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The electric field in laser-driven plasma wakefield acceleration is orders of magnitude higher than
conventional radio-frequency cavities, but the energy gain is limited by dephasing between the
ultrarelativistic electron bunch and the wakefield, which travels at the laser group velocity. We present
a way to overcome this limit within a single plasma stage. The amplitude of the wakefield behind a train
of laser pulses can be controlled in-flight by modulating the density profile. This creates a succession of
resonant laser-plasma accelerator sections and nonresonant drift sections, within which the wakefield
disappears and the electrons rephase. A two-dimensional particle-in-cell simulation with four 2.5 TW laser
pulses produces a 50 MeVelectron energy gain, four times that obtained from a uniform plasma. Although
laser redshift prevents operation in the blowout regime, the technique offers increased energy gain for
accelerators limited to the linear regime by the available laser power. This is particularly relevant for laser-
plasma x-ray sources capable of operating at high repetition rates, which are highly sought after.
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The advent of ultrashort high-power lasers has allowed
efficient ponderomotive driving of electron plasma waves
with phase velocity close to c. When the available laser
pulses became sufficiently intense, the plasma wave was
shown to reach large amplitudes in the nonlinear blowout
regime [1–4]. Monoenergetic electron bunches, with charge
in the pC range, have been trapped in these waves and
accelerated in millimeter size plasmas to energies exceed-
ing 100 MeV [2,5,6]. These beams are ideal as compact
sources for x-ray and gamma photon imaging, demon-
strated to have exquisite femtosecond duration and micron
source size [7–13]. Compact gamma sources also have
potential applications in nuclear material detection.
Although the peak x-ray brightness is similar to synchro-
tron light sources, the average brightness is limited by the
≃1 Hz laser firing rate of high-power laser systems, which
have low wall-plug efficiencies and struggle with high heat
loads. There is therefore considerable interest in using
lower peak power lasers with higher repetition rates to
accelerate relativistic electrons [14,15]. This will achieve
both high peak brightness and high average brightness in
compact future light sources.
However, a severe and inherent limitation of laser plasma

acceleration at a given laser power is that the laser pulse

travels at a group velocity slightly below c, meaning the
highly relativistic electrons move forward relative to the
plasma wave and dephase. They eventually enter a part of
the wave with a decelerating electric field and lose energy.
Dephasing is the primary limitation for accelerators using the
linear wakefields produced by lower power lasers; by
overcoming the dephasing limit, laser wakefield accelerators
could produce electrons with much higher energies without
requiring higher laser powers or reducing the repetition rate.
One solution to dephasing is to link several accelerator

stages in series, with a new laser pulse driving each of
them (e.g., [16–18]). The use of fresh laser pulses avoids
complications with laser diffraction and depletion, however
it requires coupling every new pulse with femtosecond
accuracy. What is more, this approach requires a large
increase in the total supplied laser energy, since each new
pulse is dumped at the end of the stage. An alternative,
more efficient strategy is to manipulate the wakefield using
density gradients within a single stage, ensuring that the
electron stays in the accelerating region of the wave.
In this work, we propose such a strategy, involving the use

of multiple evenly-spaced colinear laser pulses [19], other-
wise known as a resonant laser-plasma accelerator [20,21].
The pulse train drives a wakefield only at specific resonant
plasma densities, where the pulse spacing is an integer
multiple of the plasma wavelength λp. This density reso-
nance was previously demonstrated experimentally [22],
using N ¼ 2 and N ≈ 7 pulses. By changing the electron
density ne after the dephasing length, the interaction can be
moved away from the resonance condition. This allows
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control over the wakefield amplitude during its propagation.
When dephasing occurs, the wakefield can be extinguished,
meaning the electrons never encounter a decelerating electric
field. The electrons continue to drift and advance relative to
the laser pulse, and when they reach the accelerating phase of
the wakefield, ne can be changed back to resonance. The
single plasma stage acts in the same way as the multistage
accelerator technique, with the advantage that no fresh laser
pulses are required.
In practice, the eventual limitation on the scheme is due to

