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The physics program at the future electron ion collider (EIC) calls for polarized neutron beams at high
energies. The best neutron carriers are 3He nuclei and deuterons. Both neutron carriers are expected to be
utilized by the spin physics program in the EIC. Owing to the small magnetic moment anomaly of a
deuteron particle, significantly higher magnetic fields are required for spin rotation, so that full Siberian
snakes are not feasible. However, the resonance strengths are weak, and the number of resonances is small.
It is possible to deal with individual resonances using conventional methods such as a betatron tune jump
and vertical ac dipole for intrinsic depolarizing resonances, and a weak partial snake for imperfection
resonances. This study employed a realistic magnet ramp rate and parameters (both transverse and
longitudinal emittances, as well as realistic lattices) to show that it is possible to accelerate polarized
deuterons beyond 100 GeV/n. This paper summarizes the details of the feasibility of a polarized deuteron
beam for the future EIC at Brookhaven National Laboratory.
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I. INTRODUCTION

The collision of polarized proton beams has been an
essential component of the Relativistic Heavy Ion Collider
(RHIC) operations in the past two decades. To preserve the
proton polarization, a pair of Siberian snakes [1] have been
used in each of the two rings [2]. The deuteron is on the list
of species to be collided in the future electron ion collider
(EIC) [3], so that the spin properties of the neutron can be
studied relative to those of the proton. The EIC is under
design at Brookhaven National Laboratory (BNL), and will
utilize one of the existing RHIC rings as an ion ring. As
there is no easy method of accelerating polarized neutrons
to high energies, a polarized deuteron beam provides an
alternative solution. A deuteron consists of a proton and a
neutron. One important feature of the deuteron is its very
small anomalous magnetic g-factor of G ¼ −0.1426. This
has a profound effect on the manipulation of its spin in a
synchrotron. The Siberian snake scheme employed in
RHIC does not work for a polarized deuteron. Owing to
the small value of G, a considerably higher magnetic field
is required for spin rotation. The required magnetic field is
so high that Siberian snakes are not feasible. On the other
hand, with the small value of G the resonance strengths are

expected to be weaker and the energy separation between
resonances is expected to be wider than in the proton case.
In fact, there are similar constraints in medium-energy

synchrotrons for polarized protons, such as the Alternating
Gradient Synchrotron (AGS). The magnetic field from a
full snake is too strong and the associated orbit excursion is
too large at low and medium energies. The imperfection
resonances are overcome by either harmonic orbit correc-
tion (as adopted in the 1980s in the AGS [4] and now in the
AGS Booster [5]) or partial snakes (as currently used in the
AGS [6]). The intrinsic resonances can be overcome using
several approaches. First, the resonance crossing speed can
be increased by betatron tune jumps, such as in the AGS
in the 1980s, at 0.2 units in one turn [4] or 10 turns for
strong resonances [7] and 0.04 units in 37 turns for weak
resonances [8]. Second, the strong intrinsic resonances can
be enhanced by creating coherent betatron oscillations using
an ac dipole [9]. Third, a radial jump can be utilized for weak
intrinsic resonances [10]. Fourth, a stronger partial snake can
be utilized to generate a sufficiently large spin-tune gap such
that the intrinsic resonances can be avoided when the
betatron tune is in the spin-tune gap [11]. These ideas have
previously been tested in the AGS. Taking advantage of the
small number of resonances, one can address particular
resonances by applying the known techniques, such as a tune
jump, or using a partial Siberian snake.
There have been multiple efforts to study the feasibility

of accelerating polarized deuterons in RHIC [12–14].
These studies have shown that the acceleration of a
polarized deuteron beam in RHIC accelerator chain is
feasible, and several techniques and relevant parameters
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have been presented. Some conclusions of previous studies
are summarized as follows: The imperfection resonances
can be overcome by a partial snake. However, the estimate
of the required partial snake strength has varied among
different authors from 0.06% to 0.5%. Existing Siberian
snakes have been proposed for utilization as partial snakes
for deuterons by some authors, while others have proposed
adding a new solenoid. It has been proposed to overcome
intrinsic resonances using a fast vertical tune jump of 0.003
in one turn [12] or an ac dipole [13].
These analyses were mostly conducted before RHIC

