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We continue the study of single-particle dynamics in a more realistic cell, namely, the double-bend
achromat with three families of quadrupoles. The cell is parametrized with the optical parameters including
the phase advances and the horizontal beta functions at its entry and center. At zero chromaticity, we find that
the landscape of the dynamic aperture in the tune plane can be captured by a simple formula constructed from
the effectiveHamiltonian of fourth order. Furthermore, the optimal dynamic aperture can be found by simply
minimizing the third-order driving terms with equal weight in the effective Hamiltonian.
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I. INTRODUCTION

Four decades ago, modern and dedicated synchrotron
light sources based on electron storage rings were initiated
by Chasman, Green, and Rowe [1], proposing a double
focusing achromat lattice. Essentially, each periodical
structure consists of two double-bend achromat (DBA)
cells with a wiggler in the middle of the straight. The DBA
cell was naturally extended to a triple-bend achromat [2,3].
Theoretically, an analysis of the minimum emittance
achievable in the achromatic condition was carried out
by Sommer [4], who laid a solid foundation for further
development of the third-generation light sources [5] that
have become the most efficient, versatile, and productive
facilities worldwide for the research of materials, life,
environmental, and geochemistry sciences.
Despite the tremendous success, the understanding of

these lattices is largely limited to the numerical solutions
and simulations found by running computer programs such
as MAD [6]. The optics design requires hand-on experiences
and sometimes good intuition. These experiences, accu-
mulated over the decades, are not adequately documented
partially because of a lack of systematic and theoretical
approaches. Good progress was made to classify the linear
and stable optics with global scanning of the quadrupole
settings [7]. The scheme is clearly important for existing
facilities but not quite complete for the design of a new
lattice, since properly choosing distances between the
quadrupoles plays an equally important role in the design
of linear optics.

For nonlinear dynamics, a major advance was the
successful introduction of the frequency map analysis [8]
to particle accelerators [9]. More importantly, it reveals
accurately the relevant resonances, often very high-order
ones, in the particle motion. As a result, it becomes a
standard tool to characterize [10] the third-generation light
sources. One of the main characteristics of the lattice is the
dynamic aperture. Often, retaining an adequate acceptance
while reducing the emittance is a critical design issue.
A breakthrough was made by introducing harmonic sextu-
poles [11] in the straights to minimize the resonance driving
terms [12] and, therefore, to increase the dynamic aperture.
In computation, dedicated codes BETA [13] and OPA [14]

were developed to minimize the third- and fourth-order
driving terms. These codes have been successfully used to
optimize the design of many light sources [15–17]. More
recently, utilizing enormous computing power, the multi-
objective genetic algorithm [18,19] was introduced and
enhanced by machine learning [20] to directly optimize the
dynamic aperture. Despite these practical improvements,
the relationship between the driving terms and dynamic
aperture is still elusive. The optimization remains largely an
art. Most of the time, we do not adequately understand the
optimal solution found by computers.
In this paper, we will extend our work of the para-

metrized alternating focusing and defocusing (FODO) [21]
and theoretical minimum emittance (TME) [22] cells to a
more practical and realistic DBA cell. Again, for simplicity,
we will set the chromaticity to zero with two families of
sextupoles in the dispersive region. To avoid repetition, our
emphasis of nonlinear dynamics will be placed on more
practical situations when the betatron tunes are placed
sufficiently away from the low-order resonances, and yet
these resonances play an important role. Moreover, we will
study both analytically and numerically the optimization of
the dynamic aperture. Since there is a dispersion-free
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region, we will naturally use harmonic sextupoles for the
optimization.

