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In the article of K. Kojima, H. Okamoto, and Y. Tokashiki [Phys. Rev. Accel. Beams 22, 074201 (2019)]
the authors claim that the optimum working point on the tune diagram of circular accelerators at high
intensity should be determined by using a framework of coherent resonances instead of the commonly
accepted and widely used “standard” diagrams based on incoherent resonance conditions. However, their
proposal is based on a questionable interpretation of Vlasov’s equation as well as an over-interpretation
of their multi-particle simulations in the case of Gaussian-like distributions. Furthermore, the suggested
coherent diagram is not supported by detailed published data from operating synchrotrons at GSI and
CERN, which are in line with the incoherent resonance picture. As far as waterbag (or similar truncated)
distributions, the authors model of coherent resonance diagrams is not questioned in this Comment.
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Resonance diagrams have been used since the early days
of circular accelerators. It is common to incorporate space
charge on a diagram with zero intensity resonance lines by
means of a “necktie” including the shift (and spread) of
incoherent tunes. In order to avoid misunderstandings:
The necktie diagram is nothing more than a feature of the
matched beam with its spectrum of incoherent frequencies,
but without any resonance activated. Resonance studies are
well known to require detailed considerations going
beyond this simple tool. The question of coherence is only
one facet in this problem.

In the past, quite a number of authors have considered
resonant phenomena going beyond the incoherent picture
and investigating a possible role of coherent effects due to
space charge. The emphasis has been primarily on reso-
nances or instabilities of second order, like a favorable
coherent tune shift in gradient error resonances, or the
parametric “envelope instability.” Efforts have been made
to demonstrate these second order coherent effects exper-
imentally in circular accelerators, but so far with very
limited success. Successful studies on space charge effects
in second order resonances in the S-POD trap experiment
could trigger a discussion on this point.

“i.hofmann @ gsi.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOL

2469-9888/20/23(2)/028001(4)

028001-1

As far as higher than second order coherent (including
parametric) resonance effects in circular accelerators the
situation is different. To the knowledge of the author
unambiguous experimental signatures have not been
reported yet. Thus, no need has been seen so far to revise
the standard picture of nonlinear, incoherent resonances.

Yet the authors claim—already in the abstract—that their
coherent resonance condition based on the 1D Vlasov
theory in their Ref. [27] (Okamoto and Yokoya),

/

m(vg = Cp0) = 5. (1)

with Az the rms tune shift and C,, a factor depending on the
order of the mode, would lead to a new, coherent diagram to
replace the standard one. C,, =1 is equivalent to the
standard incoherent resonance condition, whereas C,, <1
stands for a coherent shift. Magnet driven resonances are
described by even values of n’, while odd values stand for
half-integer, parametric resonances (instabilities) not con-
tained in the standard diagrams. In order to construct their
new diagrams the authors first employ an “empirical”
extension of Eq. (1) to 2D, which they call a “plausible
conjecture” from their Ref. [31],

/

k(y()x - CmAl_/x) + I(UOy - CmAl_/y) = %7 (2)

where they claim that the tune shift factor C,, only depends
on the order of the resonance m = |k| + |I|. Odd values of
n’ again describe the extra parametric resonances; and
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working points should avoid stopbands around these
coherent resonance conditions for even and odd n’.

We proceed with first commenting the authors’ inter-
pretation of Vlasov’s equation including Landau damping;
then their coherent and parametric resonance discussion
leading to the C,, factors; their conclusions from simu-
lations and, last but not least, the comparison with
experimental results from GSI and CERN accelerators.

Section I of the authors’ article states: “The Vlasov
equation treats the distribution function of the whole beam
in phase space rather than the trajectories of individual
particles. Since the beam is regarded as a sort of continuum,
there is no room for the incoherent motion to come in”.
This inadequate interpretation of Vlasov’s equation appears
to be at the origin of the authors’ preference of coherent
resonance effects versus incoherent ones.

First, the Vlasov equation indeed describes a “sort of
continuum”, which is incompressible in phase space.
However, it does so while the phase space fluid moves
along the trajectories of individual particles exposed to
external and self-consistent fields and—contrary to the
authors’ statement—incoherent motion is essential. In fact,
it is common knowledge that fully solving Vlasov’s
equation—a partial differential equation—is done by inte-
grating it along its characteristics, which are the particle
trajectories. In a perturbation analysis these trajectories are
taken from the unperturbed beam, which yields an inco-
herent spectrum of tunes according to the nonlinearity of
the confining potential. The resonant interaction of this
spectrum with a coherent mode is the origin of Landau
damping—well described by the full Vlasov framework.
For mathematical simplicity, however, it is standard in
transverse beam dynamics to sacrifice higher than second
order terms in the unperturbed potential, thus losing the
tune spread and Landau damping. This loss of spectral
width thus results mathematically in a purely coherent
response to a resonance driving force as, for example,
obtained in Ref. [27].

