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Symplectic maps are routinely used to describe single-particle dynamics in circular accelerators. In the
case of a linear accelerator map, the rotation number (the betatron frequency) can be easily calculated from
the map itself. In the case of a symplectic nonlinear map, the rotation number is normally obtained
numerically, by iterating the map for given initial conditions, or through a perturbation approach. Integrable
maps, a subclass of symplectic maps, allow for an analytic evaluation of their rotation numbers. In this
paper we propose an analytic expression to determine the rotation number for integrable symplectic maps
of the plane, if an integral is explicitly known, and present several examples, relevant to accelerators. If the
integral of motion is not explicitly known, one can obtain the rotation number numerically as outlined in
Appendix B. These new results can be used to analyze the topology of the accelerator Hamiltonians as well
as to serve as the starting point for a perturbation theory for maps.
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I. INTRODUCTION

The first mention of the betatron frequency was in the
1941 pioneering work by Kerst and Serber [1], where they
defined it as the fractional number of particle oscillations
around the orbit per one revolution period in a betatron
(a type of an induction accelerator). Later, the theory of the
alternating-gradient (AG) synchrotron [2] demonstrated the
existence of an integral of motion (the so-called Courant-
Snyder invariant) for particles in an AG synchrotron and
established a powerful connection between the modern AG
focusing systems and linear symplectic maps, thus con-
necting the betatron frequency and the Poincaré rotation
number [3].
In modern accelerators (for example, in the LHC)

particles are stored for up to 108–109 revolutions and
understanding their dynamics is crucially important for
maintaining long-term particle stability [4,5]. One impor-
tant parameter of particle dynamics in an accelerator is
the betatron frequency and its dependence on a particle’s
amplitude. It turns out that the accelerator focusing systems
conserve the Courant-Snyder invariant only approximately
and there is a need to analyze the conditions for stable
particle dynamics. Over the recent years, several methods
were developed to analyze the particle motion in accel-
erator systems, using either numeric tools, like the

Frequency Map Analysis [6], or the Normal Form
Analysis [7,8], an extension of the Jordan normal form
analysis for matrices.
At the same time, there has been continuous interest,

starting with McMillan [9], in making the accelerator maps
nonlinear, yet integrable [10–13]. However, there does not
exist an analytic method to calculate the betatron frequency
(the Poincaré rotation number) for nonlinear symplectic
integrable maps. This present paper is set to remedy this
deficiency.

II. BETATRON FREQUENCY

For a 1 degree-of-freedom time-independent system,
the Hamiltonian function, H½p; q; t� ¼ E, is the integral
of the motion. If the motion is bounded, it is also periodic,
and the period of oscillations can be determined by
integrating

TðEÞ ¼
I �∂H

∂p
�

−1
dq; ð1Þ

where p ¼ pðE; qÞ [14]. The oscillation period and its
dependence on initial conditions is one of the key proper-
ties of the periodic motion. Typically, a stroboscopic map
for an autonomous (time-independent) system can be
constructed to analyze this periodic motion, by evaluating
the phase-space coordinates (q, p) at periodic time inter-
vals, tk ¼ kτ with k ¼ 0; 1; 2;… (see, for example, [15]).
Knowing the period TðEÞ, one can calculate the Poincaré
rotation number for such a map as νðEÞ ¼ τ=TðEÞ.
Modern high-energy accelerators can be described as

nonautonomous systems in 2 or 3 degrees of freedom, with
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the Hamiltonian depending periodically on an independent
variable, s, which is the longitudinal coordinate along the
reference trajectory [16]. Because the system is periodic, it
is natural to use one accelerator revolution period as the
stroboscopic map’s time interval, τ [17]. Most of the
present-day accelerator designs start with a linear focusing
system, where one needs to determine TðEÞ only once, in
order to obtain the rotation number for all particles,
regardless of their amplitudes. Nonlinear focusing elements
(e.g., sextupoles and octupoles) are then added to mitigate
various effects, making the resulting system nonlinear.
When the accelerator Hamiltonian is nonlinear yet periodic,
calculating TðEÞ for each particle by direct tracking may be
time consuming. Below we propose an analytic expression
to determine the rotation number for accelerator maps of
the plane, if an integral of motion is explicitly known. This
integral of motion is typically not the Hamiltonian function,
which is nonautonomous yet periodic.
Let us now consider a symplectic map of the plane

