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In the Comment on our paper [Phys. Rev. Accel. Beams 22, 074201 (2019)], Hofmann claims that our
conclusions are based on a questionable interpretation of Vlasov’s equation and an over-interpretation of
our multiparticle simulations. This assertion, however, comes largely from his misinterpretations of the
essence of our work and proposed resonance condition. His criticism based on experimental data from
some operating machines has also missed the point; we see no essential conflict between our arguments and
experimental observations. While most of the questions raised by Hofmann have already been answered in
our original paper above and previous publications, we take this opportunity to provide more information
and explanation for clarity.
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I. INTRODUCTION

The “incoherent tune spread” or, in other words, the
“necktie” has been employed for years to make a rough
estimate of the maximum beam current that can be stored
in a high-intensity hadron ring. Many researchers have
used this conventional concept as a measure to avoid the
resonant instability of the whole beam, especially, the
beam’s main body (i.e., the “core” defined in full phase
space) where the incoherent tune shifts of individual
particles are large. A good summary on this point is
given, for example, in a highly cited review article
written by Baartman (Ref. [1; 30]). He says the follow-
ing: “In many papers, in proceedings of accelerator
schools, and even in textbooks on accelerator physics,
we read that the linear part of the space charge force is
added to the linear equation of motion, leading to a tune
shift, which if large enough can place individual particles
on low-order betatron resonance lines. This picture,
though in some sense compelling, is misleading and
inhibits understanding the transverse intensity limit in
low energy proton synchrotrons.” A similar statement can
be found also in a textbook written by Ng (Ref. [1; 65]).
We strongly concur with these physicists and believe
that historically, this is the most common view regarding
the usage of the necktie. If not, what is the purpose of

drawing a necktie in the tune diagram or calculating a
possible maximum incoherent tune shift? Such informa-
tion is unnecessary if one cares only about what happens
in the Gaussian tail where particles have relatively small
tune shifts. In an early stage of accelerator development,
everybody is first concerned about any bad effects that
may occur even if an ideal beam is injected into his/her
machine. Besides, in the recent monograph written by the
Comment author himself (Ref. [1; 47]), he has claimed
after all that “the distance of the working point to
significant resonances in the νx − νy tune diagram must
be consistent with the maximum expected tune spread,”
which obviously follows the conventional view. One of
the important points concluded in Ref. [1] is that the
maximum tune spread has nothing to do with the stability
of the beam’s main body.
Any crude estimates, of course, never satisfy profes-

sional accelerator designers and will eventually be taken
over by a more sophisticated estimate made through
advanced, time-consuming calculations. Nonetheless, a
simple criterion as described in Ref. [1] is very helpful
in establishing conceptual high-intensity lattice designs. It
could also offer a useful insight into the cause of beam loss
observed in operating machines.
Our theory in Ref. [1] was designed to show very quickly

and easily, as the first step toward the best machine
performance, which regions in the tune diagram could
be dangerous even for a matched beam. We proposed a new
type of stability map based on the two-dimensional (2D)
semiempirical resonance condition

kðν0x − CmΔν̄xÞ þ lðν0y − CmΔν̄yÞ ¼
n0

2
: ð1Þ
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This formula is a natural generalization of the one-
dimensional Vlasov prediction in Refs. [1; 27] where the
following coherent resonance condition has been derived
in a purely mathematical manner:

Ωm ≡mðν0 − CmΔν̄Þ ¼
n0

2
: ð2Þ

Equation (1) is reduced to Eq. (2) for noncoupling
resonance that occurs in one of the two transverse degrees
of freedom.
Most of coherent resonance bands are accompanied by a

sort of incoherent resonance region (see, e.g., Fig. 18)
where tail particles with relatively small incoherent tune
shifts may become unstable. The semiempirical rule
proposed in Ref. [1] for the construction of a stability
chart includes the incoherent aspect of resonances as a part.
The two essentially different aspects, i.e., coherent reso-
nances in the core and incoherent resonances in the tail,
should suffice to describe the stability of the whole beam
initially matched to the lattice.
The coherent core instability has a self-inhibition mecha-

