
 

Effects of the Montague resonance on the formation of the beam distribution
during multiturn injection painting in a high-intensity proton ring
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The “Montague resonance” is a familiar issue in high-intensity proton rings, which causes emittance
exchange between the two transverse planes, having a significant influence on their high-intensity
performance. In this paper, we discuss the characteristic effects of this resonance on the formation of the
beam distribution during multiturn injection painting that are measured experimentally at the 3-GeV rapid
cycling synchrotron in the Japan Proton Accelerator Research Complex. In addition, we discuss an
optimization methodology for injection painting for the case involving emittance exchange.
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I. INTRODUCTION

In high-intensity proton accelerator facilities, controlling
space charge induced emittance blow-up and beam loss is
always a critical challenge inmaximizing their high-intensity
performance while maintaining the hands-on-maintenance
environment.Among various space charge induced phenom-
ena, the “Montague resonance,”which is the main subject of
this paper, is one of the most familiar space-charge issues in
high-intensity proton rings. The resonance is well known to
cause emittance exchange between the horizontal and
vertical planes when the splitting between the horizontal
and vertical betatron tunes is small (νx ≅ νy), possibly
imposing a limit on the achievable beam intensity.
Through a detailed single-particle analysis, B.W.

Montague first pointed out that the space-charge-driven
fourth-order difference resonance, 2νx − 2νy ¼ 0, causes
emittance exchange [1]. As shown in the Appendix, if we
assume a Gaussian distribution and the condition of small
tune splitting, the perturbation Hamiltonian arising from
the space charge is approximately given in terms of the
conjugate angle (φx;y) and action (Jx;y) variables as follows:

H1ðφx; Jx;φy; Jy; sÞ ¼ V1100Jx þ V0011Jy

þ V2200J2x þ V0022J2yþV1111JxJy

þ 2V2002JxJy cos½2ðνx − νyÞθ
þ 2ðφx − φyÞ�; ð1Þ

where s is the longitudinal position along the closed ring
orbit; θ ¼ s=R is the orbiting angle, where R is the ring
radius; and V1100, V0011, V2200, V0022, V1111, and V2002 are
constant coefficients, which are given by Eqs. (A17)–
(A22). From Hamilton’s equations of motion, we obtain

dJx
ds

þ dJy
ds

¼ −
∂H1

∂φx
−
∂H1

∂φy
¼ 0; ð2Þ

which yields

Jx þ Jy ¼ const ð3Þ

Here, the quantities 2 × Jx;y can be interpreted as single-
particle emittances. That is, the physical significance of
Eq. (3) is that the emittance of a single particle is exchanged
periodically between the two transverse planes as a result of
the fourth-order single-particle difference resonance driven
by the nonlinear space-charge coupling force (the JxJy term
in the Hamiltonian H1).
In addition to such a single-particle (incoherent) mecha-

nism, the Montague resonance also occurs as a coherent
phenomenon caused by the time-varying space-charge
force induced in the presence of internal energy anisotropy
[2–4]. It cannot be found in the above single-particle
picture which assumes a frozen space-charge potential.
In order to explore a coherent phenomenon, self-consistent
modeling is required. To this end, self-consistent particle-
in-cell simulation studies have actively been carried out. A
typical example of a coherent phenomenon is the occur-
rence of rms emittance exchange in a Kapchinsky-
Vladimirsky (KV) beam with the initial anisotropy ϵx=ϵy ≠
1 for the horizontal and vertical rms emittances [3,4]. The
KV distribution has a uniform charge density [5] and no
driving term for the fourth-order single-particle resonance.
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Therefore, the emittance exchange found for a KV beam is
not predictable in the single-particle picture. It can be
explained only in terms of a coherent difference mode
resonance driven by the anisotropy between the two
transverse planes, which makes the nonlinear space-charge
coupling term grow exponentially from the noise level,
driving the emittance exchange [2–4].
Thus, the mechanism of the Montague resonance can be