(corresponding to a one-turn map of an accelerator),
M∶R2 → R2,

ðq0; p0Þ ¼ Mðq; pÞ;
where the prime symbols ( 0) indicate the transformed phase
space coordinates. Suppose that the sequence, generated by
a repeated application of the map,

ðq0; p0Þ → ðq1; p1Þ → ðq2; p2Þ → ðq3; p3Þ → � � � ;

belongs to a closed invariant curve. We do not describe how
this map is obtained (see, for example, [17,18]) but let us
suppose that we know the mapping equations. Let Rn be the
rotation angle in the phase space ðq; pÞ around a stable
fixed point between two consecutive iterations ðqn; pnÞ and
ðqnþ1; pnþ1Þ. Then, the limit, when it exists,

ν ¼ lim
N→∞

1

2πN

XN
n¼0

Rn ð2Þ

is called the rotation number (the betatron frequency
of the one-turn map) for that particular orbit of the map
M [19,20]. Unlike Eq. (1), which allows to express
the oscillation period analytically, Eq. (2) can be only
evaluated numerically for each orbit. Let us now suppose
that there exists a nonconstant real-valued continuous
function Kðq; pÞ, which is invariant under M. The function
Kðq; pÞ is called integral and the map is called integrable.
In this paper, we are describing the case, for which the level
setsK ¼ const are compact closed curves (or sets of points)
and for which the identity

Kðq0; p0Þ ¼ Kðq; pÞ ð3Þ

holds for all ðq; pÞ. There are many examples of integrable
maps, including the famous McMillan map [9], described

below. The dynamics is in many ways similar to that of a
continuous system, however, the integral Kðq; pÞ is not the
Hamiltonian function. Thus, even though the accelerator
revolution period, τ, is known, the integral Kðq; pÞ cannot
be used in Eq. (1). Below, we will present an expression
(the Danilov equation) to obtain the rotation number from
Kðq; pÞ for an integrable map, M.
The Arnold-Liouville theorem for integrable maps

[21–23] states that (1) the action-angle variables exist
and (2) in these variables, consecutive iterations of inte-
grable map M lie on nested circles of radius J and that the
map can be written in the form of a twist map,

�
Jnþ1

θnþ1

�
¼

�
Jn

θn þ 2πνðJÞ mod 2π

�
; ð4Þ

where jνðJÞj ≤ 0.5 is the rotation number, θ is the angle
variable and J is the action variable, defined as

JðKÞ ¼ 1

2π

I
pðK; qÞdq: ð5Þ

One can notice that the new mapping (4) is symplectic for
any value of an unknown rotation number, νðJÞ. Unlike the
action variable, J, the knowledge of the integral K alone is
not sufficient to define the angle variable and to determine
the rotation number. Thus, in this paper, we would like to
consider the following question: how does one determine
the rotation number, νðKÞ, from the known integral,
Kðq; pÞ, and the known integrable map, M? In addition,
in the “Examples” section we propose how to use this
equation when only an approximate invariant is known.

III. DANILOV EQUATION

Danilov equation [24]: Suppose a symplectic map of
the plane,

ðq0; p0Þ ¼ Mðq; pÞ;

is integrable with the invariant (integral) Kðq; pÞ, then its
Poincaré rotation number is

νðKÞ ¼
Z

q0

q

�∂K
∂p

�
−1
dq

�I �∂K
∂p

�
−1
dq; ð6Þ

where the integrals are evaluated along the invariant
curve, Kðq; pÞ.
Proof.—Consider the following system of differential

equations:

dQ
dt

¼ ∂KðQ;PÞ
∂P ;

dP
dt

¼ −
∂KðQ;PÞ

∂Q : ð7Þ

We notice thatKðQ;PÞ does not change along a solution of
the system, because it is an integral of the motion, meaning
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dK
dt

¼ ∂K
∂Q

dQ
dt

þ ∂K
∂P

dP
dt

¼ 0 ð8Þ

for any solution QðtÞ and PðtÞ. Let qðtÞ and pðtÞ be the
solutions of the system (7) with the following initial
conditions qð0Þ ¼ q0 and pð0Þ ¼ p0. Define a new map,
M̃ðq; pÞ (see Fig. 1):