was operational. There are several motivations for a new
study of polarized deuteron acceleration in the EIC at
BNL. First, as the realistic RHIC magnet ramp rate is
slower than assumed in these studies, the required partial
snake strength must be reevaluated. The detector sole-
noids should be considered in this process. Second, the
spin-tune spread effect was not previously considered for
either imperfection or intrinsic resonances. Third, a fast
one-turn tune jump can easily result in emittance growth,
as observed during the experiment in the AGS in the
1980s [4]. A benign tune jump system with a tune jump
over 37 turns has been implemented in the AGS [8], which
mitigated the emittance growth problem. Owing to the
weak resonance strength, such a tune jump system with a
slower tune jump is sufficient. As the resonance strengths
are weak and vary over a wide range, an ac dipole would
not be able to overcome these at a practical strength. This
study analyzes the imperfection and intrinsic resonance
spectra for BNL EIC lattices. We then estimate the
required partial snake strength and tune jump system
requirements. The paper is organized as follows.
Section II describes the polarized deuteron before injec-
tion into the EIC ion ring. Then, Sec. III discusses
methods to overcome imperfection resonances, and
Sec. IV presents details on how to reach longitudinal
polarization in the collision region. Section V discusses
methods to overcome intrinsic resonances and Sec. VI
discusses the overlapping resonances and synchrotron
sidebands. Finally a summary is provided in Sec. VII.

II. POLARIZATION IN THE INJECTORS

The AGS Booster energy range [15] for the deuteron is
0.95 GeV–1.3 GeV, with jGγj in the range of 0.14 to 0.2.
There are no imperfection resonances in the Booster. If the
fractional tune is not between 0.14 and 0.2 (or 0.8–0.86),
then intrinsic spin resonances are also avoided.
The AGS energy range is from 1.3 GeV to 10 GeV, with

a jGγj range of 0.2 to 1.5. There is only one imperfection
resonance in this range, at jGγj ¼ 1, and this resonance is
very weak. There are three intrinsic resonances, but none
of these are enhanced with the superperiod of 12. Their
strengths, calculated from DEPOL [16], are very small. For
the given AGS ramp rate, none of these resonances cause a
polarization loss.

Because there is a horizontal bending section between
two vertical bending sections, there is a spin mismatch
issue for protons in the AGS-to-RHIC (AtR) transfer line.
The reason for the spin mismatch is as follows: there are
two opposite and equal vertical bends interleaved with a
horizontal bend. For protons, these yield a series of
rotations that do not commute, and end up leaving the
spin vector tilted slightly away from the vertical axis.
However, with such a small G value for deuterons and no
snake in the AGS, the spin rotation angles around both the
vertical and horizontal axes are approximately commutable
with a small rotation angle. Thus, spin matching in the AtR
line is not an issue for the deuteron, and tracking with
ZGOUBI [17] confirms this. A comparison between the
vertical components for the deuteron and proton in the AtR
transfer line is presented in Figs. 1 and 2.

FIG. 1. The ZGOUBI tracking results for the vertical spin
components of 36 proton particles with different energies ranging
from 21.8 GeV to 29.8 GeV in the AtR beam line. The vertical
spin can vary significantly through the AtR line.

FIG. 2. The ZGOUBI tracking results for the vertical spin
components of six deuteron particles with different energies
ranging from 10 GeV to 13.1 GeV in the AtR beam line. There is
no significant variation in the final vertical spin.
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III. OVERCOMING IMPERFECTION SPIN
RESONANCES

The challenge of polarization preservation occurs in
the ion ring of the BNL EIC, where the deuteron energy
range is from 10 GeV to 137.5 GeV, or jGγj from 1.5 to
20.9, with total of 19 imperfection resonances. An energy
of 137.5 GeV corresponds to Bρ of the proton at an energy
of 275 GeV. The nominal ramp rate for unpolarized
deuteron operation in RHIC is dγ=dt ¼ 90=220, which
corresponds to a resonance crossing rate of α ¼ 1.2 × 10−7,
where α is defined as dGγ

dθ and θ is the orbit angle. This only
represents approximately one fifth of the rate assumed in
previous studies. The imperfection resonance strengths
for deuterons have been calculated using DEPOL [16] for
several standard RHIC lattices with random orbit errors.
From beam–beam analysis and previous experience of RHIC
operation, three possible vertical tunes are considered as
0.175, 0.224, and 0.673. With an rms orbit error of 0.3 mm,
the strongest resonance strength is less than 0.0015.
As the resonance strengths are generally weak, a partial

snake can overcome these resonances. The required partial
snake strength can be estimated from the Froissart–Stora
formula [18]. The localized spin rotation by a partial snake
with a strength of χ is χδðθ − θ0Þ and the strength of the
generated resonance is the Fourier amplitude χ