considered as a combination of coherent and incoherent
resonance phenomena; e.g., an anisotropic water-bag or
Gaussian distribution not only has a coherent phenomenon,
but also involves an incoherent resonance phenomenon due
to a space-charge coupling term existing from the begin-
ning [3]. These effects of the resonance are avoidable by
sufficiently splitting the horizontal and vertical tunes. But,
the tune space near the Montague resonance has an aspect
that it is favorable for avoiding more serious structure
resonances. Actually, several facilities set the tunes in the
vicinity of the Montague resonance for this reason,
although the beam is heavily influenced by emittance
exchange. The Montague resonance is a major issue for
such high-intensity proton machines, and its influence on
the high-intensity performance is being studied actively
even now [6,7]. However, most of these studies have been
conducted assuming simple initial beam distributions such
as KV, Gaussian, or water-bag distributions. Consequently,
knowledge of various aspects of the Montague resonance
that accompany actual beam operations is limited.
The scope of the present study is to investigate the

possible effects of the Montague resonance in the process
of “multiturn injection painting”; that is, to reveal new
aspects of the Montague resonance in such a “dynamical”
situation. Injection painting enables us to form a different
spatial particle distribution from multiturn injected beams.
It is an essential technique for space-charge mitigation, and
optimizing it, that is, establishing a stable low-loss beam
distribution by injection painting is a critical issue for high-
intensity proton rings [8,9].
In this paper, we investigate the influences of the

Montague resonance on the formation of the beam dis-
tribution during multiturn injection painting, and further
discuss an optimization methodology for injection painting
for the case involving emittance exchange, using numerical
simulation results backed up by experimental results
obtained from a 1-MW high-power beam operation (pro-
viding 8.33 × 1013 protons per pulse at 25 Hz) at the 3-GeV
Rapid Cycling Synchrotron (RCS [10–12]) in the Japan
Proton Accelerator Research Complex (J-PARC [10]).

II. OUTLINE OF J-PARC 3-GeV RCS AND
RESEARCH BACKGROUND

A. J-PARC 3-GeV RCS

The J-PARC 3-GeV RCS is a world leading high-power
pulsedprotondriver,which has thegoal of achieving a 1-MW

beam power (8.33 × 1013 protons per pulse) [10–12]. As
shown in Fig. 1, a 400-MeV negative hydrogen ion (H−)
beam from the injector linac is delivered to theRCS injection
point, where it is multiturn charge-exchange injected into the
RCS through a carbon foil over a period of 0.5 ms (corre-
sponding to 307 turns). The RCS accelerates the injected
protons up to 3 GeV with a repetition rate of 25 Hz. Most of
the RCS beam pulses are delivered to the Materials and Life
Science Experimental Facility (MLF) to produce pulsed
muons and neutrons, while only four pulses in every several
seconds (2.48 or 5.20 s) are injected into the following 30-
GeVMain Ring (MR), switching the beam destination pulse
by pulse.
The requirements are different for the beams delivered to

the MLF and to the MR. Therefore, different parameter
optimizations are required for the two modes of operation
[13]. Due to the higher operational duty factor, the machine
activation levels of the RCS are mainly determined by the
beam operation to the MLF. Consequently, the dominant
requirement in this operating mode is to control beam loss.
In addition, the MLF requires a large emittance beam with
low charge density in order to mitigate the shockwave on
the neutron production target, which is essential to prolong
its operational lifetime. On the other hand, in contrast to the
MLF, the MR requires a small emittance beam with low
beam halo, which is essential to mitigate beam loss in the
MR. In order to meet the different requirements for the
beams delivered to the MLF and to the MR, we have
utilized transverse injection painting, employing large
painting for the MLF and small painting for the MR.

B. Transverse injection painting

Figure 2 shows a schematic diagram of the transverse
injection painting scheme [8] that is applied at the RCS. As
shown in the figure, horizontal painting is performed by a
horizontal closed orbit variation during injection. In this
way, the injection beam is filled from the middle to the

FIG. 1. Schematic view of the J-PARC 3-GeV RCS.
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outside on the horizontal phase space. On the other hand,
vertical painting is performed by a vertical injection angle
change during injection. The direction of the change in
angle is reversible, so the injection beam can be painted
either from the middle to the outside, or from the outside to
the middle on the vertical phase space.
For this painting process, the phase-space offset of the

injection beam relative to the closed ring orbit is varied
according to the square-root-type functions:

xpaint ¼ xmax

ffiffiffiffiffiffiffiffi
t=T

p
; x0paint ¼ −x0max

ffiffiffiffiffiffiffiffi
t=T

p
; ð4Þ

for the horizontal plane, and

ypaint ¼ 0;

y0paint ¼ −y0max

ffiffiffiffiffiffiffiffi
t=T

p
; ð5Þ

or

ypaint ¼ 0;

y0paint ¼ −y0max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=T

p
; ð6Þ

for the vertical plane. Here (xmax, x0max) and (0, y0max) are,
respectively, the maximum phase-space offsets in the
horizontal and vertical planes, for which the injection
beam ellipse is inscribed at the edge of the circulating

beam ellipse with a required painting emittance. The other
parameters are the injection duration T ¼ 0.5 ms and the
time step t, which increases from t ¼ 0 through the end of
injection. These square-root-type painting functions theo-
retically make a uniform charge density distribution in the
transverse phase space.
The combination of the horizontal painting given by

