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Accurate measurements of optics functions, β, α, D, are essential for proper operation of a synchrotron
both for machine protection and for performance. β functions can be obtained from different observables:
phase and amplitude of the transverse betatron oscillations and change of the tune by modulating the
current of quadrupoles (K-modulation). Reconstruction of β function using the betatron phase, in
combination with K-modulation, has been the main measurement approach in the LHC IRs. Nonetheless,
challenges have appeared in the β calculation using these two techniques when aiming for smaller β�, i.e.,
β-values at the interaction point (IP) in the LHC and the HL-LHC. The third β measurement technique,
based on the beam position monitor (BPM) signal amplitude, has not been used as widely in the LHC as the
other methods since it requires accurate BPM gain calibration. This paper presents the development of a
technique based on optics measurements to calibrate accurately LHC IR BPMs, allowing to use of the
amplitude information in the measurement of IR β functions.
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I. INTRODUCTION

Linear optics measurements and corrections are key
elements in the operation of present and future colliders
such as LHC [1–4], its upgrades HL-LHC [5], HE-LHC
[6], or the FCC [7,8]. The requirements of increasing the
luminosity move the LHC into more challenging opera-
tional regimes with lower β�.
In the LHC strong localized magnetic errors have to be

corrected to achieve the design value of the β function at the
interaction point to provide the design luminosity within
the 5% tolerance limits to the experiments: ATLAS [9] and
CMS [10]. Optics corrections are based on the analysis of
turn-by-turn measurements from the beam position mon-
itors (BPMs) [11–14] and K-modulation [15–18].
BPM calibration errors modify measured position by the

calibration factor Ci, where i is the BPM number. This is
analytically described by:

zmeas
i ¼ Ciztruei ; ð1Þ

where ztruei represents the true horizontal or vertical
beam position at the ith BPM and zmeas

i is the reported
measurement.

At LHC, K-modulation allows to obtain the value of the
average β, βK-modulation, at the quadrupoles placed closest to
the IPs. The suitability of this method for future accel-
erators has been studied in HL-LHC, FCC, and
SuperKEKB [15–17,19]. It has been found that the fore-
seen tune stability might not be sufficient for the good
performance of this approach.
The optics measurements around the LHC use the turn-

by-turn frequency spectra obtained from BPM data. On the
one hand, relative phase advances between a reference
BPM and at least two other BPMs allow reconstructing
the values of the β functions at the reference BPM under the
assumption that there are no optics errors between the
concerned BPMs. This method, known as β from phase
(βϕ), was first used in LEP [20] and has been further
developed in LHC, ALBA, and ESRF [21–24]. On the
other hand, β can be also computed directly from the
amplitude of the turn-by-turn spectra. This approach is
known as β from amplitude (βA). Nonetheless, the
reconstruction of the β function using the amplitude is
biased by the calibration error of each BPM. The β from
amplitude approach has been used in the past [20,24–26]
and it is currently implemented as part of the optics,
measurements, and corrections (OMC) software [27].
However, this method has not been as widely used as βϕ

or βK-modulation.
A precise knowledge of BPM calibration factors would

allow us to accurately measure β function using βA

approach where the performance of other approaches is
limited. In low β� runs, the resolution required in the
interaction region (IR) phase advance measurement is
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below the resolution that can be provided by the BPMs
placed in the IR. In those scenarios, the amplitude of the
transverse oscillations recorded at the BPMs closest to the
IP increases as β� decreases, while the phase advance
between neighbor BPMs is very small. βϕ approach is very
sensitive to errors for values of the BPMs phase advance
close to nπ. To obtain the required β accuracy, the BPM
resolution should be ten times smaller than the best
resolution achievable by the LHC BPMs [28]. Therefore,
with the current resolution and reconstruction techniques,
β� obtained using phase advance method in the IRs during
the squeeze provides inaccurate values, which cannot be
used for local corrections [29].
Turn-by-turn BPM data are also used for dispersion

measurements, performed by shifting the frequency of the
radio frequency (rf) systems in a range of �100 Hz for the
LHC. Closed-orbit shift is measured using the zero-line
frequency of the Fourier analysis. Dispersion function is
then obtained by normalizing it by the momentum varia-
tion,Δp=p. BPM calibration factors bias as well dispersion
calculation. In [30], normalized dispersion DN;x ¼ Dxffiffiffiffi

βAx
p is

introduced as a calibration-independent observable since it
is calculated as a ratio between two calibration-proportional
quantities.
This paper introduces two optics-measurement-based

BPM calibration measurement methods based on β-func-
tion and dispersion measurements. The two methods are
based on measuring either the ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffi
βA=βϕ

p
or the ratio

between horizontal normalized dispersion function times

the
ffiffiffiffiffi
βϕx

q
and the dispersion function ðDx=DN;x

ffiffiffiffiffi
βϕx

q
Þ.

