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In circular accelerators, transverse beam emittances can be exchanged by means of a coupling resonance
crossing. It was first demonstrated experimentally at CERN accelerators, before a theoretical study revealed
its mechanism. The existing theory of emittance exchange seems, however, to be deficient. In this study, we
establish a theory of emittance exchange using the matrix formalism. Furthermore, we have found that the
mechanism of emittance exchange is analogous to the transition dynamics of two-state quantum systems,
thereby allowing the Landau-Zener formula to be applied for the prediction of transverse emittance values
after nonadiabatic crossing.
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I. INTRODUCTION

Emittance exchange is one of a number of beam
manipulation techniques in accelerators. Two particularly
useful applications in lepton machines are known: at free
electron laser linear accelerators, where the exchange of
longitudinal and transverse emittances suppresses beam
deterioration due to longitudinal beam instabilities [1,2],
and at the booster synchrotron injector of light source
facilities, to facilitate beam injection into the storage ring
[3,4]. The latter application is becoming increasingly
relevant owing to several planned next generation synchro-
tron light sources, where beam injection is of critical
importance [5]. In hadron machines, the technique is
applied to beam emittance measurements [6]. More studies
related to the emittance exchange (or manipulation) are
found elsewhere [7–9]. The beam dynamics of emittance
exchange in circular accelerators is the subject of the
present work.
The transverse beam particle motion is characterized by

the so-called betatron tunes, which are the number of
oscillations per revolution in the horizontal and vertical
planes, Qx and Qy, respectively. Linear coupling resonan-
ces, Qx �Qy ¼ l, where l is integer, may significantly
affect the behavior of beam particles in circular acceler-
ators. Even when the resonance sources, i.e., the skew
quadrupole and solenoid field components, are weak, their
effect on the beam is greatly enhanced when the working
point ðQx;QyÞ is close to the resonance. This was closely
studied by, among others, Guignard [10] for the case of a

stationary working point, i.e., where the betatron tunes are
constant over time. With regard to the difference coupling
resonance, Qx −Qy ¼ l, the equations of motion, includ-
ing coupling terms, were analyzed, to conclude that the
horizontal and vertical emittance values oscillate with
opposite phase [11]. The fraction of the energy of the
betatron oscillation interchanged between the transverse
planes, F, was found to be

F ¼ jCj2
Δ2 þ jCj2 ; ð1Þ

where C is the coupling coefficient, and Δ is the detuning
of the working point with respect to the resonance con-
dition (Qx −Qy þ Δ ¼ l). When Δ ¼ 0, for instance on
resonance, the horizontal and vertical emittances are fully
exchanged at corresponding phases periodically.
Knowing the emittance oscillation, we can exchange the

transverse beam emittances, for example, by injecting a
beam into a ring where the resonance condition is exactly
met, and subsequently extracting the beam when the
emittances are exchanged. Another approach would be
to use a pulsed skew quadrupole to excite the resonance for
a short time until the exchange is complete [3]. On the other
hand, it was found experimentally at CERN accelerators
(Intersecting Storage Ring, Antiproton Accumulator,
Proton Synchrotron and Proton Synchrotron Booster) that
an emittance exchange is also realized when the working
point is moved across a resonance [6]. This approach would
be far more practical than those previously mentioned. A
theoretical study followed to reveal the mechanism of
exchange [12].
In [12] at first a simple model is introduced: when the

working point crosses a resonance adiabatically, the beam
emittances vary during the crossing as
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ϵx ¼ ϵx0cos2θ þ ϵy0sin2θ; ð2Þ

ϵy ¼ ϵx0sin2θ þ ϵy0cos2θ; ð3Þ

where ϵx0;y0 are the initial horizontal and vertical emittan-
ces, respectively. θ is the angle between the laboratory
frame axis and the normal mode axis, where the motion is
decoupled [13]. We interpret these equations that, when θ
changes from zero to π

2
, the emittance is fully exchanged.

However, the range of θ is not clearly defined. In the
course of the derivation in [12], the parameters jCj and Δ
are related to θ as

cos 2θ ¼ cos

�
arctan

jCj
Δ

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jCj2=Δ2
p : ð4Þ

This clearly leads to an inequality of the form − π
4
≤ θ ≤ π

4
,

i.e., the emittance can be equalized but not exchanged
whereas the final result [Eq. (34) in [12] ] implicitly
assumes a range of 0 ≤ θ ≤ π

2
or − π

2
≤ θ ≤ 0.