In spite of all this the authors conclude in Sec. II:
“However, the core stability analysis based on the self-
consistent set of equations predicts no resonance under the
incoherent condition. Assuming that the Vlasov theory
covers the whole relevant physical processes, the most
reasonable conclusion should be that no serious resonance
occurs within the matched beam core at the incoherent
tunes (vy, vy) of individual particles.” Here is the first
objection: why should a simplified Vlasov model describe
interaction with an incoherent spectrum if it was eliminated
before for mathematical simplification?

Apparently this model simplification supports the
authors’ assumption that the coherent half-integer (para-
metric) space charge driven resonances (odd n’) lead to
“twice as many resonance stop bands as predicted by
common resonance theories.” While this “doubling” of
stopbands is not questioned in second order—due to a

coherent tune shifted outside of the incoherent tune
spectrum—it is questionable for higher orders and
Gaussian-like beams, where Landau damping is expected
to occur (as suggested in Ref. [47]). Hence, further
computer simulation is needed to strengthen this issue.

It may be appropriate here to elucidate somewhat the
nature of collective, coherent and incoherent response. The
full Vlasov equation takes into account all collective
aspects of interaction. This includes the well known
Debye shielding effect, which flattens the beam profile
at high levels of space charge in a self-consistent manner.
As a result, the spectral distribution of incoherent tunes is
changed—a collective effect. A coherent response implies,
in addition, phase correlations between particles leading
to a coherent frequency—unless suppressed by Landau
damping.

Before examining their simulation results we briefly
comment on the authors’ discussion of Vlasov models
besides their Ref. [27], which is a 1D sheet beam model not
directly leading to 2D coupled resonance conditions. In
chapter II the authors mention “Since it is hopeless to solve
the 2D Vlasov-Poisson equations mathematically for arbi-
trary AG lattices, a plausible conjecture was made recently
by the Hiroshima group [31]”.

In fact, it is not hopeless to solve Vlasov’s equation in
2D: a remarkable step ahead in fully self-consistent
transverse 2D Vlasov analysis was published by Li and
Jameson [1]. It unifies the space charge driven 2D periodic
focusing Vlasov analysis described in Ref. [12] with the 2D
anisotropic smooth focusing Vlasov approach of Ref. [25].
Li and Jameson’s recent work thus allows self-consistent
2D stopband calculations for arbitrary k and /. As common
to all Vlasov models discussed here, the Landau damping
mechanism is excluded. It is nonetheless unfortunate that
this work—published in PRAB—did not get referenced
by the authors. It would have allowed them to calibrate
consistently the 2D C,, factors rather than taking a heuristic
extrapolation from 1D.

Computer simulation with the wARP-code is used by the
authors to support their conjectures leading to the con-
struction of 2D resonance conditions out of the original 1D
C,, factors. Results of their high resolution scans for
Gaussian beams (Figs. 4 and 6 for odd n’) show that
strong second order parametric (half-integer) modes are
clearly visible; third order parametric modes are shown to
have an emittance growth of few percent; fourth order
modes around one percent, and still higher order modes—if
visible—even less. Needless to say that such small values
are within the error bars of most emittance measurement
devices, and nobody would worry about them anyway. But
more important is the justified concern that the detected
small rms emittance growth features could be equally
due to space charge driven resonances of doubled order,
which are not of the half-integer, parametric type (see
below Ref. [2] for a detailed discussion). A more
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coherence-sensitive data analysis could have helped to
resolve this ambiguity.

From an experimental point of view the main issues of
concern for real accelerators are large values of rms
emittance growth (few tens of percent) and, most of all,
beam halos which might lead to beam loss. No evidence is
given in the paper that for Gaussian beams and more than
200 cells such an exponential growth indeed occurs, and
that Landau damping is not effective to prevent it. So why
worry about the claimed higher order half-integer lines?

Finally, it is worthwhile testing the claimed coherent
behavior of third order, but externally driven resonances
(Fig. 13) against experimental data obtained from real
accelerators, which have storage times several orders of
magnitude longer than the authors’ simulations.