Optics-measurement-based BPM calibration factors are
calculated in an optics configuration where the lattice
systematic errors affect as less as possible the βϕ and
dispersion measurements. An optics that is suitable for
the application of this method to the LHC IR BPMs is the
ballistic or alignment optics, characterized by having the
triplets switched off [31]. This optics configuration was
first designed for alignment of the magnets placed in the
triplet area, the Q1, Q2 and Q3 quadrupoles. An extended
version of this optics, designed in 2017 specifically for the
IRs BPM calibration studies, has Q4 quadrupoles also
switched off and the dispersion in the IRs 1 and 5 not
matched to zero [32]. A practical configuration of ballistic
configuration is introduced in Sec. III.
Different types of BPMs are installed in LHC with

different aims. They have been grouped according to the
geometry of the pick-ups in the following categories:
standard, enlarged aperture, and stripline as shown in
Table I [33]. The largest number of BPMs are standard
or cold button BPMs. Enlarged aperture button BPMs are
placed close to the recombination dipoles. Stripline or
directional BPMs, able to measure the beam direction, are
placed in the common areas where both beams circulate in
one vacuum pipe. The calibration analysis has been focused

on the IRs BPMs, since during the annual LHC commis-
sioning [34,35] a systematic difference between the results
obtained using βϕ and βA was observed in these regions as
shown in Fig. 1, where the horizontal (top) and vertical
(bottom) deviations are shown as function of the BPM type.
The average β-beating, hðβA − βϕÞ=βϕi between the two
techniques, illustrates that a systematic lower value is
obtained in the βA with respect to the βϕ in the case of
stripline and enlarged aperture BPMs. The data have been
acquired in four consecutive years by using the injection
optics. The reason for this calibration errors remains
unknown and it has to be addressed via measurements
with beam.
The systematic difference between the two β calculations

is also evident in Fig. 2 where the combined histogram of
the ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffi
βA=βϕ

p
measured for injection, flattop, ballistic

and high-β� optics at the stripline BPMs is shown.
The paper is structured as follows. Section II summarizes

the methods used to measure β function and dispersion in
the LHC, including their limitations and how to obtain
BPM calibration factors. A description of the ballistic
optics together with the calibration factors obtained using
both β function and dispersion are present in Sec. III.

FIG. 1. Top: Average horizontal amplitude β-beating with
respect to βϕ, Bottom: Average vertical amplitude β-beating
with respect to βϕ. The data, acquired for four consecutive years,
refer to the injection optics. The BPMs have been divided in
groups depending on their geometry according to Table I.

TABLE I. Summary of BPM characteristics.

Name Stripline Stripline Enlarged aperture Standard

Geometry Stripline Stripline Button Button

LHC name BPMS BPMSX BPMW BPM
Diameter 61 mm 81 mm 61 mm 49 mm
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Section IV compares the β-function calculated for different
optics configurations with and without recalibrating the
BPMs and compares these results to the results obtained
with the βϕ and the βK-modulation approaches.

II. OPTICS MEASUREMENTS IN LHC:
METHODS AND LIMITATIONS

A. β-function measurements based on K-modulation

The most common method to measure β� in the LHC has
been K-modulation [15,17,18]. K-modulation approach is
based on the analysis of the tune change induced by a
current modulation in the quadrupoles located left and right
to the IP.
Accuracy of this method depends on the power supplies

control and natural tune stability. Accuracy of the β�
measurement for the LHC and high luminosity LHC using
K-modulation has been previously studied in [15]. The
study concludes that accuracy on the tune measurement
of about 10−5 is crucial to control the β� within the
tolerance constraints given by the luminosity. Analysis
of the tune stability [36] performed during the second run
of the LHC shows that the tune jitter ranges between 2 ×
10−5 and 10−4 depending on the optics configuration
analyzed. Those fluctuations exceed the tolerances set by
the LHC experiments.

B. β-function measurements based on turn-by-turn data

LHC turn-by-turn optics measurements are based on the
analysis of AC-dipole driven oscillations which can be
observed in the BPMs [37]. This data is post-processed
using Fourier transformation methods to obtain the ampli-
tude and phase of each spectral line [38]. These values are
later analyzed for the reconstruction of the different optics

parameters. Linear optics studies are specially focused on
the analysis of amplitude and phase corresponding to the
main line of the spectrum, associated to the driven tune. In
this section we focus on the β from amplitude technique, as
its random and systematic errors are not addressed else-
where, contrary to β from phase [21–24]. For the ith BPM,
true amplitude and phase are related to the beam position,
through:

zDi ðnÞ ¼ AD
z;i sinðμDz;i þ 2πQD

z nÞ; ð2Þ

where AD
z;i, μ

D
z;i, Q

D
z , and n are the amplitude, the phase, the

tune of the driven motion, and the turn number, respec-
tively. The subscript z represents a generic plane, x or y.
The amplitude, AD

z;i, can also be expressed in terms of the
driven β function, βDz;i, and a common observable for all
BPMs, the driven action, 2JDz ,

AD
z;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2JDz βDz;i

q
: ð3Þ

To simplify the equations, the subindex z is omitted in
the following. Since measurement of the oscillation ampli-
tude is biased by the individual BPM calibration factors, Ci,
measured amplitude, AD;meas

i , deviates from Eq. (3) as:

AD;meas
i ¼ Ci

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2JDβDi

q
: ð4Þ

The amplitude of the driven transverse excitations,
AD;meas

i , is obtained from the Fourier analysis of the
turn-by-turn data, and is the basis for determining βA.
In order to obtain the value of the action induced by

the ac-dipole, it is necessary to normalize the square of the
amplitude of the transversal excitations, ðAD;meas

i Þ2, by the
βDi function. This value can be obtained in two ways, using
either the measured βϕ;Di or the model βmodel;D

i given by
MADX [39].
From Eq. (4) it is

2JD

N

XN
i¼1

ðCiÞ2 ¼
1

N

XN
i¼1

ðAD;meas
i Þ2
βDi

; ð5Þ

where N is the number of BPMs.
Since largest discrepancies between the βϕ and βA occur

for the stripline BPMs placed close to the IP, and in order to
minimize the impact of the calibration factors, the sum-
mation is restricted to a subset of N0 BPMs placed in the
arcs. Equation (5) can be rewritten as:

2JD

N0
XN0

i¼1

ðCiÞ2 ¼
1

N0
XN0

i¼1

ðAD;meas
i Þ2
βDi

: ð6Þ

In order to simplify the notation, the product of the action
times the average of the calibration factors square on the

FIG. 2. Combined histogram of the ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffi
βA=βϕ

p
in the

stripline BPMs measured in 2017 using different optics configu-
rations: injection, flattop, high-β� and ballistic.
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left hand size will be denoted as calibration-biased action,
given by:

2JDC ¼ ðCÞ22JD ¼ 1

N0
XN0

i¼1

ðAD;meas
i Þ2
βDi

: ð7Þ

Once the calibration biased action is calculated, the
driven β-function at a given BPM, βA;Di , can be computed
by normalizing the amplitude by the driven action

βA;Di ¼ ðAD;meas
i Þ2

ðCÞ22JD
¼ ðAD;meas

i Þ2
2JDC

: ð8Þ

Using Eq. (2), Eq. (8) becomes:

βA;Di ¼ ðCiÞ2βDi
ðCÞ2

ð9Þ

which shows that the βA;Di calculation is affected by a factor

ðCiÞ2=ðCÞ2, i.e, including both the average arc calibration
factors and the individual calibration factor.
It is known [37] that the ac dipole introduces an optics

perturbation. The relationship between the beta function
with and without ac dipole is

βAi ¼ βA;Di

1þ λ2 − 2λ cosð2ϕi⇒ac-dipole − 2πQÞ
1 − λ2

ð10Þ

where λ is related to the separation between the natural tune

(Q) and driven tune (QD), by λ ¼ sin½πðQD−QÞ�
sin½πðQDþQÞÞ�. The term

ϕi⇒AC-dipole correspond to the phase advance between a
given BPM and the ac-dipole. The following section
studies the βAi uncertainty, ΔβAi .

1. Action uncertainty analysis for βA calculation

The action, 2JD;ϕC , can be calculated using a previously
computed β function from phase, βD;ϕi by averaging over
the arc BPMs:

2JD;ϕC ¼ 1

N0
XN0

i¼1

ðAD;meas
i Þ2
βD;ϕ
i

¼ 1

N0
XN0

i¼1

ðCiAD
i Þ2

βD;ϕ
i

: ð11Þ

Equation (11) can be simplified by denoting 2JD;ϕi ¼ ðAD
i Þ2

βD;ϕi

.

In the past, 2JDC was computed using a model value
established using MAD-X -βD;model

i - instead of βD;ϕ
i .

In the Appendix A it is shown that the average of
Δβ=βmodel increases quadratically with the gradient errors
[see Eq. (A2)]. Therefore, under the assumption that βϕ

gives an accurate value of the actual βϕ, it is appropriate
using βϕ rather than βmodel for computing 2JDC .

Calibration factors are a challenging limitation for the βA

method. This section focuses on the calibration factors
associated to the button BPMs since the calibration biased
action is calculated using only this kind of monitors.
Figure 3 shows that calibration factors, estimated using
the ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffi
βA=βϕ

p
, follow in first approximation a Gaussian

distribution with a spread σðCÞ of about 1.5%.
The calibration factors Ci can be splitted in two terms: an

average term C̄ and an individual spread term C̃i as
Ci ¼ C̄þ C̃i. Thus the calibration biased action writes,

2JD;ϕC ¼ 1

N0
XN0

i¼1

ðC̄þ C̃iÞ22JD;ϕi ¼ 2JD;ϕC þf2JD;ϕC ð12Þ

where:

2JD;ϕC ¼ C̄2

N0
XN0

i¼1

2JDi þ 1

N0
XN0

i¼1

2JDi C̃i
2

≈
C̄2

N0
XN0

i¼1

2JDi þ σ2ðCÞ
N0

XN0

i¼1

2JDi

¼ ðC̄2 þ σ2ðCÞÞ 1

N0
XN0

i¼1

2JDi ð13Þ

f2JD;ϕC ¼ 2C̄
N0

XN0

i¼1

2JDi eCi: ð14Þ

2JD;ϕC is affected by the square of the average calibration,
C̄2 and by its associated spread squared, σ2ðCÞ. This
second contribution can be neglected. Therefore:

FIG. 3. Histograms of the ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffi
βA=βϕ

p
—top horizontal plane

and bottom vertical plane—in the standard BPMs measured in
different optics configurations in 2017, with a spread of
about 1.5%.
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σð2JD;ϕC Þ
2JD;ϕ

≈ 2σðCÞ: ð15Þ

The action value is computed averaging over the N0
button BPMs and therefore its associated relative error bar
is given by the standard error of the average:

σð2JD;ϕC Þ
2JD;ϕC

≈
2σðCÞffiffiffiffiffiffiffiffiffiffiffiffiffi
N0 − 1

p ; ð16Þ

with
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N0 − 1

p
≈ 17 and σðCÞ ≈ 1.5%, the action relative

error bar will be approximately a 0.2%.