the redshift of the laser pulses from propagating in the
wakefield density gradient. This alters their group velocities
and affects the pulse spacing. We will show that this limits
the parameter window to the linear wakefield regime,
reducing the possible output electron energy to far below
the multi-GeV level demonstrated in the high-intensity,
single-pulse blowout regime [23,24]. However, for accel-
erators restricted to linear wakefields by the available laser
power, the technique offers a significant improvement in
energy gain, performing better than the standard scheme
with a single laser pulse of equal total energy. This makes the
scheme applicable to x-ray photon sources that use linear
wakefields excited by high repetition-rate terawatt lasers.
There have been previous proposals for manipulating the

wakefield phase using a density ramp [25–28], shown to
increase experimental energy gain by 50% [29]. However,
rephasing the electrons in this manner only extends the
dephasing limit, rather than overcoming it. Furthermore,
use of a density ramp as in Refs. [25,26] is limited by group
velocity dispersion stretching the laser pulse. It was also
shown that density modulations can control the wakefield
phase and increase energy gains [30]. Recently it was shown
that, with greater laser energy, advanced focussing techniques
can also mitigate dephasing [31]. These techniques can all
produce GeV level energy gains in the high intensity blowout
regime. In contrast to these techniques or the multistage
wakefield accelerators, the schemewe present here is limited
to linear wakefields produced by lower power lasers.
Although the available energy gains are relatively low, they
are several times higher than otherwise possible using the
standard single pulse setupwith equal total laser fluence. This
allows high-repetition-rate laser systems with low peak
powers to produce energetic electrons with greater efficiency.
The novel aspect of our proposal is that use of several

laser pulses allows in-flight control over the wakefield
amplitude, as well as its phase. For acceleration using linear
wakefields, this leads to energy gains several times greater
than that from an equivalent uniform plasma. Furthermore,
this is the first proposed rephasing scheme that utilises the
unique properties of multiple-pulse laser wakefield accel-
eration. To our knowledge, use of multiple pulses is the
only way to gain control over the wakefield amplitude
during its propagation. This new aspect of control may lead
to innovative electron injection and rephasing schemes, of
which this work is a part.

Figure 1 illustrates the general scheme. The free electron
number density is ne ≪ nc, where the laser critical density
is nc ¼ 1.1 × 1021=λ2 cm−3 and λ is the laser wavelength in
microns. The wakefield has a wavelength λp ¼ λ

ffiffiffiffiffiffiffiffiffiffiffiffi
nc=ne

p
and frequency ωp ¼ 2πc=λp. In each plasma wave period
there is a section λp=2 long where Ez < 0 and electrons
are accelerated. The wakefield phase velocity equals the
laser group velocity vg=c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ne=nc
p

≃ 1 − ne=ð2ncÞ.
The trapped electrons (with velocity v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ−2

p
c ≃ c)

dephase when they have traveled a distance λp=2 relative
to the wave. This leads to an expression for the length
of acceleration before dephasing occurs, given by
λðnc=neÞ3=2, which is typically in the millimeter range
for λ ≃ 1 μm and ne ≃ 1018 cm−3.
If the plasma wave is driven by N Gaussian laser pulses,

each with temporal intensity profile IðtÞ ¼ I0 expð−t2=σ2Þ
and spaced by Δτ, the wakefield longitudinal electric field
amplitude is [19,22,32]