2π e
inθ0 , for all

integers n. Here, θ0 is the relative phase of the resonance. In
the presence of an imperfection resonance and a partial
snake, the Froissart–Stora formula [18] can be rewritten as

Pf

Pi
¼ 2 exp

�
−

π

2α

����ϵþ χ

2π
einθ0

����
2
�
− 1; ð1Þ

where Pi and Pf are the polarization before and after
crossing the resonance, respectively; ϵ is the resonance
strength; and α ¼ dðGγÞ

dθ is the resonance crossing rate.
A complete spin-flip occurs if

χ ≫ 2πjϵj þ
ffiffiffiffiffiffiffiffi
8πα

p
: ð2Þ

Using the strongest resonance strength of 0.0015 and the
given resonance crossing speed α ¼ 1.2 × 10−7, for a spin
flip of over 99%, the partial snake strength χ=π must be
greater than 0.00355. A strength of 0.0045, or a 0.45%
partial snake, would satisfy this requirement.
The strengths of existing Siberian snakes for the deu-

teron have been calculated by tracking particles through the
four helical modules with various currents. The strongest
strength of an existing snake is 0.015%. This is too weak to
be utilized for the deuteron. A solenoid can be added to
preserve the polarization through these imperfection reso-
nances. A solenoid of a given strength BsL rotates the spins
of particles by an angle

χ ¼ ð1þ GÞBsL=Bρ ð3Þ

and produces an integral of resonance strength

ϵsol ¼ χ=2π ð4Þ

at all integer values ofGγ. In the above two equations, Bs is
the solenoid magnetic field, L is the effective length of
the solenoid, and Bρ is the magnetic rigidity of the beam.
When the beam energy increases, the corresponding
resonance strength decreases for a constant solenoid field.
At the energy of the highest imperfection resonance at
jGγj ¼ 20, the required 0.45% solenoidal partial snake
corresponds to a 15-Tm solenoid field.
The current BNL EIC design includes two detectors:

detector 1 and detector 2. Both detectors utilize solenoids,
and the field strengths are constant for their physics
programs. These two detector solenoids impact the deu-
teron spin, and their effects need to be considered. If their
strengths are sufficiently strong, then they can be used as
partial snakes for polarized deuterons. Otherwise, an addi-
tional solenoid should be added for polarization preserva-
tion. The operational scenarios could involve detector 1
alone, or eventually both detectors running. In the current
design, the detector 1 solenoid strength is 15 Tm and the
detector 2 solenoid strength is 5.6 Tm.
The two detector solenoids are separated in the orbit

angle by π=3. For the two-detector operation scenario, the
total partial snake strength can be calculated from the one-
turn spin rotation matrix. In this paper, the indices (1, 2, 3)
stand for (radial, longitudinal, vertical) respectively.
Considering two partial snakes separated by 1=m of the
accelerator ring, with χ1 and χ2 spin-rotation angles,
respectively, the one-turn matrix (OTM) is given by

T ¼ e−i
1
2
Gγð2π−2π

m−θÞσ3 · e−i
χ2
2
σ2e−i

1
2
Gγ2πmσ3e−i

χ1
2
σ2e−i

1
2
Gγθσ3 ð5Þ

where θ is the orbit angle between the observation point
and the partial snake with a rotation angle of χ1. Using the
Pauli spin matrix relations, the stable spin vector for this
OTM can be calculated as

T ¼ e−iπνsn̂co·σ⃗

¼ I cosπνs − iðσ1 cosα1 þ σ2 cosα2 þ σ3 cosα3Þ sinπνs;
ð6Þ

where νs is the spin-tune, ðcos α1; cos α2; cos α3Þ are the
stable-spin direction n̂co-directional cosines along the
radially outward, longitudinally forward, and vertically
up axes, respectively. From the above two equations, the
spin-tune with two partial snakes is given by

cos πνs ¼ cos
χ1
2
cos

χ2
2
cosGγπ

− sin
χ1
2
sin

χ2
2
cosGγ

�
π −

2π

m

�
ð7Þ
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and the stable-spin directions with two partial snakes are

cos α1 ¼
−1

sin πνs

�
cos

χ1
2
sin

χ2
2
sinGγðπ − θÞ

þ sin
χ1
2
cos

χ2
2
sinGγ

�
π −

2π

m
− θ

��
;

cos α2 ¼
1

sin πνs

�
cos

χ1
2
sin

χ2
2
cosGγðπ − θÞ

þ sin
χ1
2
cos

χ2
2
cosGγ

�
π −

2π

m
− θ

��
;