II. LINEAR OPTICS

A. Half cell

We now consider half of a cell with reflection symmetry
as shown in Fig. 1, where the position s1 is the starting
point and s2 is the reflecting point. Here we represent the
doublet with their geometrical parameters p, q, and f in
Eq. (1) in Ref. [22], where w is the focus length of the
quadrupole at the entry and H and L are the distances
between the doublet to s1 and s2, respectively.
On one hand, using the matrix in Eq. (2) in Ref. [22] for

the doublet and the matrices of a drift and thin quadrupole,
we compute the transfer matrix from s1 to s2 and find

Ms1→s2 ¼
 ðL−qÞðHþp−wÞ−f2

fw f − ðHþpÞðL−qÞ
f

Hþp−w
fw − Hþp

f

!
: ð1Þ

On the other, the matrix can be represented by [23]

Ms1→s2 ¼

0
B@

ffiffiffiffi
β2
β1

q
cos πν

ffiffiffiffiffiffiffiffiffi
β1β2

p
sin πν

− 1ffiffiffiffiffiffiffi
β1β2

p sin πν
ffiffiffiffi
β1
β2

q
cos πν

1
CA; ð2Þ

where β1 and β2 are the beta functions [24] at the positions
s1 and s2, respectively, and ν the betatron tune of the cell.
Here we have used the property of the reflection points,
namely, α1 ¼ α2 ¼ 0. Comparing it with the matrix in
Eq. (1), we obtain

p ¼ ðw −HÞβ1 cos πνþ wH sin πν
β1 cos πν − w sin πν

;

q ¼ ðLβ1 − wβ2Þ cos πν − ðwLþ β1β2Þ sin πν
β1 cos πν − w sin πν

;

f ¼ w
ffiffiffiffiffiffiffiffiffi
β1β2

p
w sin πν − β1 cos πν

: ð3Þ

The formulas in this section are equally applicable to
either the horizontal or vertical plane. In this paper, we
choose the horizontal lattice functions to fix physical
parameters such as the quadrupole strengths, since one
of our main concerns is the natural emittance, which is
determined entirely by the parameters of the dipole and the
horizontal lattice functions as we will show later.

B. Full cell

We would like to apply the parametrization of the half
cell to a periodic DBA cell that contains five quadrupoles as
shown in Fig. 2. L is half of the straight section. The cell is
chosen because it contains the most essential ingredients in
the common DBA cells and yet is analytically solvable.
A focusing quadrupole and a chromatic sextupole are
lumped together as a thin multipole at the entry and the
exit, while another chromatic sextupole is placed at the
end of a sector-bending dipole in the dispersive region.
Here κf and κd are integrated strengths of the focusing
and defocusing sextupoles, respectively, and ff and fd the
focal lengths of the focusing and defocusing quadrupoles,
respectively. Also, ϕ and J are the bending angle and length
of the dipole, respectively.
Given the geometrical parameters in Eq. (3), the focus

lengths of the quadrupoles and separation distance of the
doublet can be calculated. Substituting Eq. (3) into Eq. (4)
in Ref. [22], we obtain

ff ¼ wLβ1 −HLβ1 þ wHβ2 þ ðwHLþHβ1β2 − wβ1β2Þ tan πν
ðw −HÞβ1 − w

ffiffiffiffiffiffiffiffiffi
β1β2

p
sec πνþ wH tan πν

;

fd ¼
ðwLβ1 −HLβ1 þ wHβ2Þ cos πνþ ðwHLþHβ1β2 − wβ1β2Þ sin πν

w
ffiffiffiffiffiffiffiffiffi
β1β2

p þ ðLβ1 − wβ2Þ cos πν − ðwLþ β1β2Þ sin πν
;

g ¼ ðHLβ1 − wLβ1 − wHβ2Þ cos πν − ðwHLþHβ1β2 − wβ1β2Þ sin πν
w
ffiffiffiffiffiffiffiffiffi
β1β2

p ; ð4Þ

where we have made a substitution of f1 ¼ fd and f2 ¼ ff.