nism; it may be deactivated spontaneously before leading to
a well-detectable level of beam loss. That is because the
emittance growth reduces the beam density, which results
in a shrinkage and a shift of the stop band. Even so, no
accelerator designers would dare to choose the operating
point within a region where a possible instability is
expected from self-consistent calculations, no matter
whether it appears to be weak. In our opinion, an emittance
growth of a few percent over only 100 alternating-gradient
(AG) focusing cells is not a negligible level. The situation
will be worsened in actual high-intensity rings where the
beam goes through far more AG periods.
The Vlasov formalism was invented to describe the

collective behavior of particles with long-range Coulomb
interaction. It is self-consistent and includes all relevant
physical processes except for interparticle Coulomb colli-
sions. Solving the Vlasov-Poisson equations is physically
almost equivalent to performing particle-in-cell (PIC)
simulations. There are two important questions we should
ask here: First, is it really possible for Vlasov’s equation to
predict the incoherent resonance conditions of individual
particles in a matched beam core? Second, do all nonlinear
coherent modes really become inactive in any actual beams
because of the Landau damping mechanism? These two
issues can be addressed separately.
The first question above has already been answered in

Ref. [1] and past Vlasov theories. There is no serious
incoherent response activated in a matched beam core.
The tune spread does not matter; even the single-particle
resonance has a finite width depending on the strength of
the resonance driving term, but no instability can be found
from the Vlasov analysis about the incoherent tunes. The
Comment author has often argued the existence of

incoherent (or his so-called “single-particle”) resonances
with large tune shifts, driven by space charge “pseudo-
multipoles” [2]. One of our conclusions is that no such
incoherent effect will appear in the core. It is thus useless to
make any further discussion assuming the presence of
incoherent core resonances. This conclusion holds even at
low beam density; the Vlasov formalism is not limited to
the high-density regime. We can obtain PIC results analo-
gous to Fig. 20 even when the rms tune depression is much
closer to unity.
The second question is not so easy to answer. We agree

with the Comment author on the point that the incoherent
tune spread has been ignored in past perturbative Vlasov
theories on coherent resonances, which kills the Landau
damping mechanism. The instabilities of highly nonlinear
modes will probably be damped and thus of no serious
effect in practice. This point has been made repeatedly in
our past papers. Self-consistent simulations or any other
approaches are needed to judge which modes are poten-
tially dangerous. In Ref. [1], we deemed it necessary to take
care of the coherent modes of second (m ¼ 2) and third
(m ¼ 3) orders at least. The fourth-order (m ¼ 4) mode
may also demand attention depending on the beam density
and on how long the beam stays in the machine at relatively
low energy. These requirements are based not only on
extensive numerical studies but also on experimental data
obtained with the novel ion-trap apparatus “S-POD,” the
Simulator of Particle Orbit Dynamics.
We disagree with the Comment author’s view that “no

need has been seen so far to revise the standard picture of
nonlinear, incoherent resonances” because “unambiguous
experimental signatures have not been reported yet” [3].
First, the lack of unambiguous experimental signatures of
coherent modes does not necessarily justify the standard
incoherent picture. Everybody is seeking after all for a
fuller understanding of space-charge resonances. Second,
experimental signatures suggesting the practical impor-
tance of the linear and low-order nonlinear coherent
instabilities have already been reported in a number of
previous publications from the Hiroshima group. Third,
we have clear evidence for the nonexistence of incoherent
resonances in the beam core.
The Comment author has mostly argued his own

personal view about resonances with almost no quantitative
discussions that clearly point out any flaw in our theoretical
model. The only counterevidence offered in the Comment
is the experimental data obtained at the GSI SIS18, but his
criticism is obviously based on some misunderstanding
or miscalculations. In Sec. II, we first provide additional
information about low-order coherent modes and their
experimental observations in the S-POD system. Brief
discussion is then made in Sec. III about the linearized
Vlasov analysis with the Kapchinskij-Vladimirskij (KV)
model. Section IV is devoted to a possible interpretation of
the SIS18 data from a viewpoint essentially different from
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the Comment author’s. Finally, the present discussion is
summarized in Sec. V.