cos α3 ¼
1

sin πνs

�
cos

χ1
2
cos

χ2
2
sinGγπ

− sin
χ1
2
sin

χ2
2
sinGγ

�
π −

2π

m

��
ð8Þ

Note that the vertical component of the stable-spin
direction is independent of the orbit angle θ. Only the
horizontal and longitudinal components are dependent on
the orbit angle.
In the two-detector case, the two solenoids are separated

by one sixth of the ring, orm ¼ 6. The spin-tune is given by

cos πνs ¼ cos
χ1
2
cos

χ2
2
cosGγπ

− sin
χ1
2
sin

χ2
2
cosGγ

�
2π

3

�
ð9Þ

Here, the effective resonance strengths of the two partial
snakes will be modulated by Gγ. The imperfection reso-
nance strengths of the three different lattices calculated
from DEPOL [16] are plotted in Fig. 3. The two dashed
lines represents the thresholds for a 99% spin flip and 1%
polarization loss based on the realistic RHIC ramp rate and
Eq. (1) with χ ¼ 0 (no partial snake). Between the two
dashed lines, the resonance strengths are sufficiently strong
to cause sizable polarization losses. As can be observed,
the snake strength of the dual partial snake varies around
the single partial snake case with a period of jGγj ¼ 6. The
polarization after each imperfection resonance can be
calculated using the Froissart–Stora formula for each
lattice. For example, Fig. 4 depicts the polarization after
each imperfection resonance for a lattice with νy ¼ 30.224.
For the case with two partial snakes, the worst case scenario
is assumed, where the partial snakes and imperfection
spin resonance are out of phase. The results show that the
two detector solenoids are sufficiently strong to achieve
more than 99% polarization through each imperfection
resonance.
For the one-detector solenoid case, the spin-tune and

stable spin direction can be deduced from Eqs. (7)–(9) by
letting χ2 ¼ 0 and m → ∞:

cos πνs ¼ cos
χ1
2
cosGγπ; ð10Þ

cos α1 ¼
−1

sin πνs

�
sin

χ1
2
sinGγðπ − θÞ

�
;

cos α2 ¼
1

sin πνs

�
sin

χ1
2
cosGγðπ − θÞ

�
;

cos α3 ¼
1

sin πνs

�
cos

χ1
2
sinGγπ

�
ð11Þ

It can be observed from Eq. (11) that with θ ¼ 0 (at the
detector location) and jGγj ¼ integer, the spin is in the
longitudinal direction. The resonance strength of detector 1
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FIG. 3. The imperfection resonance strength with three ion-ring
lattices. The partial snake resonance strengths for single and dual
detector solenoids are shown. From Eq. (4), the partial snake
strength decreases as the energy increases for a constant solenoid
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is plotted in Fig. 3. With detector 1 running alone, this acts as
one partial snake, and is sufficiently strong. With detector 2
running alone, additional solenoid fields are required at the
detector 2 location to preserve the polarization.
Partial snakes tilt the stable spin direction away from the

vertical. With injection at jGγj ¼ 1.5, the strengths of
the two partial snakes are about 6% and 2%, respectively.
The vertical spin component is 0.995 out of 1 in the case with
two partial snakes or just 6%partial snake alone fromEqs. (9)
and (11). This is a small tilt. In addition, the nonvertical stable
spin direction introduces depolarizing resonances related to
the horizontal tune, as the so-called horizontal intrinsic
resonances [19]. However, these only have a strong enough
resonance strength for partial snakes with a strength higher
than 10%. For the partial snake strengths considered in this
study, the horizontal resonance effect is negligible.

IV. LONGITUDINAL POLARIZATION

Physics experiments require polarization along the longi-
tudinal direction at the detectors. For protons, this is achieved
by using spin rotators to rotate the vertical spin into and out of
the longitudinal direction in the interaction region (IR). In the
BNL EIC ion ring, the stable-spin direction of the deuteron
beam is nearly vertical except when Gγ is near an integer.
In general, it is impossible to build spin rotators to rotate the
spin from vertical to longitudinal, owing to the smallG value.
However, at Gγ ¼ integer, the stable-spin direction will
precess in the horizontal plane. For certain energies, polari-
zation is naturally in the longitudinal direction at the
experimental IRs. For a single-detector operation scenario,
as shown in Eq. (11), the vertical (cos α3) and horizontal
(cos α1) components are both zero when Gγ is an integer.
Therefore, experiments with longitudinal spin are possible at
the discrete energies with jGγj ¼ integer, or approximately
every 6.58 GeV.
The most likely operation scenario for the BNL EIC is to