FIG. 1. A schematic layout of half of a cell with reflection
symmetry.
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C. Achromat

Now, we would like to analyze the dispersive region near
the end of the DBA cell as shown in Fig. 3. We start at the
entry of the bending magnet with zeros for both the
horizontal dispersion η0 ¼ 0 and its slope η00 ¼ 0.
Propagating to the exit, using the maps of Eqs. (2.5) and
(2.6) in Ref. [25], we have

η1 ¼
�
K þ J

2

�
ϕ; η01 ¼ −

ðJ þ 2K − 2wÞϕ
2w

: ð5Þ

The periodic condition of the cell requires η01 ¼ 0. It can be
satisfied by setting the focal length of the quadrupole to

w ¼ K þ J
2
: ð6Þ

Basically, the focal length of the quadrupole in the middle
of the dispersive region is not a free parameter. It should be
equal to the distance to the center of the dipole from the
quadrupole.
For the lattice functions, we propagate them backward

from the exit with the horizontal beta function β1 and
α1 ¼ 0 and find at the entry of the dipole

β0 ¼
ðJ þ KÞ2

β1
þ ðJ þ K − wÞ2β1

w2
;

α0 ¼ −
β1
w

þ ðJ þ KÞ
�
1

β1
þ β1
w2

�
: ð7Þ

D. Emittance

With α0 and β0, we evaluate the radiation integrals [26]
and derive the form factor

F ¼ 8þ 57K̄ þ 180K̄3 þ 80K̄4 þ 2ð76K̄2 þ β̄21Þ
60ð1þ 2K̄Þ2β̄1

; ð8Þ

which is defined by the natural emittance ϵx ¼ CqFγ2ϕ3,
where Cq ¼ 3.8319 × 10−13 m and γ is the Lorentz factor.
Here we have used w in Eq. (6) and defined K̄ ¼ K=J and
β̄1 ¼ β1=J, using a “bar” to note the relative lengths to the
dipole length. A contour plot of the form factor is shown in
Fig. 4. Clearly, the blue area can be a good choice of the
low-emittance lattices.

FIG. 2. A periodic double-bend achromat cell with dipole, quadrupole, and sextupole magnets.

FIG. 3. Half of the dispersive region in the DBA cell.

1.8

2.
2.

3.

4.

6 8 10 12 14 16 18 20

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1

K

4 15 F

FIG. 4. The form factor of emittance in Eq. (8) as a function of
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Minimizing F with respect to β̄1, we find the optimum

β̄1 ¼
ð1þ 2K̄Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ 25K̄ þ 20K̄2

p
ffiffiffi
2

p ; ð9Þ

with which the form is reduced to

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ 25K̄ þ 20K̄2

p

15
ffiffiffi
2

p ð1þ 2K̄Þ : ð10Þ

It reaches its minimum FðsÞ
min ¼ 1=ð3 ffiffiffiffiffi

10
p Þ, as the limit of K̄

approaching infinity. Here we use the superscript “s” to
indicate that it is valid only for the case of a single
quadrupole in the dispersion region. Comparing it to the

well-known minimum [4] Fmin ¼ 1=ð4 ffiffiffiffiffi
15

p Þ in the general
case, we have

FðsÞ
min

Fmin
¼ 2

ffiffiffi
2

3

r
: ð11Þ

Note that it numerically agrees with the previously known
value [27].

E. Stability

By setting the quadrupoles in the doublet according to
the horizontal betatron tune in Eq. (4) and the other
quadrupole in the dispersive region with Eq. (6), we ensure
stability in the horizontal plane. In the vertical plane, these
quadrupoles alter the signs of the focus lengths. Using this
property, we find that the vertical tune is given by

cos 2πνy ≔ 1 − f2w2H2Lþ w3HLþ 2H2Lβ21 − 2wHLβ21 þ 7w2Hβ1β2

þ 7w3β1β2 − 4w
ffiffiffiffiffiffiffiffiffi
β1β2

p
½β1ðw2 −H2 − 2HLÞ þ wβ2ð2H þ wÞ� cos πν

þ ½wβ1β2ðw2 þ wH − 4H2Þ − w2HLð2H þ wÞ þ 2HLβ21ðH − wÞ� cos 2πν
− 4w

ffiffiffiffiffiffiffiffiffi
β1β2

p
ðwH2 þ 2wHLþ w2H þ w2Lþ 2Hβ1β2Þ sin πν

þ ½wLβ1ðwH − 4H2 þ w2Þ þ w2Hβ2ð2H þ wÞ þ 2Hβ21β2ðw −HÞ� sin 2πνg
× f6wHL2β21 − 4w2H2L2 − 4H2L2β21 − 2w2L2β21 − 7w2HLβ1β2