Then the emittance exchange is explained using the
resonance driving term formalism, which describes the
accelerator in a more comprehensive manner. In this refined
model, the emittance exchange originates in an invariant
exchange of a single particle that is induced by a resonance
crossing.
We, however, have a different picture based on our new

theory of emittance exchange, which is described in Sec. II.
Moreover, these theories are restricted to adiabatic cross-
ings. We establish, in Sec. III, an analytical equation that
quantifies the emittance values after crossing, including
crossing speed as a parameter. Finally we draw our
conclusions in Sec. IV.

II. THEORY BASED ON MATRIX FORMALISM
(ADIABATIC CROSSING)

We find that the emittance exchange can be well
described by using the matrix formalism defined in [14].
We import here some relevant equations and statements
from [14].
The linear transverse motion is described by the so-

called one-turn map, a 4 × 4 matrix,

T ¼
�
M m

n N

�
: ð5Þ

The off-diagonal 2 × 2 block matrices are (non)zero with
(non)zero coupling source. The one-turn map can be block
diagonalized through a similarity transformation [15],

T ¼ VUV−1: ð6Þ

We get

U ¼
�
A 0

0 B

�
: ð7Þ

The submatrices A and B represent two eigenmodes (or
normal modes). The matrix V is expressed as

V ¼
�

γI C

−Cþ γI

�
; ð8Þ

where the superscript “þ” indicates symplectic conjugate
[14]. The solution for γ and C is

γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTr½M −N�Þ2

ðTr½M −N�Þ2 þ 4 detH

svuut ; ð9Þ

with H ¼ mþ nþ, and

C ¼ −H sgnðTr½M −N�Þ
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTr½M −N�Þ2 þ 4 detH

p : ð10Þ

The coordinates (particle position and angle) of the
laboratory frame and the normal mode are then related
as follows:

ða; a0; b; b0ÞT ¼ V−1ðx; x0; y; y0ÞT: ð11Þ

In the matrix formalism, the normal mode tunes, QA and
QB, are found fromA and Bmatrices. jCj of Eq. (1) is then
found from these values computed on the coupling reso-
nace as jQA −QBj.
For det H > 0, a second solution exists,

γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTr½M −N�Þ2

ðTr½M −N�Þ2 þ 4 det H

svuut ; ð12Þ

with H ¼ mþ nþ, and

C ¼ H sgn ðTr½M −N�Þ
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTr½M − N�Þ2 þ 4 det H

p : ð13Þ

Use of the first or second solution is arbitrary when
det H > 0. (They are referred to as solution I and solution
II hereafter.) When the coupling is weak, V−1 in Eq. (11) is
approximately a unit matrix for solution I and an off block-
diagonal matrix for solution II. It is therefore natural to take
solution I such that the horizontal and vertical particle
motions are associated to A and B, or simply A and B
modes, respectively. A switch in solutions, however, may
be necessitated particularly when det H changes sign along
the ring. The associations of the normal mode coordinates
to the laboratory frame coordinates are interchanged
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between the two solutions, leading to the term “mode
flipping.”
We now imagine a virtual ring that consists of many

original rings connected to one another (Fig. 1). This virtual
ring is henceforth referred to as the “large ring,”while the ring
under investigation is referred to as the “original ring.” The
original ring includes some coupling sources, and the
coupling resonance close to the working point is excited
only modestly, such that the mode flipping does not appear
within the original ring. The dynamic feature of the reso-
nance crossing is introduced as follows. Each segment of the
large ring, which corresponds to one revolution in the
original ring, has different betatron phase advances such
that the working point of the original ring crosses a coupling
resonance. Another condition is introduced as the working
point of the original ring returns to the initial point along the
large ring. This means that the working point of the original
ring crosses the resonance twice along the large ring. Just to
avoid potential confusion, we add a superscript “L” to the
symbols of the large ring in the following.
When the variation of the phase advance from one

segment to the next is infinitesimally small, all the elements
of the original-ring one-turn maps are smoothly connected.
At the same time, the elements of matricesA andB of those
one-turn maps have to be smoothly connected to form a
periodic condition in the large ring. In other words, such a
periodic condition is the solution that the beam follows.
Owing to the fact that Tr½M − N� changes sign when the
working point of the original ring crosses the resonance, we
have to switch from one solution to the other, otherwise the
elements of matrix C are discontinuous [Eqs. (10) and
(13)]. This ensures the smooth connections of A and B
matrix elements as well, since these matrices are functions
of γ, M, N, m, n and C. We have γ ¼ 1=