2. βA uncertainties analysis

Reconstruction of β function using the amplitude of the
transverse oscillations is affected by uncertainties on
different parameters: natural tunes (Qx;y), driven tunes
(QD

x;y), phase advance between the ac-dipole and the ith
BPM, ϕi⇒AC, amplitude fluctuations between BPMs and
the action calculation 2JD;ϕC .
The natural tune uncertainty is given by a combination of

the BBQ [40] system accuracy and by its stability as a
function of time. This stability has been analyzed for
several different optics in [36] concluding that in average
the natural shift observed during the measurements fluc-
tuates in a range between 2 × 10−5 and 10−4. The analytic
calculation of the tune error propagation in the β function
can be found in Appendix B. In the ballistic optics case,
where the fractional part of the tunes are Qx ¼ 0.28,
QD

x ¼ 0.268, Qy ¼ 0.31, and QD
y ¼ 0.325, the relative

β-uncertainty is given by:

∂βAx;i
∂Qx

≈ βA;Dx;i × 9.4; ð17Þ

∂βAy;i
∂Qy

≈ βA;Dy;i × 9.1 ð18Þ

Equations (17) and (18) allow to estimate the direct
effect of the tune uncertainty in the βA-error (σβA). It can be
seen that the tune error σQx;y

error gets amplified approx-

imately 9 times in the βA-calculation.
On the other hand, the phase advance and the amplitude

uncertainty are estimated during the turn-by-turn measure-
ment analysis, by using single-value-decomposition (SVD)
technique. The error introduced by the ϕ-advance and the
amplitude error in the β-function calculation is approx-
imately 0.05% for a peak to peak amplitude excitation of
approximately 2 mm recorded during 6600 turns.
The error introduced by the action calculation 2JD;ϕC will

propagate to the βA:

1

βAi

∂βAi
∂2JD;ϕC

¼ σð2JD;ϕC Þ
2JD;ϕC

: ð19Þ

The length of the external excitation limits the number of
turns available for the Fourier analysis. Since the ac-dipole
cannot produce longer excitations than 6600 turns, the
amount of data is increased by exciting the beam several
times, Nacq, and by combining the different acquisitions to
obtain a single β-value per BPM. In case of the βA method,
the final βAi value at a given BPM is calculated as an
average over the number of measurements acquired, Nacq:

hβAi i ¼
1

Nacq

XNacq

j¼1

βAi;j: ð20Þ

In this case, the error introduced by the machine
fluctuation is given by the standard deviation of the
acquisitions βAi

σðβAi Þ ¼
1

Nacq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNacq

j¼1

ðβAi;j − hβAi iÞ2
vuut : ð21Þ

The total βA-error, ΔβAi , will be therefore given by the
combination of three sources of errors:

ðΔβAi Þ2 ¼
� ∂βAi
∂2JD;ϕC

σð2JD;ϕC Þ
�

2

þ
�∂βAi
∂Q σðQÞ

�
2

þσðβAi Þ2

ð22Þ

This error-bar fluctuates between a 0.25% and a 0.4%
depending on the optics configuration implemented in the
accelerator.

3. Optics-based calibration factors

Optics-based calibration factors can be computed as the
ratio between β from amplitude, βAi and β from phase, βϕi ,

Cβ;i ¼
ffiffiffiffiffiffi
βAi
βϕi

s
¼ Ciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCi;ARCSÞ2
q : ð23Þ

C. Dispersion measurements

Another optics function that could be used for optics-
based-BPM-calibration is the dispersion. The dispersion is
measured by taking the average orbit of the turn-by-turn
data at each BPM position. Changing the rf frequency,
results in a change of the closed orbit due to dispersion,
ΔCOx;i:
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ΔCOx;i ¼
Δp
p

Dx;i: ð24Þ

Dispersion is then calculated at every BPM by a
polynomial fit of the measured closed orbit over various
momentum values. On the other hand, the momentum
deviation Δp

p is computed by using the dispersion predicted
by the MADX model and the closed orbit which is affected
by the calibration factor Ci as:

Δp
p

meas ¼ Dmodel
x;i CiΔCOx;i

ðDmodel
x;i Þ2

: ð25Þ

Closed orbit is the only direct measurement in Eq. (25).
Fluctuations in this quantity can be analytically described
as ΔCOx;i ¼ Δp=pðDmodel þ ΔDÞ, where ΔD represents
variations the ideal model. Therefore the term, Dmodel

x;i ΔD
evaluates the impact of the dispersion deviation with respect
to the model in the momentum calculation. This calculation
is based on the assumption that the average of the product of
the dispersion predicted by theMADXmodel,Dmodel

x , times
the dispersion-beating ΔD is 0, independently of the
magnetic errors presented in the machine. MADX simu-
lations, including different quadrupolar errors, have been
performed using ballistic configuration in order to validate
this assumption, obtaining an average value that fluctuates
around zero, as shown in Fig. 4.
Closed-orbit measurement is also affected by the indi-

vidual BPM calibration factors, biasing the dispersion
calculation:

Dmeas
x;i ¼ CiΔCOx;i

Δp=pmeas ≈
CiΔCOx;i

C̄Δp=p
: ð26Þ

In [30] normalized dispersion is introduced as a cali-
bration-independent observable, defined as the ratio:

DN;x ¼
Dxffiffiffiffiffi
βx

p ð27Þ

The normalized dispersion value can be computed using the
weighted arithmetic mean of the ratio COmeas

x;i =Ameas
x;i over

the number of acquisitions using the relative momentum
deviation Δp=p as individual weights.