− 2w2H2β22 − 2H2β21β
2
2 þ 3wHβ21β

2
2 − w2β21β

2
2

þ 4w
ffiffiffiffiffiffiffiffiffi
β1β2

p
½Lβ1ð2wH þ wL − 2H2 − 2HLÞ þ wHβ2ðH þ 2LÞ� cos πν

þ ½3wHLβ1β2ð4H − 3wÞ þ ðβ22 − 2L2Þ½β21ð2H2 − 3wH þ w2Þ − 2w2H2�� cos 2πν
þ 4w

ffiffiffiffiffiffiffiffiffi
β1β2

p
½2wHLðH þ LÞ þ β1β2ðH2 þ 2HL − wH − wLÞ� sin πν

þ ½2wHLð4HLβ1 − 3wLβ1 − 3wHβ2Þ þ 3Lβ21β2ð2H2 − 3wH þ w2Þ
þ wHβ1β

2
2ð3w − 4HÞ� sin 2πνg

=f2w3β1β2½ðLβ1ðw −HÞ þ wHβ2Þ cos πνþ ðwHLþ β1β2ðH − wÞÞ sin πν�2g: ð12Þ

The calculation can be carried out by either multiplying the
matrices or concatenating the maps. This condition has to
be satisfied for a stable cell. It defines a cubic equation of L,
which is the half length of the straight section. The solution
is given in the Appendix.
SinceH ¼ J þ K, we have found that seven independent

parameters, namely, νx, νy, β1;2, K, J, and ϕ, can fully
characterize the stable DBA cell. β1, K, and J should be
selected to minimize the emittance according to Eq. (8) and
β2 to optimize the brightness of the synchrotron light
source. Finally, we should have ϕ ¼ π=Nc, where Nc is the
number of cells in the storage ring. Given an energy, ϕ
should also be consistent with the required emittance.
We check the parametrization for the DBA cell using the

setting of the quadrupoles in Eqs. (4) and (6) against the

computer program MAD [6]. In particular, we choose the
parameters in Table I for an emittance reasonably near
the minimum. Here we have the calculated half length of

TABLE I. Independent parameters of the double-bend achro-
mat cell.

Parameter Value

Dipole length, J [m] 1
Distance from entry to dipole, K [m] 1
Horizontal beta at entry, β1 [m] 10
Horizontal beta at center, β2 [m] 1
Bending angle, ϕ π=22
Horizontal tune, νx 1.275
Vertical tune, νy 0.31875
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the straight L ¼ 3.05918 m and the form factor F ¼
0.12537. These parameters will be used throughout this
paper if not mentioned otherwise. With these parameters,
we compute the length of the straight and settings of the
doublets as a function of the betatron tunes. The results are
shown in Fig. 5.

The lattice functions computed numerically using MAD,
shown in Fig. 6, excellently agree with the analytical
calculations. 22 cells make a 248-m storage ring. At an
energy of 3 GeV, the natural emittance is 5 nm, which is
competitive in comparison with the third-generation light
sources [5].
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FIG. 5. The length of the straight and the parameters of the doublet as a function of the betatron tunes with various ratios: νy∶νx ¼ 1∶5,
1:4, and 1∶3 represented by blue, red, and black, respectively.
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III. NONLINEAR DYNAMICS

A. Chromatic compensation

The Courant-Snyder parameters with δ dependence can
be calculated [25] using the symplectic maps. In particular,
by computing the phase advances up to the first order of δ,
we derive the natural chromaticity. They are plotted in Fig. 7
as a function of the betatron tunes. From the viewpoint of the
chromaticity in thevertical plane, the ratio of νy∶νx ¼ 1∶5 or
1∶4 seems reasonable, while 1∶3 is too high, largely due to
the high vertical beta function at the defocusing quadrupole.
We can use the two sextupoles to zero out the natural

chromaticity. Solving two linear equations, we find the
necessary strengths. It is worth noting that the compensa-
tion is not local anymore because of the quadrupoles in
the straight, where the dispersion is zero. As a result, the
formulas of the strengths are very cumbersome. With the
formulas, we plot the strengths of the sextupoles in Fig. 8.
We can see clearly that the strength largely follows the
natural chromaticity in each plane respectively.