ðq0; p0Þ ¼ M̃ðq; pÞ ¼ ½qðτÞ; pðτÞ�; ð9Þ

where τ is a discrete time step. For a given K, which is an
integral of both M and M̃, one can always select τðKÞ such
that the maps Mðq; pÞ and M̃ðq; pÞ are identical. This
follows from the Arnold-Liouville theorem. Since Kðq; pÞ
is compact and closed, the functions qðtÞ and pðtÞ are
periodic with a period TðKÞ. By its definition,

τ ¼ νðKÞTðKÞ: ð10Þ

Let us now calculate νðKÞ:

νðKÞ≡ τ

T
¼

R
q0
q dtH
dt

¼
R
q0
q ðdqdtÞ−1dqH ðdqdtÞ−1dq

¼
R
q0
q ð∂K∂pÞ−1dqH ð∂K∂pÞ−1dq

: ð11Þ

Q.E.D. ▪
Corollary 0.1.—

νðKÞ ¼ dJ0

dJ
; ð12Þ

where

J0ðKÞ ¼ 1

2π

Z
q0

q
pðK; qÞdq: ð13Þ

is the partial action calculated as a sector integral (see
Fig. 2) around the stable fixed point.

Proof.—First, we will consider the denominator in
Eq. (11):

1

2π

I �∂K
∂p

�
−1
dq ¼ 1

2π

d
dK

I
pdq ¼ dJ

dK
: ð14Þ

Second, we will evaluate the numerator. Using the equa-
tions of motion in Eq. (7), we notice that

Z
q0

q

�∂K
∂p

�
−1
dq ¼ −

Z
p0

p

�∂K
∂q

�
−1
dp: ð15Þ

Now, we will utilize the Leibniz integral rule together with
Eq. (15) to obtain

1

2π

Z
q0

q

�∂K
∂p

�
−1
dq

¼ 1

2π
×

d
dK

�
qp − q0p0

2
þ
Z

q0

q
pdq

�
¼ dJ0

dK
: ð16Þ

FIG. 1. Constant level sets of the integral Kðq; pÞ ¼ const
(left). A particular curve representing a level set of K and several
iterates of the map M (center). A three-dimensional phase space,
ðq; pÞ þ time, of the system (7) (right). Dark gray planes t ¼
0; τ; 2τ;… represent the stroboscopic Poincaré section of the
continuous flow of the system (red curve) which is identical to
map M.

FIG. 2. The partial action is defined as a sector area (blue) for
one map iteration, divided by 2π (a). Convenient choices of the
partial action for mappings in McMillan form: an area under the
curve in II (blue) or IV (green) quadrants (b), and areas for initial
conditions in a form of ðq0; q0Þ (c).
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Finally, by combining Eqs. (14) and (16) we obtain
Eq. (12). ▪
Corollary 0.2.—For a linear map (ν ¼ const),

ν ¼ J0=J: ð17Þ

Proof.—Since ν ¼ const, the Hamiltonian function is
HðJÞ ¼ νJ. Using Eq. (12), we obtain Eq. (17). ▪
Corollary 0.3.—The Hamiltonian function correspond-

ing to the map M is

HðKÞ ¼ J0ðKÞ: ð18Þ

Proof.—Since ν ¼ dH=dJ, one can use Eq. (12) to
obtain H ¼ J0 þ const. ▪
Corollary 0.4.—

νðKÞ ¼
Z

p0

p

�∂K
∂q

�
−1
dp

�I �∂K
∂q

�
−1
dp; ð19Þ

where the integrals are evaluated along the invariant
curve, Kðq; pÞ.
Proof.—Because of the p ↔ −q symmetry in Eq. (7),

the proof is similar to Eq. (11). ▪
In order to generalize the Danilov equation to higher-

dimensional integrable maps, one has to know the varia-
bles, where such a map is separated into maps for each
degree of freedom. Below we will consider an example of a
4D map, which is separable in polar coordinates with two
integrals of motion.