1. Dispersion-based calibration factors

Dispersion-based calibration factors can be computed
as the ratio between dispersion, Dmeas

x;i , and normalized
dispersion, Dmeas

N;x;i,

CD;x;i ¼
Dmeas

x;i

Dmeas
N;x;i

ffiffiffiffiffi
βϕi

q ¼ Cx;i

Cx
: ð28Þ

III. BALLISTIC OPTICS

Ballistic optics, the optics used for measuring the IR
BPM calibration factors, defined by Eqs. (23) and (28) is
described in this section. In this special optics configura-
tion, magnets located in IR1 and IR5 common to both
beams are switched off. This set of magnets, denoted as
triplet are in charge of the beam final focusing adjustments.
Switching off the focusing system presents some chal-
lenges for the machine operation that have to be taken into
account. The main limitation comes from the large drift
generated in the segment between the quadrupoles, leading
to large values of the β function in IR1 and IR5 for Beam 1
and 2.
Additionally, a specific preparation is required before the

start of the optics measurements. A process called degaus-
sing is normally used to minimize the remanent magnetic
field in the triplet. This procedure was applied to the triplet
magnets at the beginning of the measurements to reduce the
remaining field [41].
Figure 5 shows the quadrupolar strength of 2016 (top)

and 2017 (bottom) ballistic optics. Magnets placed to the
left of the dotted line in Fig. 5 are switched off, i.e., the
triplet (Q1, Q2, and Q3) in 2016 and 2017 and additionally
the Q4 only in 2017. By switching off the quadrupole Q4,
the drift region is extended and so, the number of calibrated

FIG. 4. Average dispersion-beating times dispersion model as a
function of the rms β-beating.

FIG. 5. Quadrupolar strength in the IR1 in 2016 (top) and in
2017 (bottom). The IR5 is equivalent.
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BPMs. The extra BPMs will be useful for the future
measurements in HL-LHC as they are placed close to
the crab cavities, which also require good orbit and optics
control. In the latest configuration, specifically designed for
optics-based-calibration calculations, the value of the
dispersion was not matched to zero in IR1 and IR5, and
therefore it can be used as an alternative method for
computing the BPM optics-based calibration factors.
Figures 6 and 7 show the designed β function in

horizontal and in vertical plane as well as the dispersion
in the horizontal plane used in 2016 (top) and 2017
(bottom) in IR1 and IR5 for Beam 1 and Beam 2.
Ballistic optics measurements have been performed in

three consecutive years: 2015, 2016, 2017. The optics
configuration was not the same for all the years. In 2015,
due to technical issues, measurements were only performed
at injection energy (450 GeV) [41]. Thanks to the prom-
ising results obtained in 2015, optics measurements were
repeated in 2016 using the same ballistic configuration, this
time at flattop energy (6.5 TeV).
The main reason for measuring the BPM calibration

factors in consecutive years was to evaluate the improve-
ments performed in the BPMs during the yearly shutdown
and to have the most recent value of the calibration factors
commissioning. Several improvements were performed in
the BPM electronics regarding minor software and several
hardware problems during the extended end of year stop
(2016-2017) [42].
Studies presented in this article are focused on the

calibration factors measured at high-energy in 2016 and
2017 and their application to several different optics
measurements during 2017 and 2018.

A. Ballistic optics corrections

During normal optics measurement procedure, β func-
tion is measured several times for both beams. First, to

compute local or global corrections and second, to validate
the effectiveness of the corrections. Local optics correc-
tions, based on the analysis of the phase advance propa-
gation in the IR [12], are important to reduce β-beating in
the IR in order to have the most accurate values of βϕ and
therefore, accurate values of the calibration factors. If a
large deviation is observed in the phase with respect to the
model, i.e., phase-beating, the strength of the IR quadru-
poles (in this case Q5, Q6, and Q7) are modified to
compensate this phase advance deviation. In 2017, after
the first optics measurements, local corrections were
implemented in the machine by changing the strength of
the quadrupoles Q5 and Q6 in the interaction region 1 with
the main aim to decrease local errors of the IR1. Figures 8
and 9 show the phase advance measured in the IR1 before
(blue) and after the corrections (orange) for Beam 1 and
Beam 2, respectively.
Table II summarizes the local corrections performed in

IR1. Their effect has been summarized in Tables II and III.

FIG. 6. Comparison of the horizontal model β, vertical model β
function and dispersion for the IR5: top 2016 and bottom 2017
(Beam 1).

FIG. 7. Comparison of the horizontal model β, vertical model β
function and dispersion for the IR5: top 2016 and bottom 2017
(Beam 2).

FIG. 8. Comparison of the phase (Δϕ) in IR1 measured in 2017
for Beam 1: Horizontal plane (top) and vertical plane (bottom).
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RMS β-beating in the interaction region was decreased in
IR1 in both beams while β-beating in the arcs remained
similar.
During the last set of measurements performed in 2017,

the rms β-beating in the arcs was kept below 5% for both
planes and beams.