Ez0 ¼
ffiffiffi
π

p
mecNa20ω

2
pσ

4e
exp

�
−
�
ωpσ

2

�
2
�
Aðne; NÞ: ð1Þ
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FIG. 1. Schematic of the proposed scheme, shown at times
(a) t ¼ 0, (b) t ¼ Ldp=c and (c) t ¼ 2Ldp=c, where Ldp is the
dephasing length. The plots show the laser dimensionless vector
potential (solid line), given by the transverse electric field
envelope normalized to E0 ¼ 2πmec2=ðeλÞ ¼ 4 TVm−1. Also
shown is the longitudinal wakefield electric field (dotted line)
normalized to the wave-breaking field EWB ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0me=ϵ0

p ¼
270 GVm−1. There are four evenly spaced laser pulses with peak
dimensionless vector potential a0 ¼ 0.5 and λ ¼ 0.8 μm, propa-
gating to the right. In panel (b), to prevent deceleration of the
electron bunch, the wakefield has been disrupted by raising ne by
50%. In panel (c), the bunch is back in phase and so ne has been
returned to n0 ¼ 8 × 1018 cm−3.
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In this expression me is the electron mass, e is the
elementary charge and the peak dimensionless vector
potential a0 < 1 is given in terms of laser intensity by
I0 ¼ 1.4 × 1018a20=λ

2 Wcm−2, for λ in units of microns.
The resonance function A is given by

Aðne; NÞ ¼
���� sin ðNπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
neðzÞ=n0

p Þ
N sin ðπ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

neðzÞ=n0
p Þ

����; ð2Þ

where n0 ¼ ncλ2=ðc2Δτ2Þ is the resonant plasma
density such that Δτ ¼ λp=c. The amplitude A ¼ 1 when
neðzÞ ¼ n0 and A¼0 when ne¼n0ð1�1=NÞ2, as shown
in Fig. 2(a).
The phase of the wakefield experienced by an electron

bunch traveling at c is described by

ϕðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
neðzÞ
n0

s �
ϕ0 þ π

Z
z

z0

neðz0Þ
n0

dz0

Ldp

�
; ð3Þ

where ϕ0 is the initial phase of the electron bunch at z0, the
dephasing length Ldp ¼ λðnc=n0Þ3=2 and the integral term
is due to the varying group velocity of the laser pulse in a
density profile. For the case with ne ¼ n0 and the optimal
pulse duration σ ¼ ffiffiffi

2
p

=ωp, the maximal electron energy
gain over a length Ldp for a0 < 1 can be calculated by
integrating Eq. (1). The phase in Eq. (3) reduces to
ϕ ¼ πz=Ldp, giving the energy gain

ΔU0 ¼ e
Z

Ldp

0

Ez0 sinðπz=LdpÞdz ð4Þ

≃1.5mec2Na20nc=n0: ð5Þ

As the accelerating field experienced by the electron
bunch is EzðzÞ ∝ −AðzÞ sin½ϕðzÞ�, the density profile should
be designed to maximise AðzÞ while 0 ≤ ϕðzÞ mod 2π < π
and minimize AðzÞ while π ≤ ϕðzÞ mod 2π < 2π. Note
that as the radial electric field is described by Erðz; rÞ ∝
−AðzÞr cos½ϕðzÞ�, this density profile results in the electron
bunch experiencing both focusing and defocusing regions
of the wakefield. Surprisingly, we found that this reduced
the transverse divergence of the electron bunch when
compared to a purely focusing scheme, where AðzÞ was
only maximized while π=2 ≤ ϕðzÞ mod 2π < π. In our
scheme the transverse electric field is analogous to the
strong focussing regime in conventional particle accelera-
tors, where a periodic arrangement of focusing and defocus-
ing quadrupoles is used to prevent growth in the beam
divergence.
Figure 1(b) shows the situation after propagation beyond

the dephasing length, where ϕðzÞ ¼ ϕ0 þ π. The density
has been increased by 50%, so resonance is lost and there
is no wakefield during the decelerating section. Due to the
large extinction ratio of Eq. (2) with N ≫ 1, the exact
density profile and its amplitude are not important, only
that the increased density n1 > n0ð1þ 1