IV. EXAMPLES

In order to employ this equation in practice, one would
need to recall that with p ¼ pðK; qÞ, the integrand in
Eq. (6) is �∂K

∂p
�

−1
¼ ∂pðK; qÞ

∂K : ð20Þ

Also, the lower limit of the integral can be chosen to be any
convenient value of q, for example 0, as long it belongs to a
given level set, Kðq; pÞ. Finally, the upper limit of the
integral, q0, is obtained from the selected q and p ¼
pðK; qÞ by iterating the map, Mðq; pÞ. It is clear that
not all functions Kðq; pÞ can be inverted analytically to
obtain p ¼ pðK; qÞ. The drawback of this method can be
overcome by numeric evaluations (see the Appendix B).
For maps in a special (McMillan) form [9],

�
q0

p0

�
¼

�
p

−qþ fðpÞ

�
; ð21Þ

the convenient choices for integration limits in Eq. (6) are
ðq; pÞ ¼ ðq0; 0Þ and ðq0; p0Þ ¼ ð0;−q0 þ fð0ÞÞ, Fig. 2(b),
and ðq;pÞ¼ða;aÞ and ðq0; p0Þ ¼ ða;−aþ fðaÞÞ, Fig. 2(c).

Finally, for twist maps, Eq. (4), the Danilov equation
Eq. (6) gives ν, as expected.
Let us now consider several nontrivial examples. Linear

maps are presented in Appendix A.

A. McMillan map

As our first example, we will consider the so-called
McMillan map [9],

�
q0

p0

�
¼

"
p

−qþ ap=ðbp2 þ 1Þ

#
: ð22Þ

This map has been considered in detail in Refs. [25,26]. To
illustrate the Danilov equation, we will limit ourselves to a
case with b > 0 and jaj < 2, which corresponds to stable
motion at small amplitudes. Mapping (22) has the follow-
ing integral:

Kðq; pÞ ¼ bq2p2 þ q2 þ p2 − aqp; ð23Þ

which is non-negative for the chosen parameters.
We first notice that for small amplitudes, bp2 ≪ 1, this

map can be approximated as

�
q0

p0

�
≈

"
p

−qþ ap − abp3 þ ab2p5 − � � �

#
; ð24Þ

and its zero-amplitude rotation number is [2]

νð0Þ ¼ 1

2π
arccos

a
2
: ð25Þ

At large amplitudes (bp2 ≫ 1), the rotation number
becomes 0.25. We will now evaluate the rotation number
analytically, using Eq. (6): Let us define a parameter,

wðKÞ ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dðKÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðKÞ2 þ 4Kb
p

s
; ð26Þ

which spans from 0 to 1 and where dðKÞ¼ a2=4þKb−1.
Then, the rotation number can be expressed through Jacobi
elliptic functions as follows:

νðKÞ ¼ 1

4 KðwÞ arcdsf½dðKÞ2 þ 4Kb�−1=4; wg; ð27Þ

where KðwÞ is the complete elliptic integral of the first kind
and the inverse Jacobi function, arcdsðx; wÞ, is defined as
follows:

arcdsðx; wÞ ¼
Z

∞

x

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2 þ w2Þðt2 þ w2 − 1Þ

p : ð28Þ
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The rotation number, Eq. (27), has the following series
expansion:

νðKÞ ≈ νð0Þ þ 3

2π

baffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4 − a2Þ3

p K: ð29Þ

Figure 3 shows an example of the rotation number, for
the case of a ¼ 1.6 and b ¼ 1 (νð0Þ ≈ 0.102), as a function
of integral, K.
The McMillan invariant (23) also allows for an analytic

evaluation of the action integral (5). We will omit the
lengthy expressions, but will only present a small-
amplitude series expansion:

JðKÞ ≈ Kffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − a2

p −
bð2þ a2ÞK2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4 − a2Þ5
p : ð30Þ

Finally, we can also present a small-amplitude series
expansion of the rotation number (27):

νðJÞ ≈ νð0Þ þ 3

2π

ba
4 − a2

J: ð31Þ

B. Cubic map

As our second example, we will consider a nonintegrable
Hénon cubic map [27,28]:

�
q0

p0

�
¼

"
p

−qþ apþ ϵp3

#
: ð32Þ

This map is well known in accelerator physics as a
symplectic octupole map. At small amplitudes this map
is linear and the rotation number is

ν ≈
1

2π
arccos

�
a
2

�
: ð33Þ

At large amplitudes this map becomes chaotic and unstable.
Let us propose an approximate integral (the exact integral
does not exist since it is a nonintegrable map):