Eq. (4) and the vertical painting from Eq. (5), in which the
injection beam is distributed along the line Jx − Jy ¼ 0 in
the action space of the beam, is known as “correlated
painting.” Another combination of Eqs. (4) and (6) is
known as “anticorrelated painting,” for which the injection
beam is painted along the line Jx þ Jy ¼ const. That is, it
forms an approximate KV distribution in theory. As to the
painting emittance ϵtp, it is adjustable up to 200π mmmrad
on the horizontal and vertical planes independently, where
ϵtp is defined as the un-normalized value of the entire
painting area.

C. Operating point

Figure 3 shows the tune diagram, in which the blue lines
represent the structure resonances up to fourth order,
derived from the three-fold symmetric lattice of the
RCS. In the present work, the operating point was set in
the vicinity of (νx ¼ 6.45, νy ¼ 6.42), as shown by the
black circle in the figure.
This operating point allows space-charge tune shifts to

avoid serious structure resonances, such as low-order one-
dimensional resonances and coupling-sum resonances,
which are directly connected with beam loss through a
critical emittance growth. In addition, the effects of the
lattice imperfections, which are listed in the next section,
are also well minimized there. But, in exchange for those,
this operating point is very close to the Montague

FIG. 2. Schematic illustration of the transverse injection paint-
ing scheme that is applied at the RCS. The top panel is for the
horizontal phase space, and the bottom panel is for the
vertical case.
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resonance. Therefore, the beam suffers strongly from space
charge induced emittance exchange. In other words, the
major source of emittance growth and beam loss there is
limited to the Montague resonance arising from space
charge; we can investigate the effect of the Montague
resonance on the beam isolating it from other effects at the
operating point.
The aim of this paper is to optimize injection painting for

the case involving emittance exchange. Below we discuss
the optimal configuration, correlated or anticorrelated
painting, to meet the requirements for the MLF and the
MR, taking into account the evolution of the beam
distribution with space charge and associated emittance
exchange.

III. OUTLINE OF NUMERICAL SIMULATION

In this work, numerical simulation was performed with a
particle tracking code called “SIMPSONS” [14]. This code
enables us to simulate three-dimensional motions of beam
particles including the space-charge effect and the realistic
injection painting process. The numerical simulation has
well reproduced the experimental data such as beam profile
and beam loss in the RCS, and played an essential role in
understanding emittance growth and beam loss mecha-
nisms and finding their solution in combination with actual
beam experiments. [12].
In this numerical simulation, all the lattice imperfections,

which have been identified so far, are included; multipole
field components of the main ring magnets, magnetic field
errors among the same-family magnets, misalignments,
static leakage fields from the extraction beam-line magnets,
edge focuses of the injection bump magnets, and so on.
They were evaluated through magnetic field measurements
and/or beam-based measurements. One of characteristic
features of this code is to take “time” as an independent
variable, not longitudinal position, which is used more
widely. Therefore, time-dependent lattice imperfections as
well as time-independent ones can be implemented easily
in the simulation.
This code computes the space-charge potential based on

a particle-in-cell algorithm with cylindrical meshes in the
ðr; z;φÞ coordinates. The fractional charge of each macro-
particle is assigned to the nearby grid points following the
area-weighting method. The charge distribution at the grid
points is Fourier-transformed in the azimuthal direction,
and then the Poisson equation is solved in the (r, z) space
for each azimuthal mode assuming a boundary condition of
the circular cross-sectional beam pipe which is a good
approximation for the RCS. Finally, the space-charge force
is applied to each macroparticle as a three-dimensional
impulse kick. The space-charge potential is recalculated at
a given time step out of the macroparticles whose distri-
bution evolves in a self-consistent manner as per the
progression of time. The time step applied in the present

simulation was 2 ns during injection and 10 ns for the
others, corresponding to 850 and 170 kicks per turn.
The number of macroparticles was typically set to 5 ×

105 using a transverse grid of 64 (r)×64 (φ) for a
conducting boundary of r ¼ 0.145 m and a longitudinal
grid of 50 (z). Careful analyses for the convergence of
macroparticle motions confirmed that the use of these
numerical parameters is tolerable for obtaining meaningful
simulation results [8].