ffiffiffi
2

p
for both

solution I and II when Tr½M −N� ¼ 0, and thus it is also
continuous over the switching. The necessity of the switch-
ing indicates that the large ring includes mode flippings at

the locations where the working point of the original ring
crosses the resonance, namely locations 2 and 4 in Fig. 1.
We simulate a simple large ring where the original ring (or

each segment) consists of a zero-coupling one-turn map
multiplied by a thin skew quadrupole matrix. The working
point of the original ring is controlled by changing the tunes
of the zero-coupling one-turn map. It is then straightforward
to numerically generate a one-turn map of the large ring. In
[14], it is mentioned that a mode flipping can be detected by
checking the trace ofA andB along the ring.We thus observe
the traces ofAL andBL along the large ring. Figure 2 shows
the traces and the parameter γL along the large ring.

FIG. 1. “Large ring” that consists of many original rings. The
working point of the original ring is also shown.
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FIG. 2. Traces of AL and BL matrices (top) and the parameter
γL (bottom) of the large ring one-turn map. It is noted that TrA of
solution I(II) is equal to TrB of solution II(I). The betatron tunes
of the original ring are varied in a range ofQx ¼ 0.3 ∓ 0.005 and
Qy ¼ 0.3� 0.005. The resonance condition, Qx ¼ Qy, is ful-
filled at locations 2 and 4. The beta functions of the original rings
are set to arbitrary values (βx ¼ 10 m, βy ¼ 5 m) and constant.
The integrated, normalized skew quadrupole strength is set to
0.001 m−1, corresponding to jCj ∼ 0.001. The large ring consists
of 400 000þ 1 original rings, ensuring smooth connections of
one-turn maps and avoiding an integer resonance.
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In Fig. 2, as we expect, the traces of the AL and BL

matrices are interchanged at the longitudinal locations 2
and 4, where the working point of the original ring crosses
the resonance correspondingly. Furthermore, this is not
observed when the skew quadrupole is turned off or when
the working point is moved but does not cross the
resonance. From this investigation, we understand how
the emittance exchange occurs: during the crossing, the
mode flipping occurs at the resonance, and thus the particle
motion associated to the horizontal plane before the cross-
ing is associated to the vertical plane after the crossing, and
vice versa. If we notice that the parameter γ is related to the
angle between the laboratory frame axis and the normal
mode axis as θ ¼ arccos γ, we get a further simple picture,
i.e., the normal mode axis is rotating from θ ¼ 0 to π

2
during

the resonance crossing (or − π
2
depending on the direction of

crossing). When the rotation is slow enough, i.e., adiabatic,
all beam particles keep their oscillation amplitudes on the
normal mode axes. The mode flipping is a consequence of
the fact that the angle θ crosses π

4
(or − π

4
).

Our model thus supports the simple model in [12] but the
range of θ and how it varies during the crossing are now
clearly defined. On the other hand, the mode flipping is
simply a matter of the coordinate system. We think that the
invariant exchange described in [12] is equivalent to the
mode flipping and thus not a physical phenomenon.

III. NONADIABATIC CROSSING

A similar exercise to that of Fig. 2 is performed for the
original-ring one-turn map. The traces of A and B are
computed for various working points. In Fig. 3, the normal
mode tunes are plotted instead of trace values. It is seen that
the tunes are smoothly connected at the resonance when we
switch from one solution to the other. Figure 3 together
with Fig. 2 also gives us an insight into the underlying
physics: the normal mode tunes of the coupled oscillation
vary smoothly and follow the curves of Fig. 3 as long as the
crossing is adiabatically slow.
Note that in Fig. 3, solutions I and II are explicitly

labeled in addition to modes A and B. Unfortunately, the
labeling in the existing literature is not always done in a
consistent manner. Some authors place QA at the bottom-
left and top-right of the diagram, and QB elsewhere, while
others place only one of QA and QB for a given curve. All
permutations remain “correct” owing to the fact that
solutions I and II may be chosen arbitrarily. When discus-
sing a crossing where the parameter Δ is varying with time,
however, it is essential to distinguish not only between
modes A and B, but also solutions I and II.
The question naturally arises as to how slow a crossing

should be in order to be adiabatic. To answer this question,
we turn to the Landau-Zener formula (LZF) [16,17], which
was originally developed to study the transition of molecule
states between two energy levels [17]. It has since been
applied to various kinds of problems in physical chemistry,

particle physics, spin dynamics, photonics and elsewhere
[18–23].
The diagram of Fig. 3 is generically referred to as