Kcðq;pÞ¼p2þq2−apq−
ϵ

a
p2q2

þ 7ϵ

5að4−a2Þðp
2þq2−apqÞ2þOðϵ2Þ: ð34Þ

The derivation of this approximate integral goes beyond the
scope of this article and will be described in subsequent
publications. For this illustration, the reader can verify by
inspection that this integral is approximately conserved,
near the origin. We will now use the Danilov equation
to evaluate the rotation number of this map for various
initial conditions with q0 ¼ p0. Figure 4 shows the exact
(numeric), Eq. (2), and the approximate rotation number,
calculated from (34) and (32) using the Danilov equation,
Eq. (6). The inset at the bottom left is a magnified portion of
the same plot. This is to illustrate an excellent correspon-
dence between the orange curve, obtained by using the
Danilov equation, Eq. (12) numerically for closed non-
resonant phase-space trajectories, and the black curve,
obtained directly from Eq. (2). Since the black curve is
obtained by a direct averaging method, one may observe
steplike features and mode locking, when crossing a
chaotic region or a chain of islands. This is not a numerical
artifact, but it is not present in the orange curve.
A small-amplitude series expansion of the rotation

number is

FIG. 3. The top plot contains iterations (green dots) of the
McMillan map (a ¼ 1.6, b ¼ 1). Constant level sets of the
invariant are shown with blue lines. The bottom plot is
the rotation number, Eq. (27), as a function of its integral, K.
The inset shows the linear approximation, Eq. (29).

BETATRON FREQUENCY AND THE POINCARÉ … PHYS. REV. ACCEL. BEAMS 23, 054001 (2020)

054001-5



νðJÞ ≈ νð0Þ − 3

2π

ϵ

4 − a2
J; ð35Þ

which is the same as in [28] and similar to Eq. (31).
One can now envision using such a method sequen-

tially, as a perturbation method, by introducing higher-
order (in ϵ) terms in the approximate integral, Eq. (34),
and thus obtaining higher-order terms to the rotation

number, Eq. (35), as well as to the time-independent
Hamiltonian [29].

C. 4D integrable map

In this section we will sketch out an example of how to
use the Danilov equation to analyze an integrable multi-
dimensional map. Consider the following map, which can
be realized in accelerators by employing the so-called
electron lens [30–32],

FIG. 4. Top row: Phase-space trajectories of a cubic map, obtained by tracking with a ¼ −0.85 (left plot) and level sets of the
approximate invariant (34) (right plot), on the same scale. The red and blue lines in the top left plot correspond to symmetry lines p ¼ q
and p ¼ ðaqþ ϵq3Þ=2 respectively. Bottom row: The left plot shows the rotation number as a function of initial conditions in the form
q0 ¼ p0, by using Eq. (2) (black solid line), and by using the Danilov equation, Eq. (12) numerically (orange dashed). The red solid line
corresponds to the rotation number obtained from the approximate invariant (34) by using the Danilov equation as well. The right
bottom plot shows the dependence of ν as a function of action J, from tracking (orange dashed) and from the approximate invariant (34)
(red solid).
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2
6664
x0

p0
x

y0

p0
y

3
7775 ¼

2
666664

αxxþ βpx

−γxx − αxpx þ ax0
br02þ1

αyyþ βpy

−γyy − αypy þ ay0
br02þ1

3
777775; ð36Þ

where r2 ¼ x2 þ y2, βγx ¼ 1þ α2x, βγy ¼ 1þ α2y, with
αx, αy, a, b and β being some arbitrary parameters. This
map has two integrals of motion in involution (having a
vanishing Poisson bracket):

L ¼ ðαy − αxÞxyþ βðxpy − ypxÞ ð37Þ

and

K ¼
�
bþ 1

r2

�
T2 þ βaT þ r2 þ L2

r2
; ð38Þ

where T ¼ αxx2 þ αyy2 þ βrpr and pr ¼ ðxpx þ ypyÞ=r.
In order to employ the Danilov equation, we must rewrite
the map (36) in new variables, where this map is separated
into two maps. Such variables exist by virtue of this map
being integrable. We first notice that by introducing new
variables,

x̃ ¼ x=
ffiffiffi
β

p
p̃x ¼ xαx=

ffiffiffi
β

p
þ px

ffiffiffi
β

p
ỹ ¼ y=

ffiffiffi
β

p
p̃y ¼ yαy=

ffiffiffi
β

p
þ py

ffiffiffi
β

p
; ð39Þ

the map (36) becomes symmetric in x̃ and ỹ with
ã ¼ a

ffiffiffi
β

p
and b̃ ¼ bβ. The resulting map is separable in

polar coordinates, r and θ, such that x ¼ r cosðθÞ and
y ¼ r sinðθÞ, where we omitted the tilde ( )̃ sign for clarity.
The resulting map is