II. OBSERVATION OF LOW-ORDER
COHERENT MODES

As remarked by the Comment author, no unambiguous
experimental signatures of coherent responses from non-
linear and even linear modes have been observed so far
in circular accelerators. The complexity and diverse
background sources in real large-scale machines make it
challenging to identify clear signals from the coherent
modes. This is a primary reason why we developed the
S-POD system to explore various space-charge issues. The
S-POD is extremely compact in size and much simpler than
any accelerator systems, which greatly facilitates the
identification of weak coherent signals. Experimental data
produced by the S-POD for the last decade have shown the
signatures that can be understood most naturally and
consistently by accepting the presence of low-order coher-
ent resonances.
We can directly measure the tunes of some coherent

modes with the help of the S-POD (Refs. [1; 33] and [1;
34]). If any collective mode of mth order is excited in a
plasma bunch, we will detect a pair of frequency compo-
nents as explained in Ref. [1]; one corresponds to k1 þΩm
and the other to k2 − Ωm where k1 and k2 are integers [4].
Figure 1 shows a typical measurement result demonstrating
the existence of the coherent quadrupole oscillation. We
observe three clear peaks at 298, 702, and 1000 kHz. The
large spike at 1 MHz comes from the large envelope
modulation driven by the AG focusing force of the linear
Paul trap (LPT), which has nothing to do with collective
modes. As the operating AG-focusing frequency is 1 MHz
here, the first two numbers above correspond to the tunes of
0.298ð¼ Ω2Þ and 0.702ð¼ 1 −Ω2Þ. The space-charge term
C2Δν̄ in Eq. (2) is responsible for the large shift of Ω2 from

2ν0ð¼ 0.320Þ. If we keep increasing the operating bare
tune, these two peaks eventually merge at which point
the bunch becomes unstable. The instability condition is,
therefore, Ω2 ¼ 1 −Ω2 that can be rewritten as Ω2 ¼ 1=2.
A similar spectrum can be obtained easily for the dipole
mode. This experimental observation is a piece of indis-
putable evidence for the parametric instability.
A new type of LPT with extra electrodes must be

developed for the direct tune measurement of nonlinear
coherent oscillations [5]. We have already constructed a
prototype and succeeded in exciting the sextupole and
octupole modes under the condition in Eq. (13) of Ref. [1].
The result will be published at a later date.
We wish to call general readers’ attention to the fact that

an ion bunch produced in the LPT always has a “Gaussian-
like” profile (see Fig. 9 of Ref. [1; 39]). It must be more like
the perfect Gaussian compared with actual beams in
circular machines because no complicated technique such
as the multiturn injection, painting scheme, etc., is neces-
sary to generate the ion bunch in the LPT.

III. THE KV MODEL

The Comment author has quoted a Vlasov theory [3; 1]
by Li and Jameson who nicely generalized the previous
KV-based analysis by the Comment author himself
(Refs. [1; 12] and [1; 25]). Their theory converts
Vlasov’s equation into coupled ordinary differential equa-
tions that need to be integrated numerically to figure out the
parameter ranges where the matched KV core becomes
unstable. No universal resonance formula has, therefore,
been given explicitly in Ref. [3; 1].
We had already developed a 2D Vlasov theory a few

years before Ref. [3; 1] was published (Refs. [1; 48] and
[6]). Our numerical approach is essentially the same as Li
and Jameson’s. We can plot a tune diagram under an
arbitrary initial condition of the KV beam propagating in an
arbitrary AG lattice. Figure 2 is an example where both
normal and skew sextupole (m ¼ 3) components have been
taken simultaneously as resonance driving terms in the
space-charge potential. The beam is initially equiparti-
tioned everywhere in the diagram, similarly to the PIC
simulations in Subsec. III C of Ref. [1]. Red solid lines
indicate the positions of the third-order coherent resonances
predicted by Eq. (1), all of which agree remarkably well
with the instability bands from the Vlasov analysis. Other
instability bands with no red line are practically unim-
portant or covered by the stronger coherent resonances
driven by the lower-order (m ¼ 2) terms.
We have confirmed that Eq. (1) can well reproduce the

locations of major resonance bands from the Vlasov
analysis not only in the equipartitioned case but also under
a variety of initial conditions. We here stress the point
again that our coherent tune-shift factor is a constant free
from any parameters other than the resonance orderm. This
presents a striking contrast to the previous theoretical

