 200 nm and the
corresponding analytical solutions given by Eq. (17) which
fit quite well. For this, the bunch is divided into five slices
and each is plotted separately. As long as the bunch
(pictured by the width of two standard deviations as gray
area in the plot) is within the aperture, in this example up to
about 4.72 mm (2360 periods) grating length, the analytical
description indicates negligible particle loss. This maximal
interaction length is proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pz0βref=qbunch

p
. How-

ever, particle loss starts earlier as visible in the decreasing
slope of the maximum tracked curve in Fig. 7. This is
caused by an increasing standard deviation of the bunch
distribution due to defocusing of the macroparticle slices
which is not included in the analytical description. Figure 8

shows the initial and resulting bunch distributions after
1250 and 2500 DLA grating periods. If the transverse width
of a bunch is small compared to the aperture, the analytical
description gives a good estimate for the transverse
deflection of the bunch tail. However, if the bunch fills
most of the aperture, tracking covers also the effect of the
incoherent wake defocusing forces.
To reduce the deflection and defocusing particle loss,

one knob would be to avoid an injection offset as good as
possible. However, this is technically difficult to ensure and
helps only in symmetric structures. Generally, mitigation
can only be obtained by reduced bunch charge, geometrical
wake optimization, or simply by a more stiff beam at higher
energy.

C. Strong head-tail instability

Considering a lower energy beam, for example a
6.5 MeV beam accelerated with a gradient of
0.56 GeVm−1 corresponding to the experimental param-
eters at PEGASUS [33], the synchrotron period length is in
the range of a few millimeters, i.e., in the same order of
magnitude as the interaction length or below. Therefore, we
have to take the longitudinal and transverse motion into
account. For a validation of the tracking results including
wake effects, we adapt the analytical description of the
strong head-tail instability, in particular Chao’s two-particle
model for synchrotrons [32], to these assumptions (see
Appendix B 1). In smooth approximation, the stability
criterion given by the two-particle model is [cf. Eq. (B11)]

qeqbunch
pz0βrefc0λzŷ0

Wyðσs; ŷ0Þ ≤
16π

L2
β

ð18Þ

with the betatron period length Lβ and assuming a wake
which depends linearly on the transverse offset. The
betatron period length is Lβ ¼ 2πL=μ, where L is the
length of an APF FD-cell and

μ ¼ arccos

�
cos

�
kβL

2

�
cosh

�
kβL

2

��
ð19Þ

Initial

FIG. 8. Initial bunch distribution and bunch distribution after
1250 and 2500 DLA grating periods. The red curves show the
means of transverse slices in comparison to the analytical
estimates (black curves).Periods

y 
(n

m
)

FIG. 7. Comparison of slice center of mass for a tracked bunch
divided into five slices (dashed lines) with the analytical
description (black solid lines). The gray area shows the 2σ
distance to the minimum and maximum curve. The aperture of
the dual pillar structure with 2 μm period length is at
y ¼ 600 nm.
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is the corresponding phase advance per APF cell [9]. Note
that the betatron wave number kβ scaled with the square
root of the accelerating gradient. For the PEGASUS
parameters with a gradient of 0.56 GeVm−1 [33], a FD-
cell length of 1808 DLA periods (1.44 mm) with the
structure in Fig. 1 scaled to a laser wavelength of 0.8 μm
and a bunch length of 20 nm, the maximal bunch charge is
about 0.3 fC. According to the APF design procedure in
[9], the FD-cell length is chosen such that the maximal beta
function (without wake) is minimized. Following Eq. (18),
a further minimization of the betatron period length would
increase the maximal bunch charge. It would, however,
increase the maximal beta function at the same time and
thus decrease the initial acceptance.
Using the smooth approximation, the coherent oscilla-

tion of a transversely stable bunch in y has a sinusoidal
envelope whereas the oscillation amplitude of an unstable
bunch grows exponentially. In comparison, Fig. 9 shows
the y-offset of the macroparticles calculated with the

full APF transfer matrices given in Eqs. (B7) and (B13).
The alternating sign of the focusing function reduces the
stability threshold in this numerical example and for the
analyzed interaction length roughly by half. The full
tracking results shown in Fig. 10 confirm these semi-
analytical estimates. Thus, the two-particle model in
smooth approximation can be seen as an upper limit for
the estimation of the stability threshold. The more precise
limit for a given APF grating with given interaction length
is, however, smaller and can be estimated numerically
using the presented tracking scheme.