2
666664
r0

p0
r

θ0

p0
θ

3
777775 ¼

2
6666664

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
r þ p2

θ

r2

q
−pr

r
r0 þ ar0

br02þ1

θ þ arctan pθ
rpr

pθ

3
7777775
; ð40Þ

where the angular momentum pθ ¼ xpy − ypx ¼ const is
the integral of the motion. An additional integral is

Kðr; pr; pθÞ ¼ br2p2
r þ r2 þ p2

r − arpr þ
p2
θ

r2
: ð41Þ

Now we will use the Danilov equation to obtain two
unknown rotation numbers, νθ and νr. We first notice thatK
does not depend on θ and thus can be used to evaluate νr in
Eq. (11) directly, by treating pθ as a parameter:

νrðK; pθÞ ¼
τ

Tr
¼

R
r0
r ð∂K∂pr

Þ−1drH ð∂K∂pr
Þ−1dr

¼ F

"
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ3 − ζ1
ζ3 þ 1

s
; κ

#
=½2 KðκÞ�; ð42Þ

where KðκÞ is the complete elliptic integral of the first kind,
Fðϕ; κÞ is the incomplete elliptic integral of the first kind,
elliptic modulus κ is given by

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ3 − ζ2
ζ3 − ζ1

s
;

and ζ1 < 0 < ζ2 < ζ3 are the roots of the polynomial

P3ðζÞ ¼ −ζ3 þ
�
Kþ

�
a
2

�
2

− 1

�
ζ2 þ ðK − p2

θÞζ − p2
θ:

In order to evaluate the angular rotation number, νθ, we
first notice that there is some uncertainty as to which
integral of the motion to employ: one can add an arbitrary
function of pθ to K, K0 ¼ Kþ fðpθÞ, to obtain another
integral. This new integral of motion,K0, gives the same νr,
but modifies the angular motion by some unknown linear
function of time:

dθ
dt

¼ dK0

dpθ
¼ dK

dpθ
þ f0ðpθÞ; ð43Þ

θðtÞ ¼
Z

dK
dpθ

dtþ f0ðpθÞt: ð44Þ

Fortunately, we can resolve this uncertainty by using the
angular portion of the map, Eq. (40). By its definition, the
angular rotation number is

νθ ¼ νr
ΔθðTrÞ
2π

; ð45Þ

where

ΔθðTrÞ ¼
I

dK
dpθ

�∂K
∂pr

�
−1
drþ kTr; ð46Þ

k is an unknown coefficient and Tr is the period of the
radial motion,

Tr ¼
I �∂K

∂pr

�
−1
dr: ð47Þ

To determine the coefficient k we will notice from Eq. (40)
that ΔθðτÞ ¼ arctanð pθ

rpr
Þ. Thus,
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k ¼ 1

τ

�
arctan

�
pθ

rpr

�
−
Z

r0

r

dK
dpθ

�∂K
∂pr

�
−1
dr
�

ð48Þ

with

τ ¼
Z

r0

r

�∂K
∂pr

�
−1
dr: ð49Þ

Now, recalling that νr ¼ τ=Tr, we finally obtain

νθ ¼
νr
2π

I
dK
dpθ

�∂K
∂pr

�
−1
dr

þ 1

2π

�
arctan

�
pθ

rpr

�
−
Z

r0

r

dK
dpθ

�∂K
∂pr

�
−1
dr

�
: ð50Þ

After some math, this expression can be rewritten as

νθðK; pθÞ ¼
Δ
2π

�
νr −

Δ0

Δ
þ
arctan ð2pθ

a
ζ3þ1
ζ3

Þ
Δ

�
; ð51Þ

where

Δ ¼ 2pθ

ζ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ3 − ζ1

p Π
�
κ

���� ζ3 − ζ2
ζ3

�
;