B. Effective Hamiltonian

Given a symplectic nonlinear map M in a periodic
system, its effective Hamiltonian H can be defined by [28]

M ¼ e−∶H∶; ð13Þ

where we have used the notation of the Lie algebra [29].
The Hamiltonian can be obtained either by using the Dragt-
Finn factorization [30] and the Campbell-Baker-Hausdorff
theorem or the normal form [31]. Sometimes, it is also
called the pseudo-Hamiltonian. Moreover, it can be written
in terms of the polynomials:

H ¼ H2 þH3 þH4 � � � ; ð14Þ

where the subscript indicates the order. At the second order,
the Hamiltonian describes the linear harmonic motion:

H2 ¼ 2πðΔνxJx þ ΔνyJyÞ; ð15Þ
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FIG. 7. The natural chromaticity in the horizontal (left) and vertical (right) planes as a function of the betatron tunes with various
ratios: νy∶νx ¼ 1∶5, 1:4, and 1∶3 represented by blue, red, and black, respectively.

FIG. 8. The settings of focusing (left) and defocusing (right) sextupoles as a function of the betatron tunes with various ratios: νy∶νx ¼
1∶5, 1:4, and 1∶3 represented by blue, red, and black, respectively.
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where Jx;y are the action variables [32] and Δνx;y the
fractional part of the betatron tunes in the horizontal and
vertical planes, respectively.
The third-order effective Hamiltonian consists of five

resonance driving terms and is given by

H3 ¼ 2
ffiffiffi
2

p
½C3000J

3=2
x cos 3ψx þ C2100J

3=2
x cosψx

þ C1011J
1=2
x Jy cosψx þ C1020J

1=2
x Jy cosðψx þ 2ψyÞ

þ C1002J
1=2
x Jy cosðψx − 2ψyÞ�; ð16Þ

where ψx;y are the angle variables [32]. The coefficients
Cjklm are defined to be consistent with the resonance
bases [31], and their subscripts indicate the indices of
power series in the complex variables. They include small
denominators and, therefore, become singular correspond-
ingly at the resonances. Here we have assumed that the
reference point has a reflection symmetry; otherwise,
there should be corresponding sine terms. For FODO
and TME cells, some analytical expressions can be found
in Refs. [21,22], respectively.
In the fourth order, the Hamiltonian can be separated

into two parts: H4 ¼ HðrÞ
4 þHðnÞ

4 . The resonance part is
given by

HðrÞ
4 ¼ 4½C4000J2x cos 4ψx þ C3100J2x cos 2ψx

þ C2020JxJy cosð2ψx þ 2ψyÞ þ C2011JxJy cos 2ψx

þ C2002JxJy cosð2ψx − 2ψyÞ þ C1120JxJy cos 2ψy

þ C0040J2y cos 4ψy þ C0031J2y cos 2ψy�; ð17Þ

and the nonresonance part by

HðnÞ
4 ¼ 4ðC2200J2x þ C1111JxJy þ C0022J2yÞ; ð18Þ

which leads to the detuning for the particles with large
betatron amplitudes.
In general, the driving terms can be numerically com-

puted first, using differential algebra [33] to extract the
nonlinear map and then the normal form to construct the
effective Hamiltonian. In particular, for the DBA cells, they
are too complicated to be computed analytically. So we
numerically evaluated them and plotted the results in Fig. 9.
The singularities of resonances are seen in the plots. For the
third order, 3νx and νx þ 2νy are clearly the dominant
resonances.