IV. EMITTANCE GROWTH DURING INJECTION
PAINTING

Figure 4 shows the time dependences of the normalized
99% emittances for the first 1.5 ms, calculated with ϵtp ¼
200π mmmrad and ϵtp ¼ 50π mmmrad—for correlated
and anticorrelated painting, respectively—where the 99%
emittance is defined as the emittancevalue containing99%of
the total charge. For large painting (ϵtp ¼ 200π mmmrad),
correlated painting generates a critical large emittance
growth on the vertical plane. Therefore, for large painting,
correlated painting gives a larger beam loss than does
anticorrelated painting, as is shown later. But, conversely,
for small painting (ϵtp ¼ 50π mmmrad), correlated painting
yields smaller beam emittances on both the horizontal and
vertical planes than does anticorrelated painting. Thus,
correlated and anticorrelated painting provide different sit-
uations for large painting and small painting.
These phenomena can be understood by considering the

effects of emittance exchange caused by the Montague
resonance, as discussed below.
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V. EFFECTS OF EMITTANCE EXCHANGE
DURING LARGE PAINTING

First, we discuss the particle motions during injec-
tion painting for a large painting emittance of ϵtp¼
200πmmmrad, which is required for the beam delivered
to the MLF.
Figure 5 shows scatter plots of the single-particle actions

(Jy vs Jx) from the beginning to the end of injection, cal-
culated for correlated painting with ϵtp ¼ 200π mmmrad.
The left panels correspond to the results obtained with no
space charge. As clearly shown there, in correlated painting,
the injection beam is painted along the line Jx − Jy ¼ 0, i.e.,
from the middle to the outside on both the horizontal and
vertical planes. This situation changes significantly when the
space charge is turned on, as shown in the right panels; it can

be seen that the space charge causes a significant diffusion of
beam particles away from the path of beam painting, and it
finally leads to a critical increase of the vertical action Jy
going over the painting area. This large diffusion of beam
particles ismainly caused by space charge induced emittance
exchange (Jx − Jy exchange of beam particles). As illus-
trated in Fig. 6, in correlated painting, the injection beam is
painted along the line Jx − Jy ¼ 0, while emittance
exchange occurs in the orthogonal direction, i.e., along
the line Jx þ Jy ¼ const. This geometrical relationship
has the consequence that emittance exchange leads to a
large diffusion of beam particles in the (Jx, Jy) space.
Figure 7 displays the single-particle motion of one macro-
particle during correlated painting. This clearly shows that
emittance exchange, which occurs perpendicularly to the
path of beam painting, causes the diffusion of beam particles
and the increase of the peak Jy of beam particles found in the
right panels of Fig. 5. This is the mechanism of the critical
vertical emittance growth observed in Fig. 4 for correlated
painting with ϵtp ¼ 200π mmmrad.
Figure 8 shows the case of anticorrelated painting with

ϵtp ¼ 200π mmmrad. As shown clearly in the left panels
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FIG. 6. Schematic illustration of the geometrical relation
between correlated painting and emittance exchange in the
(Jx, Jy) space.
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obtained with no space charge, in anticorrelated painting,
the injection beam is painted along the line Jx þ Jy ¼
const, i.e., from the middle to the outside on the horizontal
plane, while it is done from the outside to the middle on the
vertical plane. This situation also changes significantly
when the space charge is turned on, as shown in the right
panels; it can be seen that the space charge induces
emittance exchange along the same line Jx þ Jy ¼ const.
As illustrated in Fig. 9, the direction of anticorrelated
painting is the same as that of emittance exchange. This
geometrical relationship prevents emittance exchange from
causing a large diffusion of beam particles in the (Jx, Jy)
space (a critical increase of the peak action of beam
particles). In the right panels of Fig. 8, one can confirm
that most of the beam particles stay in the painting area
though emittance exchange occurs, because the beam

painting and the emittance exchange take place in the
same direction. Figure 10 shows the single-particle motion
of one macroparticle during anticorrelated painting, which
displays such a situation clearly.
Thus, emittance exchange has different effects on the