NÞ2. The required
length of the acceleration sections is L0 ¼ Ldp and Eq. (3)
shows that the length of the drift sections should be L1 ¼
L0n0=n1. In Fig. 1(c), ϕðzÞ ¼ ϕ0 þ 2π and the electron
bunch is back in phase, albeit in the preceding period. The
density has been returned to the resonant value n0.
Figure 3 shows the scheme using contours of the

relativistic electron Hamiltonian, giving the phase space
trajectories. When the wakefield is switched off, the
electron maintains constant energy. This allows jumps
between separate trajectories, each with energy gain
≃ΔU0. The trajectories shown assume optimal acceleration
lengths L0, which tend toward Ldp for large γ.
The scheme proposed here only requires a spatial

modulation of the plasma density with a period of several
millimeters. This should be achievable using, for example,
multiple gas jets [28] or capillary waveguides [33]. Note
that laser wakefield acceleration is also limited by diffrac-
tion, since the Rayleigh range zR ¼ πw2

0=λwill be less than
Ldp if the laser transverse spot size w0 ≃ λp. This means
acceleration beyond Ldp requires an overly wide w0 or a
laser waveguide [34–37]. Second order effects such as
depletion [38] and group velocity dispersion will also affect
the driver pulses. This paper only describes a way of
overcoming dephasing, upon which laser diffraction and
depletion become the primary limitations.
The depletion is associated with laser redshift, causing an

increase in pulse spacing and loss of resonance. The laser

(a)

(b)

FIG. 2. (a) Wakefield amplitude, relative to the value at
resonance, for N ¼ 2, 5 and 10 laser pulses. This is given by
Eq. (2), as a function of electron density normalized to
n0 ¼ ncλ2=ðc2Δτ2Þ. (b) Estimates of the maximum achievable
electron energy gain for the standard scheme in a uniform plasma
(ΔU0) and for the mitigated dephasing scheme (ΔU1). This is
shown as a function of the laser intensity multiplied by the
number of pulses N, for laser wavelength 0.8 μm and
n0 ¼ 8 × 1018 cm−3.
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wavelength initially evolves [38] as λðtÞ ¼ λ0ð1þ ct=LredÞ,
where λ0 is the initial wavelength and Lred ≃ 2Ldp=ðNa20Þ is
the redshifting depletion length for the rearmost pulse. By
approximating this for short propagation, its group velocity
and position is

vg ¼ c

�
1 −

λ2

2λ2p

�
≃ c

�
1 −

λ20
2λ2p

�
1þ ctNa20

Ldp

��
; ð6Þ

z ≃ z0 þ
�
1 −

λ20
2λ2p

�
ct −

Na20λ
4
0

4λ5p
ðctÞ2: ð7Þ

The plasma wave resonance is lost when the quadratic
term reaches a value of λp=2. This gives the maximum

acceleration length as L ¼ Ldp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðNa20Þ

p
≪ Lred and,

accounting for the drift sections, an energy gain of

ΔU1 ≃
3nc
2n0

mec2
ffiffiffiffiffiffiffiffiffi
Na20

q
¼ ΔU0ffiffiffiffiffiffiffiffiffi

Na20
p : ð8Þ

Effective acceleration beyond the dephasing length there-
fore requires

ffiffiffiffiffiffiffiffiffi
Na20

p
≪ 1, meaning the driver pulses

have subrelativistic intensity and the wakefield is linear.
Figure 2(b) shows plots of the estimates ΔU0 and ΔU1.
Since the scheme is restricted to linear wakefields

generated by laser pulses with a0 ≪ 1, self-injection will
not generally occur. Instead, controlled injection is possible
through, for instance, a density downramp at the start of the
accelerating section [39], or an ionization injection scheme
using a separate injection pulse [40,41]. A scheme for
controlled injection in a resonant multipulse accelerator
is described in Ref. [42]. These will lead to lower beam
emittance and energy spread than possible with self-injection

from high intensity laser pulses, which is a significant
advantage of a multipulse scheme. It is not however our
intent to explore injection in this paper, instead focusing on
the accelerating scheme itself.
To further investigate this scheme, and the laser pulse