operate with two detectors. The two-detector scenario is
more complicated. At the first partial snake withm ¼ 6 and
θ ¼ 0, the stable spin direction is

cos α1 ¼
−1

sin πνs

�
cos

χ1
2
sin

χ2
2
sinGγ

�
4π

3

�

þ sin
χ1
2
cos

χ2
2
sinGγπ

�
;

cos α2 ¼
1

sin πνs

�
cos

χ1
2
sin

χ2
2
cosGγ

�
4π

3

�

þ sin
χ1
2
cos

χ2
2
cosGγπ

�
;

cos α3 ¼
1

sin πνs

�
cos

χ1
2
cos

χ2
2
sinGγπ

− sin
χ1
2
sin

χ2
2
sinGγ

2π

3

�
ð12Þ

Similarly, at the second partial snake with m ¼ 6 and
θ ¼ −2π=6, the stable spin direction is

cos α1 ¼
−1

sin πνs

�
cos

χ1
2
sin

χ2
2
sinGγ

�
4π

3

�

þ sin
χ1
2
cos

χ2
2
sinGγπ

�
;

cos α2 ¼
1

sin πνs

�
cos

χ1
2
sin

χ2
2
cosGγ

�
4π

3

�

þ sin
χ1
2
cos

χ2
2
cosGγπ

�
;

cos α3 ¼
1

sin πνs

�
cos

χ1
2
cos

χ2
2
sinGγπ

− sin
χ1
2
sin

χ2
2
sinGγ

2π

3

�
ð13Þ

It is clear that the horizontal and vertical components
are zero when Gγ ¼ 3n, where n is an integer. Therefore,
experiments with longitudinal spin are possible at the
discrete energies with jGγj ¼ 3 × integer, or approximately
every 19.74 GeV.
In addition, to maintain longitudinal polarization using a

solenoid, the spin-tune spread must be considered. For a
synchrotron without a full or strong partial snake, the spin-
tune spread is given by [20]

Δνs ¼ β2Gγ
dp
p

ð14Þ

where β is the velocity relative to the speed of light. From
experience of unpolarized deuteron operation in RHIC, the
full width of the momentum spread dp

p is approximately

1.28 × 10−3 at injection and 0.43 × 10−3 at jGγj ¼ 18. The
spin-tune spread is to the order of 0.0077 for the highest
possible energy with jGγj ¼ 3n at jGγj ¼ 18. The induced
resonance strength at an integer must be larger than the
spin-tune spread, so that all particles are covered by the
resonance. The resonance strength of a partial snake is to
the order of 0.00225. By itself, this is not sufficient to
maintain a longitudinal direction for all particles at
jGγj ¼ 18. One solution is to add orbit errors to enhance
the imperfection resonance. This can be achieved using
a harmonic bump, to bring the rms orbit to the order
of 4–6 mm at the given energy.
For lower energies, such as jGγj ¼ 3, 6, the resonance

strength of the solenoid partial snake is sufficiently strong.
At jGγj ¼ 18, a harmonic orbit bump with both sine and
cosine terms can be used to generate a large resonance
strength. A strength of 0.025 can be achieved with a rms
orbit of 6 mm, and a strength of 0.02 can be reached with a
rms orbit of 4.5 mm. This harmonic orbit bump is only
required after acceleration is completed, and thus the
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remainder of the resonances on the ramp are not affected.
Similarly, at jGγj ¼ 15 a resonance strength of 0.021 can
be generated by a rms orbit of 4.4 mm. This strength is
enough for the spin-tune spread of 0.007 at this energy. In
summary, a longitudinal polarization can be achieved at
certain jGγj values by introducing additional harmonic
orbits to correct for the expected spin-tune spread owing to
the momentum spread.