C. Dynamic aperture

To see the effects of the resonances, we use the formulas
in Eqs. (4) and (6) to construct a cell with specified betatron
tunes and the parameters in Table I. Setting the sextupoles
to make the chromaticity zero, we scan the dynamic
aperture by tracking at various betatron tunes. The averaged
dynamic aperture in the normalized coordinates is color
coded in units of m1=2 on the map in the left plot in Fig. 10.
The sum resonances 3νx and νx þ 2νy are clearly dominant,
while the difference resonance νx − 2νy is barely seen in the
tune scan. There is a good region where the dynamic
aperture is large. Unfortunately, it cannot be selected,
because its straight section is too short to place a undulator
as seen in Fig. 5.
In general, the effective Hamiltonian in Eq. (14) is not

solvable. Its dynamic apertures of each order can be
estimated by

a3 ¼
πΔνx
CðrmsÞ
3

;

a4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

2
p

− 1ÞπΔνx
2CðrmsÞ

4

vuut ; ð19Þ
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where CðrmsÞ
3 and CðrmsÞ

4 are the rms values of the third-
and fourth-order driving terms in Eqs. (16) and (17),
respectively. The function forms are obtained by the
single-resonance analysis. Here we simply replace the
single-resonance driving term with the rms value,
assuming each term acts incoherently. Naturally, the
smaller aperture dominates, and, therefore, the combined
dynamic aperture can be written as

a ¼ 2
1
a3
þ 1

a4

: ð20Þ

The estimated dynamic aperture as a function of the
betatron tunes is shown in the right plot in Fig. 10. In
comparison to the tracking in the left plot, it clearly
captures the most important features in the tune plane,
especially the effects of the resonances. The smearing of the
resonances seen in the tracking is presumably due to the
tune shifts from Eq. (18) which are not in the formula.
The dynamic aperture of the cell with the parameters in

Table I is between 6 and 7 mm in the horizontal plane,
which is not quite adequate for off-axis injection as shown
in Fig. 11.

D. Optimization

We introduce two families of harmonic sextupoles in the
straight section: one positioned at the focusing quadrupoles
and another at the defocusing quadrupoles. They are called
SF and SD, respectively. We scan the dynamic aperture and
compute the third-order driving terms while varying their
strengths. The scanning results of the averaged dynamic
aperture and a3 are shown in the left and right plots in
Fig. 12, respectively. As one can see from the figure, the
agreement of the optimal settings of the harmonic sextu-
poles is excellent.

Since the third-order driving terms have linear depend-
ences on the strengths of the sextupoles, we can formulate
the optimization of a3 according to a minimization of

χ2 ¼
X
ij

ðCi þ AijSjÞðCi þ AijSjÞ; ð21Þ

where Ci represents the driving terms without the harmonic
sextupoles, Sj strengths of sextupoles, and Aij elements of
the respond matrix. And then, the solution in matrix form is
given by

S ¼ −ðATAÞ−1ðATCÞ; ð22Þ

where the superscript “T” notes the transpose of the matrix.

FIG. 10. Comparison of the dynamic aperture in the normalized coordinates in tracking (left) and a statistical model based on the
third- and fourth-order resonances driving terms in the effective Hamiltonian (right).
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FIG. 11. A comparison of dynamic apertures with and without
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estimated aperture a3 based on the third-order resonance driving terms (right).
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We numerically compute them and find SF ¼ 8.903 m−2

and SD ¼ −9.6396 m−2. As expected, they agree with the
position of the peak seen in the right plot in Fig. 12. With
these optimal settings of the harmonic sextupoles, the
dynamic aperture increases dramatically as shown in
Fig. 11. The improvement is much larger than the one
seen in Ref. [17]. Moreover, we calculate the driving terms
and show them in Fig. 13 for a comparison with and
without the harmonic sextupoles. As a pleasant surprise, we
see the significant reduction of not only the third-order
terms but also the fourth-order ones. A similar improve-
ment can be seen in the frequency map analysis [8] shown

in Fig. 14. The diffusion rate log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dν2x þ dν2y

q
is computed

from the tune changes between two consecutive 1020 turns.
Such a large increase of the beam footprint far away from
the corrected third-order resonances is another pleasant
surprise, emphasizing the dominance of the low-order
resonances.