B. Ballistic optics measurements

A comparison of the horizontal and vertical β function
obtained using βϕ and βA approaches for IR1 and IR5 is
shown in Figs. 10 and 11, respectively. A schematic of the
IR lattice is placed in the top of both plots while
measurements performed in 2016 and 2017 are shown in
the top and bottom figures respectively. These comparisons
are focused on the IR area in between the two Q4 (left and

right), where the difference between the two β approaches
is more significant.
The green line plotted in Figs. 10 and 11 shows the

parabolic fit to βϕ measurements in the IR 1 and 5
respectively. The parabolic behavior of the β function
could be affected by the b2 components due to magnetic
imperfections of the MBXW dipoles. These errors have
been simulated using the magnetic measurements via
WISE [43], obtaining a deviation of a 0.005%.
As can be seen in Figs. 10 and 11 the values given by the

βA approach are systematically lower than those given by
βϕ. The discrepancy between the two methods is attributed
to a calibration error of the BPMs. The results for Beam 2
show the same behavior.
Figure 12 shows the measurement of the dispersion

function in IR1 in 2017 using calibration-dependent
approach (Dx) and the calibration-independent method

FIG. 9. Comparison of the phase (Δϕ) in IR1 measured in 2017
for Beam 2: Horizontal plane (top) and vertical plane (bottom).

TABLE II. Local corrections implemented in IR1.

Circuit
Δ k

(10−5 m−2)
k nominal
(10−3 m−2)

Correction
(%)

kq5.l1b1 −2.3 −2.97 0.77
kq5.l1b2 3.4 3.8 0.90
kq5.r1b1 3.1 3.1 1.0
kq5.r1b2 −2.5 −3.6 0.70
kq6.l1b1 2.0 5.8 0.34
kq6.r1b1 −3.4 −5.7 0.60
kq6.r1b2 3.5 5.9 0.60

TABLE III. Rms β-beating before (b. corr.) and after (a. corr.)
local corrections (2017).

Beam 1 Beam 2

Horizontal Vertical Horizontal Vertical

rms Δβ
β (%)

b. corr. 4.1 4.3 5.1 3.9
a. corr. 4.3 3.5 4.8 3.5

FIG. 10. Parabolic fit of βϕ measured in 2016 (top) and 2017
(bottom) in horizontal plane in IR1 Beam 1.

FIG. 11. Parabolic fit of βϕ measured in 2016 (top) and 2017
(bottom) in horizontal plane in IR5 Beam 1.
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(DN;x

ffiffiffiffiffi
βϕ

p
). (Red dots show the dispersion measurement

biased by the calibration factors Eq. (26), while blue dots
show the calculation of the dispersion function based on the
normalized dispersion [Eq. (27)].) Dispersion functions
have only been used for computing the calibration factors
in Beam 1 since the dispersion function in Beam 2 is very
small in IR1 and IR5. Values of dispersion close to 0 are
currently measured with an associated error that fluctuates
between 10% and 40%.
Dispersion function in a drift depends linearly upon the

longitudinal position. The results of a linear fit are
illustrated in Figs. 12 and 13 corresponding to IR1 and
IR5, respectively.

The error bars of the dispersion measurements are
dominated by the statistical errors.

C. Calibration factors 2016 vs 2017

A comparison between the calibration factors calculated
in 2016 and 2017 is shown in Figs. 14 and 15. It should be
kept in mind that improvements were performed in the
BPMs software and hardware between the measurements.
Additionally, an histogram of the calibration factors and
their uncertainties for both beams is shown Figs. 16 and 17.

D. Calibration factors 2017: β and dispersion

Figure 18 compares the horizontal calibrations factors
obtained using the two methods previously described. Each
point represents the calibration factor measured at a given

FIG. 12. Dispersion calculated in 2017 using calibration-
dependent vs calibration-independent approach (IR1, Beam 1).
Blue line represents the linear fit to the measured dispersion using
calibration independent, Dx.

FIG. 13. Dispersion calculated in 2017 using calibration-
dependent vs calibration-independent approach (IR5, Beam 1).
Blue line represents the linear fit to the measured dispersion using
calibration independent, Dx.

FIG. 14. Comparison of calibration factors measured at 6.5 TeV
in 2016 and 2017 (IR 1, Beam 1).

FIG. 15. Comparison of calibration factors measured at 6.5 TeV
in 2016 and 2017 (IR 5, Beam 1) for horizontal (top) and vertical
(bottom) planes.
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BPM using the β method and the dispersion approaches. A
linear fit of the calibration factors Cβx as a function of CDx

,
shows that the values are compatible. CD;x accuracy fluc-
tuates between 2% and 10% for both planes in Beam 1while
the accuracy of the calibration factors from amplitude, Cβ;x,
fluctuates between 0.3% and 1%.

E. Calibration factors 2017: Ballistic and
averaging optics

Calibration factors have also been computed using the
ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffi
βA=βϕ

p
for different optics and then averaging over

them. Their associated error bar have been computed as the
standard deviation of the calibration factors over the optics
measured. This study aims to justify the development of an

optics configuration dedicated exclusively to the calibration
factors calculation. It can be observed in Figs. 19 and 20
that the error bar obtained using a dedicated optics for the
computation of the calibration factors is on average three
times smaller than averaging the calibration factors over a
set of optics.