D. Acceleration

So far, we have not considered coherent acceleration of a
bunch. A linear energy gain γðzÞ ¼ γ0ð1þ G cosϕs=
ðmec20ÞzÞ is usually provided for an ultrarelativistic accel-
erator design, i.e., peak acceleration gradient G and
synchronous phase ϕs are constant. The focusing strength
decreases proportional to γ−3=2ðzÞ [9] as compared to γ−1=2

for a magnetic quadrupole lattice. To keep the phase
advance per APF-cell constant, the length of the cell needs
to be increased accordingly. This is equivalent to keeping
the maximal beta function minimal, as was described in [9].
The corresponding equations of motion for the two-

particle model are solved in Appendix B 2 and the solutions
are compared to Chao’s two-particle model of a conven-
tional linac. In Chao’s model, the magnetic focusing
strength is increased proportionally to the bunch energy
to get a constant betatron wave number [32]. Increasing the
focusing strength in an APF lattice is only possible at the
price of increasing the laser field strength limited by
material damage or playing with the synchronous phase.
The adiabatic damping is being counteracted by the
increase in the beta function due to reduced focusing
strength and thus a coherent offset of a bunch already
increases without deflection by the wake [cf. Eq. (B18)].
Therefore, the adiabatic damping of an initial coherent
offset in a conventional linac which leads to a prediction of
an increased stability threshold [34] does not help for DLA.
Instead, the stability threshold is decreased compared to an
APF transport channel.
We confirmed that by tracking simulations, which are

stable in the simulated interaction length in the case of
transport and unstable for an accelerated bunch. For an
acceleration from 6.5 MeV up to 17 MeV, the numerical
simulations show a reduction of the threshold roughly by
half as compared to an APF transport channel at constant
energy.

E. Analysis of the phase advance

The nonlinear spatial dependence of the fields in the
dielectric grating leads to a phase advance depending on the
particle’s amplitude (“tune-spread”). The linear phase
advance (“set-tune”) is given analytically by Eq. (19).

z
60

w/o wake

stable (MP1 / MP2)

unstable (MP1 / MP2)

FIG. 9. Two-particle model using the APF transfer matrices
with the wake of a dual pillar APF grating with 0.8 μm period
length. The y-offsets of both macroparticles (MP1 and MP2) are
plotted respectively. The initial excitation without wake is shown
for comparison (blue).

w/o wake

stable (MP1 / MP2)

unstable (MP1 / MP2)

z

FIG. 10. Bunch distribution divided in two halves (MP1 and
MP2) and tracked through a dual pillar APF grating with a
0.8 μm period length. The betatron motion without wake is
shown for comparison (blue).
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Numerically, the phase advance can be determined by
reconstructing the transfer matrix of a FD-cell from the
tracking result for each particle using the transfer matrix
reconstruction algorithm presented in [35]. Figure 11
shows the distributions of the transverse phase advance
for a particle distribution with negligible emittance, which
exactly confirms the analytical value μy ¼ 1.3642, and a
realistic emittance, where the distribution shows the
expected broadening. Note that we calculate only two-
dimensional transfer matrices neglecting coupling between
planes. Therefore, we require only two subsequent FD-cells
for the transfer matrix calculations. Calculating the phase
advance by a fast Fourier transform (FFT) of particle
tracking data along 2500 FD-cells yields the same mean
value of the phase advance spectrum. Such a large number
of FD-cells is required to achieve a sufficient resolution in
the spectrum. However, one has to account for the
enhanced particle losses during this long timescale. In
particular, particles with large amplitudes have a large tune
deviation and are likely to be lost, which leads to a
narrowing of the spectrum.
Physically, the spread is explained as follows: A larger

longitudinal emittance leads to a weaker focusing and thus
to a spread toward smaller phase advances. A larger
transverse emittance, on the other hand, leads to a stronger
focusing and thus to a spread toward larger phase advances.
Furthermore, the calculation of the phase advance as