FIG. 1. Frequency spectrum of the quadrupole mode measured
in the S-POD trap system at Hiroshima University (Ref. [1; 33]).
The operating frequency of the LPT is 1 MHz. The bare betatron
tune per unit AG cell is chosen to be ν0 ¼ 0.16. The number of
ions confined in the LPT is about 2 × 106.
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prediction that Cm depends on the integers (k;l), degree
of tune split, beam’s ellipticity, etc., (Refs. [1; 25], [1; 29],
[1; 30]). The proposed semiempirical formula in Eq. (1)
enables one to plot resonance lines of practical importance
very quickly and easily without solving a set of compli-
cated differential equations numerically. It predicts the
locations of instability bands under arbitrary initial beam
conditions. All we need to know in advance are the basic
lattice design plus only the rms tune depression that can
readily be calculated from the rms envelope equations.

IV. EXPERIMENTAL DATA FROM
OPERATING MACHINES

Reference [1] is not a review article, so we do not think
that it is necessary to make lengthy discussions covering
all relevant high-intensity machines around the world.
As an important example, we picked the RCS at J-PARC
and applied the proposed semi-empirical rule to check
if it successfully explains the current operating condition.
A preferable operating point determined by the conventional
approach in its design stage was ðν0x; ν0yÞ ¼ ð6.68; 6.27Þ
[7], but the machine is now operated around ðν0x; ν0yÞ ¼
ð6.45; 6.42Þ after a careful tune survey (Refs. [1; 63] and
[1; 70]). As illustrated in Ref. [1], our theoretical prediction
is consistent with the current RCS situation.

Following the Comment author’s request, we now take
a brief look at another two cases, i.e., GSI SIS18 and
CERN PS. Let us start from the SIS18. The maximum
incoherent tune shift of 0.025 corresponds to the rms tune
depression η of about 0.997, assuming a Gaussian core.
The core density turns out to be much lower than the RCS
case. This number gives an rms tune shift Δν̄ ≈ 0.013.
As the coherent tune shift factor of the sextupole mode is
C3 ≈ 0.8, the center of the third-order coherent band is
expected to be at around Qx ≈ 4.343 in the coasting-beam
case. According to Fig. 1 in the Comment, the measured
peak is located close to this predicted tune. The band
width evaluated from the approximate formula in Eq. (16)
of Ref. [1] is roughly 0.013 [8]. The tail resonance
region extends from 4.333 to the lower boundary of the
coherent band.
Even for the bunched-beam case, while it is outside the

scope of our 2D resonance model, the position and width of
the measured resonance band appear to be well explainable;
namely, our theory says that the coherent sextupole band
lies between Qx ≈ 4.339 and 4.359.
There is a possibility that the observed emittance growth

could come mainly from the error-driven tail, considering
the low beam density and existence of a sextupole
imperfection field in the experiment. It is difficult for us
to make a definitive conclusion from limited information,
but the point is that no essential discrepancy can be seen
between our theoretical predictions and experimental
observations. Our theory recommends avoiding the bare-
tune range 4.333 ≤ Qx ≤ 4.350 in the case of ΔQx ¼
−0.025 and the bare-tune range 4.333 ≤ Qx ≤ 4.359 in
the case ofΔQx ¼ −0.04. It is informative to notice that the
maximum extent of the necktie, i.e., 0.025 for the coasting
beam and 0.04 for the bunched beam, overestimates the
actual width of the instability region. Finally, we remind the
Comment author of the fact that our theory in Ref. [1] was
developed for betatron resonances of matched beams. Any
longitudinal effects as mentioned by him are of no interest
to us here.
The Comment author refers to the CERN PS experiment

as if it is a good example supporting the incoherent, frozen
space-charge model (FSM). His understanding is, however,
questionable. In fact, Bartosik of CERN states in Ref. [1;
46] that “simulations using a frozen adaptive model in
PyOrbit for the ideal PS lattice do not explain the observed
losses quantitatively”. The FSM has also encountered a
difficulty in reproducing recent experimental data obtained
by Asvesta et al. [9]; numerical simulations based on the
incoherent model do not appear to be in sufficient agree-
ment with the measurement results. An observed large
discrepancy is eventually attributed to unknown octupolar
errors exciting a fourth-order sum resonance band along
2Qx þ 2Qy ¼ 25. Note that the driving harmonic number
has been halved to reduce the resonance order. We suspect
that such a strong imperfection might seriously affect the