Δ0 ¼ pθ

ζ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ3 − ζ1

p Π

"
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ3 − ζ1
ζ3 þ 1

s
; κ

����� ζ3 − ζ2
ζ3

#
;

and ΠðκjαÞ and Πðϕ; κjαÞ are the complete and the
incomplete elliptic integrals of the third kind, respectively.
One can note that for a linear 4D map (b ¼ 0), we have
νr ¼ 2νθ for any value of pθ. Figure 5 shows an example
of the radial and the angular rotation numbers as a function
of K for various values of pθ.

V. SUMMARY

In this paper we demonstrated a general and exact
method of how to find a Poincaré rotation number for
integrable symplectic maps of a plane and its connection
to accelerator physics. It complements the discrete
Arnold-Liouville theorem for maps [21,22] and permits
the analysis of dynamics for integrable systems.
Equation (18) also permits to express the Hamilton
function of a given integrable map explicitly. Several
examples were presented in our paper. These examples
demonstrate that the Danilov equation is a powerful tool.
The McMillan integrable map is a classic example of a
nonlinear integrable discrete-time system, which finds
applications in many areas of physics, including accel-
erators [32,33]. It is a typical member of a wide class of
area-preserving transformations called a twist map [23].
For nonintegrable maps, which are also very common
in accelerator science, this new equation could allow
for an approximate evaluation of rotation numbers,
provided there exists an approximate integral of motion,
like Eq. (34).
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parameters are b ¼ 1 and a ¼ 1.6. Note that for pθ ¼ 0,
νr ¼ 2νθ, as expected, and equals the frequency ν from the
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APPENDIX A: LINEAR MAPS

In this Appendix we will consider two examples of linear
maps and we will use Eq. (6) for one and Eq. (17) for the
second one.

1. Linear accelerator map

Consider a linear symplectic map,

�
q0

p0

�
¼

�
a b

c d

��
q

p

�
; ðA1Þ

with ad − bc ¼ 1 and jaþ dj ≤ 2. This map is very
common in accelerator physics and has been described
in [2]. The rotation number (the betatron frequency) for this
map is well known:

ν ¼ 1

2π
arccos

aþ d
2

: ðA2Þ

To obtain this equation using the Danilov equation, we will
recall that this map has the following Courant-Snyder
integral (invariant):

K ¼ cq2 þ ðd − aÞqp − bp2: ðA3Þ

Let us assume that c > 0, then b ≤ 0 and Kðq; pÞ ≥ 0 for
any q and p. From this, we obtain�∂K

∂p
�

−1
¼ ∂p

∂K ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðaþ dÞ2 − 4�q2 − 4bK

p : ðA4Þ

We will use

ðq; pÞ ¼ ð
ffiffiffiffiffiffiffiffiffi
K=c

p
; 0Þ ðA5Þ

and

ðq0; p0Þ ¼ ðb
ffiffiffiffiffiffiffiffiffi
K=c

p
;

ffiffiffiffiffiffiffi
Kc

p
Þ: ðA6Þ

After a straightforward evaluation of integrals in Eq. (6),
we obtain

ν ¼ 1

2π
arccos

aþ d
2

; ðA7Þ

the same is in Eq. (A2).

2. Brown map

As a second example we will consider the Brown map
[34,35], MB,

�
q0

p0

�
¼

�
p

−qþ jpj

�
; ðA8Þ

which has the following integral:

Kðq; pÞ ¼ 1

8
ðqþ pþ jq − jpjj þ jp − jqjj

þ 2jq − jp − jqjjj þ 2jp − jq − jpjjj
þ jq − jpj þ jp − jq − jpjjjj
þ jp − jqj þ jq − jp − jqjjjjÞ: ðA9Þ

The map has only one stable fixed point, located at the
origin, with K ¼ 0. Constant level sets of K > 0 are
polygons, geometrically similar to each other, with nine
sides, labeled by Roman numerals, see Fig. 6(a). All orbits
belonging to these levels are periodic with

M9
Bðq; pÞ ¼ ðq; pÞ; ðA10Þ

and in fact, they are permutation 9-cycles such that

(a)

(b)

(q,p)