We refer to published data from carefully conducted
high intensity beam dynamics experiments using sextupole
errors at the GSI SIS18 [3] and the CERN Proton
Synchrotron [4]—none of them referenced by the authors.
In the comprehensive SIS18 benchmarking campaign, with
results shown in below Fig. 1, significant levels of rms
emittance growth and beam loss have been measured and
simulated by scanning the working point across a horizon-
tal third order error resonance (at 3Q, = 13), with results
for each working point shown after as many as 10° turns.
Note that here Q, stands for the bare machine tune. Space
charge is simulated for the large number of 10° turns by
adopting the frozen space charge model (FSM), which
uses the unchanged initial density distribution for space
charge calculation. Thus, any coherent motion—if it would
occur—is suppressed, which is equivalent to C,,, = 1 for all
m. Shown are the results of measurements and simulations
for a coasting (left column) and a bunched beam (right
column). The simulations are performed with a Gaussian
beam consistent with measured profiles.

Note the excellent agreement of the measured and
simulated data as far as center and width of stopbands.
Assuming a C; = 0.77—as suggested in Fig. 17—and
applying the above Eq. (1) would result in a hardly
resolvable coherent shift of the stopband in AQ, by
—0.003 for the measured coasting, respectively —0.005
for the measured bunched beam. Yet there is no indication
of such shifts or related coherent effects in the data analysis.
This is not surprising, because the large emittance growth is
explained in Ref. [3] in terms of repeated scattering (or
trapping) of individual particles on a nonlinear resonance,
which has no coherent constituent. This scattering of single
particles is by nature an incoherent long-term phenomenon.
It is absent in the short-term WARP simulations by the
authors, but it is the dominant process for emittance growth
and loss in synchrotrons or storage rings. Note that the tiny
rms emittance growth in above Fig. 1 (coasting beam
simulation) close to Q, = 4.35—the very small amplitude
core particles—is not unphysical, but also understood as
result of the scattering on the resonance.
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FIG. 1. Results of SIS18 measurements (a) and frozen space

charge (FSM) simulations (b) near a sextupole error resonance at
0, ~ 433 after 10° turns. The comparison is in support of
incoherent resonance response for a coasting beam (left column)
as well as for a bunched beam (right column). Maximum
incoherent tuneshifts in x are —0.025 for the coasting, and
—0.04 for the bunched beam. Shown are relative changes of
rms emittances and current versus the bare tune Q,, furthermore
the length change for the bunched beam. Source: Ref. [3].

For comparison, the red hatched area in Fig. 1 marks the
stopband obtained from measurements in the low intensity
regime. The fact that the measured loss near this area is
enhanced compared with simulations is attributed to the not
sufficiently well-known dynamic aperture.

A similar measurement was carried out in the CERN
experiment, which was compared with the FSM and an
“adapted” FSM model employing rms size updates. The
two FSM approaches practically agreed and were in good
agreement with the location and width of the measured
stopband.

So why should a coherent shift be used if there is no
experimental evidence for it in these detailed and highly
realistic third order resonance studies?

In conclusion, we find that for Gaussian distributions the
authors’ proposal of a new resonance diagram based on
coherent modes is not sufficiently justified by their theory
considerations and their accompanying simulations.
Moreover, the CERN and GSI experiments suggest that
there is sufficient agreement between the incoherent FSM
concept and the experiment as far as concerns determining
stopbands. The width of these stopbands, in particular, is
determined by the effect of scattering of individual particles
on the resonance over the large number of turns common to
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all real accelerators, which is far beyond the physics
described by the author’s few-turns WARP-simulations.
Scans like those in Fig. 1 need to be carried out for
specific lattices including working points, distribution
functions, chromaticity, number of turns etc. Ideally, such
studies should be carried out with self-consistent simulation
codes, since FSM models are suspected not to model
sufficiently well larger deviations from the initial beam.
A discussion of the problems with self-consistent simu-
lation of a large number of turns—besides impractically
long cpu times—is beyond the scope of this Comment.
For further clarification: The authors findings on half-
integer coherent resonances for waterbag or similar trun-
cated distributions (not subject to Landau damping) are not
questioned here. Therefore, it would be valued for future
theoretical progress if S-POD experiments could shed light
on the role of the initial distribution for Landau damping.
This notwithstanding the fact that under normal operating
conditions (not including scraping or other severe beam
loss) all operating synchrotrons or storage rings are
considered—with good reasons—to work with Gaussian-
like distributions. It may be unnecessary to add that detailed
measurements of actual beam profiles, rms emittance
evolutions and loss effects as well as complete sets of
lattice nonlinearities—as performed for the GSI and CERN

experiments—are the key to successful benchmarking of
theoretical concepts. More such accurately performed
measurements are needed to further advance our under-
standing of this relatively complex area and clarify still
open questions.
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