IV. CONCLUSION

We have comprehensively studied the simplest double-
bend achromat cell with three families of quadrupoles. The
cell is parametrized with the phase advances and the
horizontal beta functions at the entry and center as well
as the physical parameters in the dispersive region. Using
the parametrization, we derive the minimum emittance.
With chromaticity set to zeroby two families of sextupoles,

we numerically computed the driving terms of the nonlinear
resonance up to fourth order in the effective Hamiltonian,
from which a simple formula of a dynamic aperture is
constructed. The formula has captured the essential features
in the two-dimensional tune scan by tracking.
Moreover, we have shown that an optimal dynamic

aperture can be found simply by minimizing the driving

terms of the third-order resonance with equal weight. The
success shows the importance of including the information
of how far away the resonance is from the operating point
in the tune plane. Naturally, the effective Hamiltonian
should be used to define the driving terms.
We have found all stable solutions for the simplest

double-bend cell in terms of the roots of the cubic
equations. The solution is not unique. Some branches have
not been seen before, and they perhaps should be explored
systematically later. More importantly, one can apply our
results to understand the parameter space of the hybrid
multibend achromat [34], which can be decomposed into a
DBA and a “π” cell. Naturally, our parametrization is
suitable for the DBA and partially the π cell because of the
symmetrical feature of the dispersion bump where the
sextupoles resides. Of course, one can also extend our
results to a general DBAwith more quadrupoles and further
to the multibend achromat [35]. Given the complicity of our
solutions, harder works are expected.
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APPENDIX: SOLUTION OF
THE CUBIC EQUATION

Setting x ¼ L, the stability condition in Eq. (12) can be
rewritten as a cubic equation:

ax3 þ bx2 þ cxþ d ¼ 0; ðA1Þ

with the coefficients

a ¼ −8½ð2H − wÞβ1 cos πν − 2Hw sin πν�½2Hβ1 cos πν − wð2H þ wÞ sin πν�
× ½ðH − wÞβ1 cos πνþ wð

ffiffiffiffiffiffiffiffiffi
β1β2

p
−H sin πνÞ�½ðH − wÞβ1 cos πνþ wð2

ffiffiffiffiffiffiffiffiffi
β1β2

p
−H sin πνÞ�;

b ¼ 4½ð2H − wÞβ1 cos πν − 2Hw sin πν�½ðH − wÞβ1 cos πνþ wð
ffiffiffiffiffiffiffiffiffi
β1β2

p
−H sin πνÞ�

× f−7Hw2β1β2 − 7w3β1β2 þ 4w
ffiffiffiffiffiffiffiffiffi
β1β2

p
½−H2β1 þ 2Hwβ2 þ w2ðβ1 þ β2Þ� cos πν

− wð−4H2 þHwþ w2Þβ1β2 cos 2πνþ 4Hw
ffiffiffiffiffiffiffiffiffi
β1β2

p
ðHwþ w2 þ 2β1β2Þ sin πν

− 2H2w2β2 sin 2πν −Hw3β2 sin 2πνþ 2H2β21β2 sin 2πν − 2Hwβ21β2 sin 2πνg
þ 2½2Hβ1 cos πν − wð2H þ wÞ sin πν�½ðH − wÞβ1 cos πνþ wð2