formation of the beam distribution, depending on the
geometrical relation in the (Jx, Jy) space between beam
painting and emittance exchange. The analysis above sug-
gests that anticorrelated painting is more favorable for
suppressing beam loss that arises from emittance exchange.
In Figs. 11 and 12, the numerical simulation results are

compared with the experimental data from a 1-MW beam
test. Simulated tune footprints are also given in Fig. 13 for
reference. The numerical simulations well reproduced the
characteristic beam profiles affected by the Montague
resonance (Fig. 11), and also the beam losses including their
amounts and time structures (Fig. 12). As shown in the left
panel of Fig. 12, there was a significant beam loss—around
2.5%—for correlated painting with ϵtp ¼ 200π mmmrad.
As discussed above, the numerical simulations clearly
demonstrated that the beam loss is due to the vertical
emittance growth caused by the emittance exchange,
finally reaching the collimator aperture of 324π mmmrad.
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FIG. 9. Schematic illustration of the geometrical relation
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(Jx, Jy) space.
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However, by introducing anticorrelated painting with the
same painting emittance, we successfully reduced the beam
loss to a few times 10−3, as predicted by the numerical
simulations. The measurements and the numerical simula-
tions both confirmed the advantage of anticorrelated paint-
ing, which has a higher tolerance for emittance exchange.

VI. EFFECTS OF EMITTANCE EXCHANGE
DURING SMALL PAINTING

Next, we discuss the case of small painting with
ϵtp ¼ 50π mmmrad, which is required for the beam
delivered to the MR.
Figure 14 shows the normalized 99% emittances 1 ms

after the end of injection, simulated as a function of the
painted emittance ϵtp for both correlated and anticorrelated
painting. This dependence reflects the balance between
painting emittance and space-charge mitigation; the two are
well-balanced at ϵtp ¼ 50π mmmrad, where the beam
emittance is minimized. In addition, this figure shows that
correlated painting, rather than anticorrelated painting,
achieves smaller beam emittances on both the horizontal
and vertical planes at ϵtp ¼ 50π mmmrad. This situa-
tion differs from the case of large painting with ϵtp ¼
200π mmmrad. This characteristic of small painting is also
understandable by considering the effects of emittance
exchange, as discussed below.
As already shown in Fig. 9, in anticorrelated painting,

the direction of beam painting is the same as that of
emittance exchange. This geometrical relationship sup-
presses emittance growth caused directly by emittance
exchange itself, but it has the potential to cause a spatial
region of high charge density. Figure 15 shows scatter plots
of the single-particle actions (Jy vs Jx) during anticorrelated
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painting with ϵtp ¼ 50π mmmrad. In this figure, one can
find the formation of a high-density island at the late stage
of injection. As illustrated in Fig. 16, in anticorrelated
painting, the injection beam is painted from (A) to (B).
Consequently, emittance exchange also starts from (A) and
moves in the same direction so as to eliminate the emittance
anisotropy between the two transverse planes early during
injection. A specific link between the move of the beam
distribution caused by the coherent emittance exchange and
the beam painting produces this concentration of beam
particles. This kind of high spatial charge concentration is not
found in large painting, as shown in Fig. 8. Enlarging the
painting emittance is equivalent to increasing the speed of
beam painting. This has the effects of breaking the coordi-
nated movements between emittance exchange and beam
painting as well as improving space-charge mitigation.
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FIG. 16. Schematic illustration of the formation of a high-density
island in anticorrelated painting with ϵtp ¼ 50π mmmrad.
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This is the reason why a relatively uniform distribution is
maintained in large anticorrelated painting. That is, it can be
said that the high spatial charge concentration triggered by
emittance exchange is a characteristic phenomenon that is
enhanced in anticorrelated painting with a small painting
emittance.
Figure 17 shows the case of correlated painting with