IV. APPLICATIONS OF THE CALIBRATION
FACTORS TO OTHER OPTICS

Well calibrated BPMs could allow obtaining accurate
β� measurements and, in general, the β function in the

FIG. 16. Histogram of the calibration factor for Beam 1 and
Beam 2 in 2016 and 2017 for horizontal and vertical planes.

FIG. 17. Histogram of the calibration factor uncertainty for
Beam 1 and Beam 2 in 2016 and 2017 for horizontal (top) and
vertical (bottom) planes.

FIG. 18. Calibration factors using β from amplitude vs cali-
bration factors obtained using dispersion (Beam 1). The green
line represent a first order polynomial fit of the data set- CDx

,Cβx ,
with a slope ν1 ¼ 0.998� 0.02.

FIG. 19. Average calibration factor measured for different
optics vs calibration factors measured using ballistic optics
(horizontal and vertical planes, Beam 1). The green line represent
a first order polynomial fit of the dataset—calibration
factors ballistic, calibration factors average—with a slope
μ1 ¼ 1.002� 0.002.
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interaction regions directly from the amplitude of the
Fourier spectra in the scenarios where the other methods
present limitations.
This section summarizes a comparison of the values

obtained using the β from amplitude method before and
after applying the calibration factors. Different optics
configurations that have been used to validate the recali-
bration process are listed below, grouped according to the
reference value, βϕ or βK-modulation: (i) Optics with large β�

(β� > 1 m) where βϕ can be used as a reference value.

These optics are: flattop, injection and high-β� run.
Figures 21 and 22 show a comparison of the βϕ and βA-
beating measured at the stripline BPMs placed in the IRs 1
and 5, using those optics, before and after applying the
calibration factors. The average ðβA − βϕÞ=βϕ and its
associated spread are shown in Table IV. From both
Figs. 21 and 22 and Table IV it can be observed that, on
average, the calibration errors have been compensated
when recalibrating the instrumentation. The spread asso-
ciated with the ratio ðβA − βϕÞ=βϕ is given by the combi-
nation of error bar associated to the βϕ and βA. (ii) Low β�

runs where βK−modulation can be used as a reference value.
Several runs of low β� have been performed in the last two
years: β� ¼ 30 cm and β� ¼ 40 cm in 2017 and β� ¼
25 cm and β� ¼ 30 cm in 2018 [44,45]. Figures 23 and 24
show a comparison of the β-beating of the βK-modulation

and βA measured at the stripline BPMs placed in the
IRs 1 and 5 before and after compensated the calibration
factors. Average ðβA − βK-modulationÞ=βK-modulation are shown
Table V and its associated spread. A shift in the average β-
beating has also been observed after compensating the
calibration factors. Calibration factors have been

FIG. 21. Histogram of β-beating before and after calibration,
using βϕ as reference in horizontal and vertical planes measured
in several optics: Injection and flattop during 2017 and 2018
(Beam 1, horizontal and vertical planes, IR1 and IR5).

FIG. 22. Histogram of β-beating before and after calibration,
using βϕ as reference in horizontal and vertical planes measured
in several optics: Injection and flattop during 2017 and 2018
(Beam 2, horizontal and vertical planes, IR1 and IR5).

FIG. 20. Average calibration factor measured for different
optics vs calibration factors measured using ballistic optics
(horizontal and vertical planes, Beam 2). The green line shows
the fit of the data set—calibration factors ballistic, calibration
factors average—to a first-degree polynomial fit with slope
μ2 ¼ 1.012� 0.002.

TABLE IV. Average and standard deviation of the distributions
ðβA − βϕÞ=βϕ before and after applying the calibration factors.

Not calibrated Calibrated

Beam 1 Beam 2 Beam 1 Beam 2

ðβA − βϕÞ=βϕ (%) −6.9 −7.1 −0.2 −1.8
σðβA − βϕÞ=βϕ (%) 4.0 3.1 2.9 2.9
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successfully implemented in Beam 1 where the average
β-beating between the two approaches is −0.9%.
Nonetheless, a remaining −4.7% is observed in Beam 2
and will require further investigation.

V. CONCLUSIONS

BPM calibration factors have been computed for the first
time in LHC using measured optics functions. This method,
denoted as optics-measurement-based BPM calibration, is
based on the analysis of two different optics functions: β-
function and dispersion. A dedicated optics configuration,
known as ballistic optics, has been developed for these
studies. A drift space is generated in the vicinity of the IP,
allowing us to measure the β-function using the phase
approach with a precision of about 0.5%. The achieved
precision on β-function has allowed computing the BPM
calibration factors by comparing βA to βϕ with an average
uncertainty in the subpercent level. The promising results
obtained in 2016, in terms of BPM accuracy and uncer-
tainty achieved, motivated the further development of the
ballistic configuration. In 2017, the drift space was
extended by switching off the Q4 quadrupoles and, at
the same time, by not matching the dispersion function to
zero in IR1 and IR5. These two developments allowed us to
increase the range of BPMs being calibrated and to
incorporate dispersion function in the optics-measure-
ment-based calibration approach.
The comparison between calibration factors measured

using ballistic and the ones obtained averaging different
optics, proves that the βϕ precision is the main limitation in
the calibration-factor calculation. Nonetheless, currently
the possible dependency of the calibration factors over time
is not included in the ballistic error bar. This dependency
will be addressed in LHC Run 3 and in view of HL-LHC.
Several optics configurations have been analyzed in