ffiffiffiffiffiffiffiffiffi
β1β2

p
−H sin πνÞ�

× f−7Hw2β1β2 − 8Hw
ffiffiffiffiffiffiffiffiffi
β1β2

p
½Hβ1 − wðβ1 þ β2Þ� cos πνþ 3Hð4H − 3wÞwβ1β2 cos 2πν

þ 8H2w2
ffiffiffiffiffiffiffiffiffi
β1β2

p
sin πνþ 8Hwðβ1β2Þ3=2 sin πν − 4w2ðβ1β2Þ3=2 sin πν

− 6H2w2β2 sin 2πνþ 6H2β21β2 sin 2πν − 9Hwβ21β2 sin 2πνþ 3w2β21β2 sin 2πνg
− 4w3β1β2½ðH − wÞβ1 cos πν −Hw sin πν�2sin2πνy;
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c ¼ −4β2½2Hβ1 cos πν − wð2H þ wÞ sin πν�½Hwcos πνþ ðH − wÞβ1 sin πν�
× ½−2Hw

ffiffiffiffiffiffiffiffiffi
β1β2

p
þ 2Hwβ2 cos πνþ ð2H − wÞβ1β2 sin πν�

× ½ðH − wÞβ1 cos πνþ wð2
ffiffiffiffiffiffiffiffiffi
β1β2

p
−H sin πνÞ�

þ f7Hw2β1β2 þ 7w3β1β2 − 4w
ffiffiffiffiffiffiffiffiffi
β1β2

p
½−H2β1 þ 2Hwβ2 þ w2ðβ1 þ β2Þ� cos πν

þ wð−4H2 þHwþ w2Þβ1β2 cos πν − 4Hw
ffiffiffiffiffiffiffiffiffi
β1β2

p
ðHwþ w2 þ 2β1β2Þ sin πν

þ 2H2w2β2 sin 2πνþHw3β2 sin 2πν − 2H2β21β2 sin 2πνþ 2Hwβ21β2 sin 2πνg
× f−7Hw2β1β2 − 8Hw

ffiffiffiffiffiffiffiffiffi
β1β2

p
½Hβ1 − wðβ1 þ β2Þ� cos πνþ 3Hð4H − 3wÞwβ1β2 cos 2πν

þ 8H2w2
ffiffiffiffiffiffiffiffiffi
β1β2

p
sin πνþ 8Hwðβ1β2Þ3=2 sin πν − 4w2ðβ1β2Þ3=2 sin πν

− 6H2w2β2 sin 2πνþ 6H2β21β2 sin 2πν − 9Hwβ21β2 sin 2πνþ 3w2β21β2 sin 2πνg
þ 8w3β1β

2
2½−ðH − wÞβ1 cos πνþHw sin πν�½−Hwcos πνþ ð−H þ wÞβ1 sin πν�sin2πνy;

d ¼ 2β2½Hwcos πνþ ðH − wÞβ1 sin πν�
× f½2Hw

ffiffiffiffiffiffiffiffiffi
β1β2

p
− 2Hwβ2 cos πνþ ð−2H þ wÞ sin πν�

× ½7Hw2β1β2 þ 7w3β1β2 − 4w
ffiffiffiffiffiffiffiffiffi
β1β2

p
ð−H2β1 þ 2Hwβ2 þ w2β1 þ w2β2Þ cos πν

þ wð−4H2 þHwþ w2Þβ1β2 cos 2πν − 4Hw
ffiffiffiffiffiffiffiffiffi
β1β2

p
ðHwþ w2 þ 2β1β2Þ sin πν

þ 2H2w2β2 sin 2πνþHw3β2 sin 2πν − 2H2β21β2 sin 2πνþ 2Hwβ21β2 sin 2πν�
− 2w3β1β

2
2½Hwcos πνþ ðH − wÞβ1 sin πν�sin2πνyg: ðA2Þ

The solution of the cubic equation is well known. One
needs to compute first

Δ0 ¼ b2 − 3ac;

Δ1 ¼ 2b2 − 9abcþ 27a2d;

Ω ¼
Δ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 − 4Δ3
0

q
2

: ðA3Þ

Then the roots are given by

xk ¼−
1

3a

�
bþξkΩ1=3þ Δ0

ξkΩ1=3

�
; k∈ f0;1;2g; ðA4Þ

where ξ ¼ − 1
2
þ i

2

ffiffiffi
3

p
.
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