ϵtp ¼ 50π mmmrad. In correlated painting, emittance
exchange occurs in the direction orthogonal to the path
of beam painting. This geometrical relationship enhances
emittance growth caused directly by emittance exchange
itself, but, in exchange for that, it has the advantage of
avoiding high spatial charge concentration. In Fig. 17, one
can see that a more uniform distribution is maintained at all
times during correlated painting.
This behavior of the beam particles during small painting

was experimentally confirmed, as shown in Fig. 18; we
found a high-density peak structure for anticorrelated
painting with ϵtp ¼ 50π mmmrad, while we observed a
more uniform beam distribution for correlated painting
with ϵtp ¼ 50π mmmrad, as predicted by the numerical
simulations.
The high-density island formed during anticorrelated

painting with ϵtp ¼ 50π mmmrad causes a large space-
charge detuning, as shown in Fig. 19. These beam particles
additionally suffer strong effects of several structure res-
onances—such as νx ¼ 6 as well as the Montague reso-
nance—which cause significant extra emittance growth.
This is confirmed in Fig. 20, which shows the subsequent
behavior of the beam particles that form the high-density
island. In Fig. 20(i), the green dots correspond to particles

injected at the very end of the injection turns. They are
injected right into the middle of the high-density island.
These particles evolve in the order from (i) to (iv). As
shown in the figure, the particles that form the high-density
island diffuse quickly within just ∼300 turns via a Jx-
growth mainly by νx ¼ 6 and the following Jx − Jy
exchange by 2νx − 2νy ¼ 0. This emittance blow-up—
caused via the formation of the high-density island during
anticorrelated painting—is more critical than that caused
directly by emittance exchange itself during correlated
painting. This is the main reason why anticorrelated
painting leads to a larger emittance growth in small painting
with ϵtp ¼ 50πmmmrad.
As shown in Fig. 21, there are no significant intensity

losses for both correlated and anticorrelated painting with
ϵtp ¼ 50πmm mrad, as the beam emittances are suffi-
ciently small for both cases compared with the collimator
aperture. But, from the perspective of minimizing beam
loss in the following MR, the smaller-emittance beam,
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which can be achieved by correlated painting, is of
great value.

VII. SUMMARY OF RESULTS

As described in Sec. I, the Montague resonance has both
coherent and incoherent effects. Both beam distributions
during correlated and anticorrelated painting intrinsically
involve significant nonlinear space-charge coupling terms.
Therefore, the incoherent effect occurs for both cases. On
the other hand, the coherent effect is more significant for
anticorrelated painting, because there is a large anisotropy
between the horizontal and vertical emittances during this
painting process. In contrast, for correlated painting, the
coherent effect is less important, since correlated painting
approximately maintains the isotropic condition ϵx ≅ ϵy
throughout.
As discussed in the previous two sections, the resultant

emittance exchange produces two major effects during
injection painting. One (a) is emittance growth (increase of
the peak action of beam particles) caused directly by the
emittance exchange itself, which is more enhanced in
correlated paining. Another (b) arises from the secondary
effect of the emittance exchange, namely, emittance growth
caused via high spatial charge concentration, which is more
enhanced in anticorrelated painting. In large painting, such
as ϵtp ¼ 200π mmmrad, the former effect (a) is more
significant, so anticorrelated painting, which suppresses the
effect (a), causes less beam loss. On the other hand, in small
painting, such as ϵtp ¼ 50π mmmrad, the latter effect (b) is
more critical, so correlated painting, which avoids the effect
(b), causes less emittance growth.
On the basis of the present study results, we have

successfully reoptimized the operating parameters—
including injection painting—for the MLF and the MR,
and they are now applied for the routine user operations.

VIII. FUTURE DEVELOPMENTS

Finally, we discuss a possibility for a further improve-
ment of injection painting based on the above study results.
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FIG. 22. Schematic illustration of anticorrelated painting modi-
fied to avoid high spatial charge concentration.
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Anticorrelated painting well suppresses emittance
growth caused directly by emittance exchange itself, but
it has the potential to cause high spatial charge concen-
tration. One possible approach to removing this negative
effect of anticorrelated painting is to adjust the range of
beam painting in the (Jx, Jy) space. One example is shown
in Fig. 22, in which the injection beam is painted from
(A) to (B), not from (A) to (C). In this modified manner, the
phase-space offset of the injection beam relative to the
closed ring orbit is varied as follows:

xpaint ¼ xmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=T × fscl

p
;

x0paint ¼ −x0max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=T × fscl

p
; ð7Þ

for the horizontal plane, and

ypaint ¼ 0;

y0paint ¼ −y0max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=T × fscl

p
; ð8Þ

for the vertical plane, where fscl < 1 is a scaling factor.
Comparison with Eqs. (4) and (6) shows that this modi-
fication is equivalent to reducing the speed of beam
painting by a factor of

ffiffiffiffiffiffiffi
fscl

p
. In the empty space from

(B) to (C), the beam is to be distributed automatically by
emittance exchange.
Figure 23 shows scatter plots of the single-particle actions