trace of the transfer matrix allows a moving window
approach to obtain a tune-spectrogram, in order to analyze
the temporal variation of the phase advance, e.g, in case of
acceleration. As described in Sec. IV D, the length of
a FD-cell varies over the structure length to keep the phase
advance per FD-cell constant and thus the beam envelope
bounded. The left plot in Fig. 12 shows the spectrum of the

transverse phase advance for an accelerator design with
increasing FD-cell length such that the designed linear
phase advance on the acceleration ramp remains constant.
The right plot shows the spectrum for a constant FD-cell
length, where the phase advance decreases over time. The
width of the distributions is composed of both the intrinsic
width of the particle distribution and the numerical error
that results from the calculation of the transfer matrix using
two subsequent FD-cells, which are only approximately but
not exactly identical.

F. Damping mechanisms

The upper bunch charge limit due to longitudinal wake
effects of the analyzed structure is in the range of a few
femtocoulombs [29], where the beam loading cancels the
laser field with 1 GeVacceleration gradient completely. As
the stability criterion of the strong head-tail instability,
however, is below a femtocoulomb for the same peak
gradient, the bunch intensity is thus limited by the trans-
verse effects. To raise the limits, a damping mechanism is
required.
BNS-damping [36] as routinely used in relativistic rf

linacs is not applicable, as it requires a chirp in phase
advance depending on the longitudinal position of the
particles within the bunch. Due to the longitudinal motion
in APF, the particle positions change continuously and a
constant chirp in phase advance as function of longitudinal
coordinate cannot be achieved.
Another stabilizing mechanism is based on phase mixing

[37], i.e., the incoherent betatron frequencies spread could
possibly stabilize the bunch against the strong head-tail
instability. Thus, the bunch charge limit given by Eq. (18) is
increased at larger emittances. In order to confirm that,
tracking simulations through a 5 cm long dual pillar APF

y (

(
)

)

FIG. 11. Transverse phase advance for a negligible emittance in
complete agreement with the analytical μy ¼ 1.3642 and a
distribution with 20 nm bunch length and 100 nm transverse
size. The latter is obtained by both FFT and the transfer matrix
reconstruction method. The narrowing of the FFT curve origi-
nates from high amplitude particle losses over the long (2500
cells) transport distance.

y y

FIG. 12. Spectrograms of the transverse phase advance for a
particle distribution accelerated in a dual pillar APF structure with
0.8 μm period length. Increasing the FD-cell length along the
structure in accordance to the increasing energy keeps the phase
advance distribution almost constant (left). A constant FD-cell
length, however, leads to a decreasing phase advance (right).
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grating with varying initial transverse emittances are
performed. The matched Gaussian bunch distribution has
an initial longitudinal length of 20 nm, a constant width of
400 nm in x-direction, and a particle energy of 6.5 MeV.
The FD-cell length is chosen so that the maximum of the
Twiss beta parameter is minimal, i.e., β̂y;max ¼ 0.69 mm,
and the assumed peak acceleration gradient is 5 GeVm−1.
The stable and unstable distributions as functions of the
transverse emittance and bunch charge are shown in
Fig. 13. In the limit of zero transverse emittance the limit
of stability is already larger than described by the analytical
stability criterion in Eq. (18) (qbunch;max ≈ 1.8 fC), since
stabilization is already provided by the finite longitudinal
emittance. Moreover, the nonzero width in the x-direction
weakens the wake. For increasing transverse emittance, the
stability limit is shifted to higher bunch charges, which
indicates a stabilization by phase mixing is really present
here. Due to the finite aperture of the grating, a further
increase of the emittance leads to particle loss before the
stabilization by phase mixing can be efficacious. Stable
beam transport with larger charge and larger emittance is,
however, possible with an increased aperture. This reduces
on the other hand again the acceleration gradient, or
requires more laser power, which is however limited by
the material damage threshold.