order to estimate the impact of BPM recalibration on the
βA approach. Those optics are characterized by the β-
function accuracy in the stripline BPMs placed in IR1 and
IR5; measured either using βϕ or βK-modulation approach.
It has been observed that the β-beating with respect
to the phase, ðβA − βϕÞ=βA, is reduced on average a 6%
after the BPM recalibration. If βK-modulation is used as
a reference value, the measured β-beating ðβA −
βK-modulationÞ=βK-modulation decreases on average a 6% for
Beam 1, and a 3% for Beam 2.
The large error-bars associated with the dispersion

measurements—in contrast to the subpercent error bars
associated to the β-function—propagate directly to the
calibration factor calculations affecting the accuracy of the
measurements. The agreement between the calibration
factors obtained using β-function has been used as a
validation for the optics-measurement-based calibration
approach. A more in-depth study of the dispersion error
bar should be further performed before recalibrating the
BPMs using this technique.
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APPENDIX A: β-BEATING EVOLUTION IN A
LATTICE WITH ERRORS

The perturbed β function in a ring is expressed
as a function of the amplitude and phase of the
generating driving term f2000 and the unperturbed βmodel
function, as

β ¼ βmodelð1þ 32jf2000j2 þ 8jf2000j sin q2000Þ; ðA1Þ

where jf2000j and q2000 are the amplitude and phase of the
generating function term. The relationship between f2000
and gradient errors δKw is given by [46],

f2000;j ¼
P

W
w βmodel

x;w δKwe
2iΔϕmodel

x;wj

8ð1 − e4πiQxÞ : ðA2Þ

With many small random errors jf2000j and sin q2000
would tend to be uncorrelated giving a ring-average
β-beating of �

Δβi
βmodel
i

�
¼ 32hjf2000j2i: ðA3Þ

The standard deviation, σ, of the β-beating around the ring
is given by

σ

�
Δβϕi
βmodel

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C

Z
C

0

64jf2000j2sin2q2000ds
s

: ðA4Þ

Using that sin2 x ¼ ð1 − cos 2xÞ=2 and, again, the
assumption that jf2000j and q2000 are uncorrelated, the
standard deviation takes the form

σ

�
Δβϕi
βmodel
i

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32hjf2000j2i

q
: ðA5Þ

From Eqs. (A3) and (A5) the following identity is
obtained

�
Δβϕi
βmodel
i

�
¼ σ2

�
Δβϕi
βmodel
i

�
; ðA6Þ

which implies that the ring-average β function increases
with the square of the standard deviation of the β-beating,

also known as rms β-beating. This seems to be a universal
property of all lattices since no assumptions on the lattice is
made other than random error sources. The relation
between these two quantities, average β-beating and rms
β-beating have been studied in MADX simulations.
Figure 25 shows the LHC ballistic simulations including
the prediction from Eq. (A6).

APPENDIX B: TUNE UNCERTAINTY
PROPAGATION IN βA-CALCULATION

The effect of the natural and driven tune uncertainty in
the ac-dipole compensation have been analytically studied.
Performing error propagation in Eq. (10) Assuming that the
natural and the driven tune uncertainties are equal, it is
possible to obtain the error introduced in the βi function:
Assuming that the uncertainty of the natural tune σQ and
the driven tune σQd

are equivalent and equal to σQ
Lambda factor, used in the compensation of the ac-

dipole effect is given by:

λ ¼ sin½πðQd − QÞ�
sin½πðQd þ QÞÞ� ðB1Þ

Δλ2 ¼
� ∂λ
∂Qd

σðQdÞ
�

2

þ
� ∂λ
∂Q σðQÞ

�
2

≈
� ∂λ
∂Q σðQÞ

�
2

:

ðB2Þ

Assuming σðQÞ ≈ σðQdÞ and using the parity properties
of the sinusoidal functions, the two terms of Eq. (B1) are
equivalent. Applying trigonometrical identities, the numer-
ator of Eq. (B1) can be simplified,

FIG. 25. Beta-beating average as a function of the beta-beating
rms considering only BPMs placed in the ARCs.
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Δλ2 ¼ 2

�
π cos½πðQd − QÞ� sin½πðQd þ QÞ� − π cos½πðQd þ QÞ� sin½πðQd − QÞ�

sin2πðQd þQÞ
�

2

σ2Q

¼ 2

�
πðcos πQd cos πQþ sin πQd sin πQÞ × ðsin πQd cos πQþ cos πQd sin πQÞ

sin2πðQd þQÞ
�

2

σ2Q

þ 2

�
πðsin πQd sin πQ − cos πQd cos πQÞ × ðsin πQ cos πQd − sin πQd cos πQdÞ

sin2πðQd þQÞ
�

2

σ2Q

¼ 2π2
�
2 cos πQd sin πQdðcos2πQþ sin2πQÞ

sin2πðQd þQÞ
�

2

σ2Q ¼ 2π2
�
2 cos πQd sin πQd

sin2πðQd þQÞ
�

2

σ2Q

The maximum uncertainty introduced in the β calcu-
lation due to previously computed error in λ calculation is
given by:

∂βi
∂λ ¼ ðAD;meas

i Þ2
2JDC

2

ð1 − λÞ2 ðB3Þ
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