(Jy vs Jx) from the beginning to the end of injection, cal-
culated for this modified anticorrelated painting with ϵtp ¼
50π mmmrad and fscl ¼ 0.4. Comparison with Fig. 15
shows that this scheme properly inhibits emittance exchange
from causing high spatial charge concentration. As shown

in Fig. 24, the numerical simulations confirmed that this
scheme has the potential to realize further mitigation of
emittance growth.
These numerical simulations suggest that injection

painting has room for further improvement; modifying a
time dependence of painting (e.g., linear or cubic root
function), changing a balance between the horizontal and
vertical painting emittances (i.e., unequal painting emit-
tances), etc. Optimizing them is a subject for future
investigations.

IX. SUMMARY

We investigated the effects of space charge induced
emittance exchange on injection painting in the 1-MW-
equivalent high-intensity environment of 8.33 × 1013 pro-
tons per pulse. In this work, we found that the emittance
exchange produces two major effects during injection
painting: (a) Emittance growth (increase of the peak action
of beam particles) caused by the direct effect of the
emittance exchange itself, and (b) Emittance growth caused
by the secondary effect of the emittance exchange, namely,
via high spatial charge concentration.
These two effects are either enhanced or mitigated

depending on the choice of correlated or anticorrelated
painting and by the painting emittance. We also found that
for a case involving emittance exchange, investigating the
particle motions while considering the geometrical relation-
ships between beam painting and emittance exchange in the
(Jx, Jy) space is to be the key to optimizing injection
painting as well as to understanding the behavior of the
beam. The choice of correlated or anticorrelated painting is
a common issue in high-intensity proton rings like the RCS.
The present work provides guidelines for solving this
problem.
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APPENDIX: PERTURBATION HAMILTONIAN
ARISING FROM THE SPACE CHARGE

Here, the perturbation Hamiltonian arising from the
space charge is derived and simplified based on
Montague’s approach [1] for reference.
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The total HamiltonianH can be divided into two parts as

Hðx; x0; y; y0; sÞ ¼ H0 þH1; ðA1Þ

where ðx; x0 ¼ dx=dsÞ and ðy; y0 ¼ dy=dsÞ are the hori-
zontal and vertical phase-space coordinates, and s is the
longitudinal position along the closed ring orbit. In
Eq. (A1), H0 stands for the Hamiltonian of the unperturbed
system in the absence of space charge; it can be written
simply as

H0ðx; x0; y; y0; sÞ ¼
1

2
½x02 þ kxðsÞx2� þ

1

2
½y02 þ kyðsÞy2�;

ðA2Þ

where kxðsÞ and kyðsÞ represent the lattice focusing
functions. As is well known, the general solution for the
unperturbed motion is

x ¼ J1=2x ½w1ðsÞeiðνxθþφxÞ þ w1ðsÞe−iðνxθþφxÞ�; ðA3Þ

y ¼ J1=2y ½u1ðsÞeiðνyθþφyÞ þ u1ðsÞe−iðνyθþφyÞ�; ðA4Þ

where (φx, Jx) and (φy, Jy) are conjugate pairs of the angle
and action variables, (νx, νy) are the betatron wave
numbers, and θ ¼ s=R is the orbiting angle, where R is
the ring radius. On the other hand, H1 represents the
perturbation part, including both linear and nonlinear
space-charge terms. Assuming a uniform distribution with
a line charge density λe in the longitudinal direction and
Gaussian distributions in the horizontal and vertical direc-
tions as

fðx; yÞ ¼ λe
2πab

e−ð
x2

2a2
þ y2

2b2
Þ; ðA5Þ

4

Z
∞

0

Z
∞

0

fðx; yÞdxdy ¼ λe; ðA6Þ

the Hamiltonian H1 is expressed as

H1ðx; x0; y; y0; sÞ ¼
λrp
β2γ3

�
−

1

aðaþ bÞ x
2 −

1

bðaþ bÞ y
2

þ 2aþ b
12a3ðaþ bÞ2 x

4 þ aþ 2b
12b3ðaþ bÞ2 y

4

þ 1

2abðaþ bÞ2 x
2y2 � � �

�

≡X
k1;k2

Vk1k2ðsÞxk1yk2 ; ðA7Þ

where rp is the classical proton radius, and β and γ are the
relativistic Lorentz factors.