V. CONCLUSION

We have successfully integrated wake kicks in our DLA
particle tracker DLAtrack6D and presented for the first
time tracking results with wakefields in nanophotonic
electron acceleration structures. The wake functions them-
selves originate from electromagnetic simulations by the
CST Particle Studio wakefield solver. When excited by a

sufficiently short bunch, the obtained wake potential is a
good approximation of the Green’s function wake. We
showed, that scaling laws can be applied to vary geometric
parameters of the dielectric grating structures without
complete recalculation of the wake.
The tracking results showed, that transverse wake effects

limit the bunch charge stronger than longitudinal effects. In
the simulated example at 6.5 MeV, the strong head-tail
instability limits the bunch charge of an almost round
Gaussian bunch for stable beam transport to a few
femtocoulomb for a reasonable peak gradient. At higher
energies, 3 GeV in the example, the synchrotron motion is
too slow to have any stabilizing effect. The transverse wake
deflects a noncentered bunch and the length before it hits
the wall can be calculated upon the wake and the bunch
charge. In both regimes (with or without longitudinal
motion), the description of the transverse effects by
analytical models, in particular by Chao’s two-particle
model, was confirmed by tracking simulations.
We also calculated the spread in phase advance of a

particle distribution moving through an APF DLA grating
and numerically showed that phase mixing stabilizes the
bunch in a DLA against transverse wake instabilities.
Increasing the bunch charge further is only possible if
the structure geometry is changed to make room for a larger
emittance or if the focusing strength is increased.
An increase of the vacuum gap would lower the wake-

field but also the acceleration gradient. A more significant
reduction of the wake would be the increase of the grating
period length to the wavelength of CO lasers [38], that is
10 μm, or to the Terahertz range [39], where however
the availability of efficient power sources represents the
bottleneck.
In case of acceleration, the adiabatic damping of a

coherent offset in a conventional rf linac with a magnetic
focusing lattice increases the stability threshold of trans-
verse instabilities. We showed that in an APF DLA
adiabatic damping is counteracted by an increasing beta
function and a coherent offset increases. Thus, the stability
threshold decreases for acceleration compared to a pure
guiding structure.
So far, we have not considered the particle motion in the

x-direction which is assumed to be invariant in most DLA
gratings. The transverse quadrupole wake leads to a
focusing force in this direction depending on the width
of the bunch. This has to be analyzed in more detail in the
future, where also possible confinement methods in this
direction have to be taken into account.
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FIG. 13. Stability diagram of bunch distribution with varying
transverse geometric emittance and bunch charge passing through
a dual pillar APF structure with 0.8 μm period length. The energy
of the particles is 6.5 MeV. Simulation settings with stable
behavior are colored yellow and settings with unstable behavior
are colored blue. The dotted line displays the interpolated limit
between stable and unstable settings.
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APPENDIX A: STRUCTURE DIMENSIONS

The dimensions of the analyzed DLA structures made of
fused silica are optimized for highest gradient at given
incoming laser peak field. Fixed dimensions are the
vacuum gap and the period length, optimization parameters
are the pillar dimensions for the dual pillar structure and the
tooth dimensions for the dual-layer rectangular grating
structure. If a Bragg mirror is used, the distance between

the pillars and the first layer is an additional optimization
parameter, the layer thickness and the distance between the
layers are, however, given by the relative permittivity of the
dielectric. The dimensions of the optimized structures are
summarized in Figs 14 and 15. For wakefield studies with a
laser wavelength of 800 nm, the dimensions of the dual
pillar structure are scaled by a factor of 0.4.

APPENDIX B: TWO-PARTICLE MODEL

1. Beam transport

The strong head-tail instability for a bunch passing a
circular accelerator is analytically described by Chao’s two-
particle model [32]. The simplified model in smooth
approximation consider a bunch which is made of two
macroparticles executing synchrotron oscillations with
equal amplitude but opposite phase. During the first half
of the synchrotron period, the leading particle has the index
1, the trailing particle the index 2. Chao’s derivation
assumes that the synchrotron frequency is much smaller
than the transverse betatron frequency. According to the
APF scheme [9], both frequencies are indeed the same and
we adapt the model in the following.
The equations of motion for the two macroparticles in a

focusing lattice are

y001 þ k2βy1 ¼ 0 ðB1aÞ

y002 þ k2βy2 ¼ CWy1; ðB1bÞ

with

CW ¼ qqbunch
pz0βrefc0λ0

W0
y; ðB2Þ

the betatron wave number kβ, the particle charge q, the
bunch charge qbunch, the reference momentum of the bunch
pz0, the reference velocity βref, the speed of light c0, the
laser wavelength λ0 and the slope W0