FIG. 2. Stability tune diagram obtained from the 2D Vlasov
analysis based on the KV model (Ref. [1; 48] and [6]). All kinds
of third-order (m ¼ 3) space-charge terms have been taken into
account to drive coherent resonances. The contributions from the
quadrupole (m ¼ 2) and other higher-order (m ≥ 4) driving self-
fields have been ignored. The initial condition is identical to what
we assumed in Fig. 6 of Ref. [1] (the equipartitioning case) except
that the beam density at the operating point ðν0x; ν0yÞ ¼
ð1=6; 1=6Þ has been increased to ηx ¼ ηy ¼ 0.8 here. Red lines
represent the locations of the third-order resonance bands
predicted by Eq. (1) with C3 ¼ 0.85. Two difference resonance
bands (dotted line) have disappeared because, as pointed out in
Ref. [1], the condition Ikl ¼ 0 is fulfilled along them in an
equipartitioned beam.
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lattice symmetry, giving rise to many additional stop bands.
In any case, there seems to be no good agreement at the
moment, as opposed to the Comment author’s assertion.

V. CONCLUSION

The motions of individual particles forming a dense
beam core are correlated because of the long-range nature
of Coulomb interaction. Self-consistent PIC simulations
clearly show that the core particles do not resonate at
their incoherent tunes. Experimental data from the S-POD
system supports this view, offering convincing evidence for
coherent oscillation modes. The conventional picture rely-
ing on the incoherent tune spread is too conservative to
make a good estimate of the transverse space-charge limit
in a high-intensity hadron ring. The Gaussian necktie gives
no useful physical information regarding the stability of the
beam’s main body.
Once the core becomes unstable, a tail will grow leading

to an emittance increase. The core will eventually recover a
sort of stability as the density reduction due to the initial
instability moves the effective operating point out of the stop
band. After that, the emittance growth and beam loss, if any,
come mostly from the tail region. Because of weak Coulomb
coupling with the beam core, tail particles see the oscillating
core space-charge potential as if it were an external driving
source. The FSM might then offer a good explanation for
measurement data, but that does not necessarily mean the
absence of coherent core instability. The situation is similar
to why the “particle-core model” works to give a rough
picture of mismatch-induced halo formation.
It is true that any ordinary beam has a Gaussian-like

profile whose density is peaked around its center, but
“Gaussian-like” does not necessarily mean “Gaussian.”
The actual core configuration is different from the perfect
Gaussian in phase space, especially after a complex
injection procedure. The exact core potential is no longer
spatially symmetric as often assumed in frozen models.
Attempts have been even made to intentionally form a non-
Gaussian profile for space-charge mitigation. We hardly
understand why the Comment author only trust symmetric
Gaussian-based predictions and why all possibilities
expected in the other types of reasonably realistic distri-
bution functions can be disregarded with confidence. There
is no room to doubt that any realistic beam is deviated from
a perfect stationary state and thus includes the seeds of
various coherent modes that can enhance core resonances
as demonstrated in Ref. [1].
In some cases, the incoherent model may work as

mentioned above but only for tail dynamics. Self-consistent
considerations are vital to establish a reliable picture of
core dynamics. It is such an attempt that has been made
and reported in Ref. [1]. The work is supported by self-
consistent numerical simulations and by experimental
long-term simulations with the novel tabletop apparatus

“S-POD.” Not only the linear but also nonlinear coherent
modes do exist as mathematically proved by the Vlasov
analysis, numerically confirmed with non-Gaussian mod-
els, and even experimentally observed in the S-POD
system. It sounds unreasonable, at least to us, to insist
that only the incoherent mechanism within the scope of
frozen models is important in practice.
In the future, the coherent effect studied in Ref. [1] will

be more important as the result of growing demand for
higher-intensity hadron beams from machine users. The
proposed new tune diagram provides information about the
stability of the whole matched beam including the tail as
well as the core. We believe that our stability map deserves
serious consideration as a possible option to search for a
good operating region in the betatron tune space.
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