evolution, we conducted a two-dimensional Cartesian
particle-in-cell simulation using the code EPOCH [43].
Due to the linear wakefield and lack of injection mecha-
nisms or self-focussing, a two-dimensional simulation was
judged to accurately represent the interaction. The simu-
lation used a moving spatial domain with velocity c, length
110 μm and width 400 μm. The grid size was 5040 by
576 cells. There were four identical transform limited
Gaussian laser pulses, each with wavelength 0.8 μm, peak
intensity 4 × 1016 Wcm−2, a0 ¼ 0.14, full width at half
maximum duration 15 fs and each spaced by 40 fs. The
transverse waist was w0 ¼ 58 μm; this made the Rayleigh
length similar to the simulated propagation of 13.4 mm,
with the position of best focus at z ¼ 6.7 mm.
The resonant plasma density was n0 ¼ 8 × 1018 cm−3,

giving λp ¼ 11.8 μm. The density was modulated longi-
tudinally so that the plasma wave lost resonance when the
trapped electrons were in a decelerating part of the plasma
wave, using n1 ¼ 1.25 × 1019 cm−3. This required repeat-
ing a series of acceleration stages of length L0 ¼ 2.3 mm
and drift stages of length L0n0=n1 ¼ 1.5 mm. Due to laser
pulse evolution, the optimal value of L0 was slightly shorter
than Ldp ¼ 2.6 mm. The density transitions had a length-
scale of 0.2 mm. There were 64 electron macroparticles per
cell at temperature 100 eV, with static ions. Relativistic
electrons were initialized in a 0.2 pC bunch in the final
plasma wave period in the simulation domain. They had
momentum pz ¼ 15 MeV=c, and a Gaussian profile with
transverse waist 5 μm and longitudinal waist 1 μm. The
simulation used the standard Yee field solver with an
increased time-step to give accurate numerical dispersion
and group velocity. The transverse boundary conditions
were periodic for the fields and open for the electron bunch.
The standard particle push and current deposition were
used [43]. The simulation setup is provided as supplemen-
tary material [44].
Figure 4 shows three time-steps from the two-

dimensional particle-in-cell simulation, as a function of
the comoving coordinate z − ct. In the first time step, the
plasma density is close to the resonant value, giving λp ¼
cΔτ and a high amplitude wakefield. Notice how the
wakefield amplitude grows linearly with each laser pulse.
At the later time step, shown in Fig. 4(b), the relativistic

electrons are in the decelerating phase and so the density
has been moved away from resonance, causing a loss of
wakefield amplitude and minimal deceleration. In Fig. 4(c)
the bunch is again in phase and so the density has been
returned to n0 to restore the wakefield, giving another
similar burst of acceleration. The laser pulse red-shift and
steepening also become apparent at this time. This can also

-4 -3 -2 -1 0
(z - v

g0
t) / 

p0

0

20

40
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80

100

Acceleration
Drift
Electron Bunch

FIG. 3. Contours of the Hamiltonian Hðγ; z − vgtÞ for an
electron with energy γmec2 in the plasma wakefield, shown
for the acceleration (solid contours) and drift (dashed) sections of
the scheme. The black line shows the trajectory of an example
electron bunch. In this example, using four laser pulses each with
a0 ¼ 0.1 in plasma at n0 ¼ 8 × 1018 cm−3, the energy gain for
each acceleration section is ΔU0 ≃ 16mec2 and the total gain is
ΔU1 ≃ 4ΔU0.
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be seen in Fig. 4(d), which shows the longitudinal electric
field. In the co-moving coordinate, the wakefield steadily
shifts backwards due to the laser group velocity being less
than c. Notice how the wakefield amplitude is effectively
extinguished when it would be decelerating the electron
bunch. At later times, the extinction ratio in the drift
sections becomes weaker. This is because the laser pulse
envelopes and spacing have changed. In addition, the
longitudinal electric field becomes slightly greater at later
times due to the laser pulse steepening, as well as the
transverse focussing.