(q’,p’)

4
3

5

1
6

2

7

8

0

IV

III

II

I

V

VI

VII VIII

IX

−2α −α α 2α

2α

−2α

−α

α

0

q

p

0

FIG. 6. Brown map. (a) Constant level sets of the invariant,
Kðq; pÞ ¼ const (black solid polygons). Dashed black line p ¼ q
and blue line p ¼ 1

2
jqj illustrate two reflection symmetries of

the invariant polygons. Line segments are labeled with roman
numerals. Green points are an example of a 9-cycle orbit, where
the arabic numerals show the iteration number. (b) An example of
possible contour of integration for the numerator and denomi-
nator in Danilov equation.
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� � � → I → III → V → VII → IX →

→ II → IV → VI → VIII → I → � � � :

Since it is a linear map (ν ¼ const for all orbits), we will
use Eq. (17) to determine its rotation number. It is obvious
from Fig. 6(b) that J ¼ 4.5α, while J0 ¼ 1α, where α is
some arbitrary scale parameter, resulting in ν ¼ 2

9
.

APPENDIX B: NUMERICAL PROCEDURE
FOR DANILOV EQUATION

In this Appendix we will consider two numerical
procedures, which can be employed in order to use
Eq. (12) for mappings in McMillan form when only the
mapping equation is known or when we have an approxi-
mate (or an exact) invariant of the motion but we cannot
compute action integrals analytically.
We will start with the case when we have only the

mapping equations. As a first step we will rewrite the map
in polar coordinates:

q ¼ r cosϕ; p ¼ r sinϕ:

Then we will iterate for various initial conditions qðkÞini , let us

say in a form of qðkÞini ¼ qðkÞ0 ¼ pðkÞ
0 , so that we have a

collection of points in a form

ðrðkÞ0 ;ϕðkÞ
0 Þ; ðrðkÞ1 ;ϕðkÞ

1 Þ; ðrðkÞ2 ;ϕðkÞ
2 Þ;…; ðrðkÞn ;ϕðkÞ

n Þ:

We can then sort each orbit such that

ϕ̃ðkÞ
0 < ϕ̃ðkÞ

1 < ϕ̃ðkÞ
2 < � � � < ϕ̃ðkÞ

n ;

where ðr̃ðkÞi ; ϕ̃ðkÞ
i Þ are the points of a new sorted kth orbit.

Now, for each orbit we can compute the action and the
partial action numerically as

JðkÞ ¼ 1

2π

Xn
i¼0

ðr̃ðkÞi Þ2
2

½ϕ̃ðkÞ
i − ϕ̃ðkÞ

i−1� ðB1Þ

and

J0ðkÞ ¼ 1

2π

X
π=2<ϕ̃ðkÞ

i <π

ðr̃ðkÞi Þ2
2

½ϕ̃ðkÞ
i − ϕ̃ðkÞ

i−1� ðB2Þ

respectively. Finally, using the Danilov equation, we can
find the rotation number as a numerical derivative:

νðkÞ ¼ J0ðkþ1Þ − J0ðkÞ

Jðkþ1Þ − JðkÞ
: ðB3Þ

If onewould like to apply the Danilov equation directly to
an approximate or exact invariant of motion, we can proceed

in a similar manner. First, we rewrite the invariant of motion
in polar coordinates,Kapproxðr;ϕÞ. Then, for different values
KðkÞ

approx we will numerically solve n equations

Kapproxðr;ϕðkÞ
i Þ ¼ KðkÞ

approx ðB4Þ

with ϕðkÞ
i ¼ 2πi=n and i ¼ 0; 1;…; n − 1. Denoting the

smallest positive root of equation above as rðkÞi , we can
find action and partial actions as

JðkÞ ¼ 1

2π

Xn−1
i¼0

ðrðkÞi Þ2
2

½ϕðkÞ
i − ϕðkÞ

i−1� ðB5Þ

and

J0ðkÞ ¼ 1

2π

X
π=2<ϕðkÞ

i <π

ðrðkÞi Þ2
2

½ϕðkÞ
i − ϕðkÞ

i−1�; ðB6Þ

along with the rotation number

νðkÞ ¼ J0ðkþ1Þ − J0ðkÞ

Jðkþ1Þ − JðkÞ
: ðB7Þ
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