Using Eqs. (A3) and (A4), the Hamiltonian can be
transformed into the angle-action coordinates; i.e.,
Eqs. (A3) and (A4) can be considered as a canonical
transformation from (x, x0, y, y0) to (φx, Jx, φy, Jy).
Substituting Eq. (A3) into the power series in x in
Eq. (A7), we obtain

xk1 ¼ Jk1=2x ½w1ðsÞeiðνxθþφxÞ þ w1ðsÞe−iðνxθþφxÞ�k1

¼ Jk1=2x

Xk1
r1¼0

� k1
r1

�
wðk1−r1Þ
1 eiðk1−r1ÞðνxθþφxÞ

× w1
r1e−ir1ðνxθþφxÞ; ðA8Þ

where ðk1r1Þ is the binomial coefficient defined as
k1ðk1 − 1Þ � � � ðk1 − r1 þ 1Þ=r1!. Applying k1 ¼ l1 þm1

and r1 ¼ m1 as new notations, Eq. (A8) becomes

xk1 ¼ Jk1=2x

Xk1¼l1þm1

m1¼0

�
l1 þm1

m1

�
wl1
1 w1

m1eiðl1−m1ÞðνxθþφxÞ:

ðA9Þ
Similarly, we obtain

yk2 ¼ Jk2=2y

Xk2¼l2þm2

m2¼0

�
l2 þm2

m2

�
ul21 u1

m2eiðl2−m2ÞðνyθþφyÞ:

ðA10Þ
Substituting Eqs. (A9) and (A10) into Eq. (A7), the
Hamiltonian H1 becomes

H1ðφx; Jx;φy; Jy; sÞ ¼
X
k1;k2

Xl1þm1

m1

Xl2þm2

m2

Vl1m1l2m2
Jk1=2x Jk2=2y

× ei½ðl1−m1ÞðνxθþφxÞþðl2−m2ÞðνyθþφyÞ�;

ðA11Þ
where

Vl1m1l2m2
¼

�
l1 þm1

m1

��
l2 þm2

m2

�

× wl1
1 w1

m1ul21 u1
m2Vk1k2 : ðA12Þ

Here and in Eqs. (A3) and (A4), the quantities 2jw1j2 and
2ju1j2 represent the betatron amplitude functions, which are
given in the smooth approximation as

w1 ¼ w1 ¼
ffiffiffiffiffiffiffi
R
2νx

s
; ðA13Þ

u1 ¼ u1 ¼
ffiffiffiffiffiffiffi
R
2νy

s
: ðA14Þ
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Substituting Eqs. (A13) and (A14) into Eq. (A12), we get

Vl1m1l2m2
¼

�
l1 þm1

m1

��
l2 þm2

m2

�

×

�
R
2νx

�l1þm1
2

�
R
2νy

�l2þm2
2

Vk1k2 : ðA15Þ

The perturbation Hamiltonian in Eq. (A11) can be
classified into: (I) zero-frequency terms, with l1 −m1 ¼
0 and l2 −m2 ¼ 0; (II) low-frequency terms, with νx −
νy ≈ 0 and l1 −m1 þ l2 −m2 ¼ 0; and (III) high-frequency
terms. The motions of the beam particles are well-approxi-
mated by the terms (I) and (II), so we here neglect the high-
frequency terms (III). Applying this approximation and
using V0220 ¼ V2002, the Hamiltonian is finally simplified
as follows:

H1ðφx; Jx;φy; Jy; sÞ ¼ V1100Jx þ V0011Jy þ V2200J2x

þ V0022J2y þ V1111JxJy

þ 2V2002JxJy cos½2ðνx − νyÞθ
þ 2ðφx − φyÞ�; ðA16Þ

where

V1100 ¼ −
λrp
β2γ3

R
νx

1

aðaþ bÞ ; ðA17Þ

V0011 ¼ −
λrp
β2γ3

R
νy

1

bðaþ bÞ ; ðA18Þ

V2200 ¼
λrp
β2γ3

R2

ν2x

2aþ b
8a3ðaþ bÞ2 ; ðA19Þ

V0022 ¼
λrp
β2γ3

R2

ν2y

2bþ a
8b3ðaþ bÞ2 ; ðA20Þ

V1111 ¼
λrp
β2γ3

R2

νxνy

1

2abðaþ bÞ2 ; ðA21Þ

V2002 ¼
λrp
β2γ3

R2

4νxνy

1

2abðaþ bÞ2 : ðA22Þ
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