y ¼ ∂Wy=∂y of the
transverse wake per grating cell. We assume the wake is a
constant longitudinally and linear in the transverse offset. A
solution of Eq. (B1a) for the leading particle is the
unperturbed (betatron) oscillation

y1ðzÞ ¼ y1ð0Þ cos ðkβzÞ þ
y01ð0Þ
kβ

sin ðkβzÞ: ðB3Þ

The solution of Eq. (B1b) for the trailing particle is

y2ðzÞ¼ cosðkβzÞ
�
y2ð0Þ−

y01ð0Þ
2k2β

CWz

�

þ sinðkβzÞ
�
y02ð0Þ
kβ

þy01ð0Þ
2k3β

CWþ
y1ð0Þ
2kβ

CWz

�
: ðB4Þ

The first terms in the brackets describe the unperturbed
(betatron) oscillation of the trailing particle and the second

FIG. 14. Dimensions of the dual pillar structure. The structure
is made of fused silica (εr ¼ 2.13).

FIG. 15. Dimensions of the dual-layer rectangular grating
structure. The structure is made of fused silica (εr ¼ 2.13) and
the height of the substrate is much larger than the period length to
avoid effects of a defined substrate thickness on the short-range
wake.
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terms, growing linearly with z, describe the perturbation by
the wake. The solutions (B3) and (B4) can be combined to a
matrix form

0
BBB@

y1
y01
y2
y02

1
CCCA ¼

 
Mf

βðzÞ 0

Mf
WðzÞ Mf

βðzÞ

!0BBB@
y1
y01
y2
y02

1
CCCA

z¼0

; ðB5Þ

where the entries in the matrix are themselves 2 × 2
matrices given by

Mf
βðzÞ ¼

 
cos ðkβzÞ 1

kβ
sin ðkβzÞ

−kβ sin ðkβzÞ cos ðkβzÞ

!
ðB6Þ

and

Mf
WðzÞ ¼

0
B@

CW
2kβ

z sin ðkβzÞ CW
2k3β

sin ðkβzÞ − CW
2k2β

z cos ðkβzÞ
CW
2kβ

sin ðkβzÞ þ CW
2
z cos ðkβzÞ CW

2kβ
z sin ðkβzÞ

1
CA: ðB7Þ

Evaluating Eqs. (B6) and (B7) after half a longitudinal
oscillation period and taking into account that the longi-
tudinal oscillation period equals the transverse betatron
period, the transfer matrices become

Mf
β

�
Lβ

2

�
¼
�−1 0

0 −1

�
ðB8Þ

and

Mf
W

�
Lβ

2

�
¼
 

0 CW
16π2

L3
β

− CW
4
Lβ 0

!
: ðB9Þ

The results for the second half oscillation period where the
particles change there position can be obtained by exchang-
ing the indices in Eq. (B5). The transfer matrix of a full
oscillation period is then given by

0
BBB@

y1
y01
y2
y02

1
CCCA

z¼Lβ

¼

0
BB@ 1þMf

W

�
Lβ

2

	
2

Mf
W

�
Lβ

2

	
Mf

W

�
Lβ

2

	
1

1
CCA
0
BBB@

y1
y01
y2
y02

1
CCCA

z¼0

:

ðB10Þ

We can now eigenanalyze the resulting transfer matrix
according to Chao’s stability analysis. Stability requires
that for all solutions of the eigenvalues λ the function
λþ 1=λ is real and its value is between -2 and 2. This gives
the stability criterion

CW ≤
16π

L2
β

; ðB11Þ

which can be used as an estimation for the maximum bunch
charge in an APF grating (cf. Sec. IV C and Fig. 16).