The laser pulse red-shift increases with intensity, mean-
ing the on-axis region of the laser pulse sustains a slower
group velocity. This leads to a forward curvature of the
wakefield wave-fronts [Fig. 4(e)] developing over time.
Some values of z − ct have consistently negative Ez over

many dephasing lengths, suggesting that trapped electrons
will exceed the dephasing limited energy gain. This is
shown by Fig. 5(a). The electron bunch retains fairly
narrow energy spread, and continues on to receive an
energy gain of ΔU1 ¼ 50 MeV, over four times the gain
from the first dephasing length ΔU0 ¼ 12 MeV. These
values are similar to the estimates in Fig. 2(b) for the
simulated value of NI ¼ 1.6 × 1017 Wcm−2.
Emittance growth during the drift stages may also be of

concern. However, these sections may be significantly
shortened by using a higher density n1. Figure 5(b)
compares the angular beam distribution with respect to
the z axis at the end of the simulation and after the first
dephasing length. The lengthened propagation does not
significantly increase the beam divergence, and only a
small fraction of charge escapes the wakefield transversely.
Motion of the ions presents an additional consideration.

However, in Ref. [19], it was found that this only becomes
significant for N > 50. Since the plasma density must be
maintained within a range of n0ð1� 1=NÞ2, it is likely that
N ≃ 5–10 pulses will be optimal, given experimental
engineering constraints on the density uniformity. As the
dephasing limit is one of the primary considerations
pushing laser wakefield accelerators to lower densities
and longer acceleration stages, an additional benefit to
eradicating dephasing is that higher plasma densities and
shorter propagation stages can be used. This both decreases

(a)

(b)

(c)

(d)

(e)

FIG. 4. Results of the two-dimensional particle-in-cell sim-
ulation, using n0 ¼ 8 × 1018 cm−3, n1 ¼ 1.25 × 1019 cm−3, and
four 15 fs, λ ¼ 0.8 μm laser pulses with peak intensity
I ¼ 4 × 1016 Wcm−2. The panels show axial line-outs at times
(a) ct ¼ 1 mm, (b) 3 mm, and (c) 5 mm. The plots show the
laser dimensionless vector potential (dotted line), given by the
transverse electric field envelope normalized to
E0 ¼ 2πmec2=ðeλÞ ¼ 4 TVm−1. Also shown is the longitudinal
wakefield electric field (dashed line) normalized to the wave-
breaking field EWB ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0me=ϵ0

p ¼ 270 GVm−1. The relativ-
istic electron density (solid line) is normalized to n0 and
multiplied by 100 for visibility. (d) The on-axis longitudinal
electric field across the space-time diagram. (e) The longi-
tudinal electric field at ct ¼ 9 mm. Relativistic electrons are
shown in black.

(a)

(b)

FIG. 5. Results of the two-dimensional particle-in-cell simu-
lation. (a) Spectrum of the electron bunch as a function of time.
(b) Angular distribution of the accelerated electrons in the x-z
plane, shown after the first dephasing length at ct ¼ 2.3 mm and
at the end of the simulation.
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the laser power requirement for relativistic self-guiding and
reduces the need for complex guiding structures.
Achieving maximal energy transfer efficiency requires a

high bunch charge and heavy beam loading, which in this
case would cause excessive electron deceleration and
spectral dispersion in the drift sections.
In summary, we have presented a new scheme to

overcome the laser-wakefield dephasing limit in the linear
regime. With use of several driver pulses, varying the
plasma density allows a high degree of control over the
wakefield amplitude. With a small change in plasma
density, the wakefield can be extinguished, preventing
deceleration of the electron bunch. Since the subsequent
limitation is depletion and red-shift of the pulses, which
does not happen for several dephasing lengths, this allows
energy gains many times higher than usual. Furthermore, a
two-dimensional simulation demonstrated that the low
divergence angle and narrow energy spread is maintained.
This work paves the way for use of lower power, kHz
repetition-rate lasers for generation of relativistic electron
beams and laser-plasma photon sources.
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