“avoided crossing.” By analogy, the minimum energy
gap of the avoided crossing, equal to jCj, is referred to
as “closest tune” in the accelerator field. The two energy
levels, E1 and E2, are equivalent to the normal mode tunes,
QA andQB, since energy is related to frequency through the
Planck constant.
The LZF is an analytical solution of the transition

probability for a nonadiabatic crossing, Pna, expressed as

Pna ¼ exp

�
−2π

jH12j2
ℏjαj

�
; ð14Þ

where ℏ is the reduced Planck constant, jH12j is half the
minimum energy gap, and α is a constant representing the
crossing speed. Here we follow the notation used in [24].
Pna asymptotically approaches zero (no transition) as jαj
decreases.
It was derived by solving the time-dependent

Schrödinger equation for a wave function, linearly combin-
ing two states, ϕ1 and ϕ2, associated to E1 and E2,

ψ ¼ Aϕ1 exp

�
−i

Z
t
E1dt

�
þ Bϕ2 exp

�
−i

Z
t
E2dt

�
:

ð15Þ
This yields a set of second-order differential equations,

Ä − iE12
_Aþ jH12j2A ¼ 0; ð16Þ

B̈þ iE12
_Bþ jH12j2B ¼ 0; ð17Þ

where E12 ¼ E2 − E1, and _A ¼ dA=dt, etc. Replacing E12

by αt and solving Eq. (17) leads to Eq. (14). While for a
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FIG. 3. Normal mode tunes of the original ring one-turn map
around the resonance. The parameters are the same as those in
Fig. 2. In this plot, solution I is used for Δ < 0 and solution II
for Δ > 0.
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wave function like Eq. (15) the physical meaning lies in
E12, by analogy, for beam particles close to a coupling
resonance it is the difference QA −QB that matters rather
than the absolute values of QA and QB. Moreover, Eq. (17)
is identical to Eq. (1.5.15) in [10] including the meaning of
coefficients, where the particle motion is analyzed through
the equations of motion of a charged particle in a magnetic
field. The problem tackled by the LZF is equivalent to our
emittance exchange problem.
Pna corresponds, in our case, to a fraction of the initial

betatron action of each particle that remains after crossing,
and the rest goes to the other plane. For an infinitely slow
crossing, Pna is zero, and thus the initial horizontal
(vertical) action is fully transferred to the final vertical
(horizontal) action. Pna here no longer means probability
that describes the quantum phenomena but it determines the
final action of the betatron motion, which is a continuous
variable. Finally, for a beam that is an ensemble of many
particles, the beam emittances after crossing are obtained as

ϵx ¼ Pnaϵx0 þ ð1 − PnaÞϵy0;
ϵy ¼ ð1 − PnaÞϵx0 þ Pnaϵy0; ð18Þ

with

Pna ¼ exp

�
−π2

jCj2
j _Δj

�
; ð19Þ

where _Δ is the change of Δ per revolution in the original
ring [replacing α of Eq. (14)]. The Planck constant, h¼2πℏ,
is set to one given that we take QA and QB to be equivalent
to E1 and E2. Equation (18) is confirmed through a particle

tracking simulation based on the aforementioned one-turn
maps (Fig. 4).
In our previous work [4], it was shown that S ¼ _Δ

jCj2 was a
scaling factor to describe the quality of emittance exchange.
From numerical tracking, it was found that the emittances
were almost fully exchanged, i.e., adiabatic, when S < 3. In
the present work, we understand that this condition corre-
sponds to Pna close to zero [Pna < expð−π2=3Þ ¼ 0.037].

IV. CONCLUSION

Emittance exchange through linear coupling resonance
crossing is studied. We established a theory of emittance
exchange using the matrix formalism for adiabatic cross-
ings. It was shown in our theory that the emittance
exchange is a consequence of the rotation of the normal
mode axis by approximately π

2
radian. Furthermore, we

have found that the mechanism of emittance exchange is
analogous to the transition dynamics of two-state quantum
systems. Therefore, we can predict transverse emittance
values after nonadiabatic crossing by applying the Landau-
Zener formula with the relevant accelerator parameters. The
theoretical prediction is confirmed by numerical tracking.
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