Calculating the full APF transfer matrices without the
smooth approximation requires also knowledge of the
transfer matrices for the defocusing sections in an APF
grating. The equations of motion in these sections are equal
to the Eqs. (B1) except that the sign changes. This results
in exchanging the trigonometric functions in Eqs. (B6)
and (B7) by hyperbolic functions which yields

Md
βðzÞ ¼

 
cosh ðkβzÞ 1

kβ
sinh ðkβzÞ

kβ sinh ðkβzÞ cosh ðkβzÞ

!
ðB12Þ

and

y

q

q

FIG. 16. Two-particle model in smooth approximation. For a
small initial offset, a transversely stable bunch has a sinusoidal
envelope (yellow line) and an unstable bunch has an exponen-
tially growing amplitude (red line). The y-offsets of both macro-
particles (MP1 and MP2) are plotted respectively. The initial
excitation without wake is shown for comparison (blue).
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Md
WðzÞ ¼

0
B@

CW
2kβ

z sinh ðkβzÞ CW

2k2β
z cosh ðkβzÞ − CW

2k3β
sinh ðkβzÞ

CW
2kβ

sinh ðkβzÞ þ CW
2
z cosh ðkβzÞ CW

2kβ
z sinh ðkβzÞ

1
CA: ðB13Þ

Tracking with these transfer matrices describes the
stability behavior significantly better than with the smooth
approximation (cf. Sec. IV C and Fig. 9). Calculating an
analytical stability threshold as in Eq. (B11) is, however,
not possible.

2. Acceleration

Considering coherent acceleration of a bunch the bunch
energy is a function of time, thus equivalently of the
longitudinal position in the grating. Using again a two-
particle model, the transverse equations of motion for the
two macroparticles are given by

d
dz

�
γðzÞ dy1

dz

�
þ γðzÞkβðzÞ2y1 ¼ 0 ðB14aÞ

d
dz

�
γðzÞ dy2

dz

�
þ γðzÞkβðzÞ2y2 ¼ γðzÞCWðzÞy1; ðB14bÞ

where the Lorentz factor γðzÞ and thus also the wake term
on the right-hand side are functions of the longitudinal
position z. For a constant phase advance per FD-cell, the
FD-cell length has to be proportional to γ3=2 according to
the energy dependence of the focusing strength. This means

kβðzÞ ¼
kβ;0

γðzÞ3=2 γ
3=2
0 : ðB15Þ

If we consider a linear energy gain γðzÞ ¼
γ0ð1þG cosϕs=ðmec20ÞzÞ and apply the transformation
u ¼ 1þ αz with α ¼ G cosϕs=ðmec20Þ, the equations of
motion become

d2y1
du2

þ 1

u
dy1
du

þ k2γ
u3

y1 ¼ 0 ðB16aÞ

d2y2
du2

þ 1

u
dy2
du

þ k2γ
u3

y2 ¼
CW;0

α2u
y1: ðB16bÞ

with kγ ¼ kβ;0=α. A solution of Eq. (B16a) is

y1ðuÞ ¼ c1J0

�
2kγffiffiffi
u

p
�
þ c2N0

�
2kγffiffiffi
u

p
�
; ðB17Þ

where J0ðxÞ and N0ðxÞ are Bessel and Neumann functions.
Using the asymptotic expressions and the initial conditions
y1ðu ¼ 1Þ ¼ y0 and y01ðu ¼ 1Þ ¼ y00, the solution of the
first macroparticle becomes

y1ðuÞ ¼
ffiffiffi
u4

p �
y0 cos

�
2kγ

�
1 −

1ffiffiffi
u

p
��

−
αy0 − 4y00

4αkγ
sin

�
2kγ

�
1 −

1ffiffiffi
u

p
���

: ðB18Þ

Equation (B18) shows that the betatron oscillations in a
DLA grating are not damped adiabatically compared to a
conventional magnetic focusing lattice. An increase of the
stability threshold as described by Chao for the conven-
tional magnetic focusing lattice can thus not be expected
and numerical tracking simulations confirm this statement
(cf. Sec. IV D). For the sake of completeness, Eq. (B16b)
can be solved as

y2ðuÞ ¼ y1ðuÞ þ
CW;0

α2

Z
u

1

Gðu; ũÞy1ðũÞdũ; ðB19Þ

where the Green’s function is given by

Gðu; ũÞ ¼ −π
�
J0

�
2kγffiffiffi
u

p
�
N0

�
2kγffiffiffĩ
u

p
�
− N0

�
2kγffiffiffi
u

p
�
J0

�
2kγffiffiffĩ
u

p
��

ðB20aÞ

≈
ffiffiffiffiffiffi
uũ4

p

kγ
sin

�
2kγ

�
1ffiffiffi
u

p −
1ffiffiffĩ
u

p
��

: ðB20bÞ
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