V. OVERCOMING INTRINSIC
SPIN RESONANCES

The intrinsic resonance strength can also be calculated
fromDEPOL [16]. Based on previous unpolarized deuteron
beam operations in RHIC, a 2 μm normalized rms beam
emittance is expected. Figure 5 depicts the resonance
strengths with a rms emittance of 2 μm for a few lattices.
The three-fold symmetry means that the stronger resonan-
ces occur at Gγ ¼ 3n� νy. However, owing to the slow
ramp rate, other resonances can also cause polarization
losses, which were not included in previous studies. The
strongest resonance is at Gγ ¼ 12 − νy, where the strength
is approximately 3.5 × 10−3 for a 2 μm emittance beam.
This resonance can fully flip the spin with the nominal
ramp rate.
There are several possible methods of overcoming

intrinsic resonances with strengths between the two dashed
lines in Fig. 5. An AC dipole has been utilized in the AGS
before dual partial snakes were employed [9]. The idea is to
generate an artificial resonance strength near the existing
intrinsic resonance to overpower it. However, for some
relatively weak resonances, the required betatron oscilla-
tion is beyond the available physical aperture. The betatron

oscillation is limited to a 5σ-rms beam size by aperture.
This amplitude is not sufficient to overcome all intrinsic
resonances in the energy range.
On the other hand, a vertical tune jump can be utilized to

provide a fast resonance crossing speed. From experience
with the AGS, it is not necessary to jump the betatron tune
in one turn to maintain the polarization over a strong
intrinsic resonance. It has been demonstrated that a vertical
tune jump of 0.2 over 10 orbit turns is effective, and the
emittance growth in this case is considerably smaller [7]. A
benign horizontal tune jump scheme in the AGS has also
been implemented in recent operations to overcome the
horizontal intrinsic resonances [19] induced by the partial
Siberian snakes [6]. A tune jump of 0.04 over 37 turns did
not lead to more than 10% emittance growth. Note that
although the AGS horizontal tune jump system was
intended for the horizontal plane, it also induced a vertical
tune jump of approximately 0.02. As the vertical betatron
tune is close to an integer (0.98 or closer), the emittance
growth is in the vertical, but not visible in the horizontal. In
the case of the BNL EIC, where the working point is away
from an integer, it is expected that the emittance growth
would be negligible.
The final polarization after crossing an isolated

depolarizing resonance is given by the Froissart–Stora
formula [18]. When integrated over a Gaussian beam, this
yields [19]

Pf

Pi
¼ 1 − πjϵj2

α

1þ πjϵj2
α

ð15Þ

In the case of a tune jump, the resonance crossing rate is

α ¼ dðGγÞ
dθ

� dνy
dθ

: ð16Þ

To overcome the resonance strength shown in Fig. 5
and achieve over 99% polarization preservation for
each resonance, the required resonance crossing speed
should be approximately 9.5 × 10−5, or about 800 times
the value of the regular ramp rate. Next, the required tune-
jump amplitude needs to be determined. As shown in
Eq. (14), the spin-tune spread at the highest intrinsic
resonance (jGγj ¼ −9þ νy ¼ 20.673) is approximately
0.0264. For the tune jump to be effective for all particles,
the tune-jump amplitude must be larger than the spin-tune
spread of 0.0264. With nonzero chromaticity and momen-
tum spread, the resonance conditions should be rewritten as

Gγ ¼ N − ðνy � ξydp=pÞ; ð17Þ

Gγ ¼ N þ ðνy � ξydp=pÞ; ð18Þ

where ξy is the vertical chromaticity, and �dp=p gives the
up and down boundaries of the momentum distribution.

0 20 40 60 80 100 120 140
γ

10
-7

10
-6

10
-5

10
-4

10
-3

R
es

on
an

ce
 S

tr
en

gt
h

ν
y
=29.175

ν
y
=30.224

ν
y
=29.673

99% spin flip level

1% polarization loss level

FIG. 5. The intrinsic resonances for a few lattices calculated by
DEPOL. The two dashed lines are calculated with a Gaussian
beam of 2 μm rms emittance. The resonance strengths between
the two lines cause polarization losses of over 1% with the
nominal ramp rate. The lines between points are only drawn to
guide the eye.
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In RHIC operation, the majority of the ramp is above the
transition, and the vertical chromaticity on the ramp above
the transition is approximately 2. The spread of the
resonance line owing to the nonzero chromaticity will
add or subtract an additional 2dp=p ∼ 0.00256 in the tune
jump amplitude, depending on whether the N − νy or
N þ νy resonance is crossed. A tune-jump amplitude of
0.03 takes into account this effect, and more importantly
the spin-tune spread. With α ¼ 9.5 × 10−5 and a tune-jump
amplitude of 0.03, the required number of turns is 50. This
is a smaller tune jump over more turns in comparison to the
AGS horizontal tune jump. With the vertical tune further
away from an integer than in the AGS case, the emittance
growth is not an issue. An example of the tune-jump
scheme is illustrated in Fig. 6. To obtain full benefit, all
particles in the beam have to cross the resonance during
the tune jump. The case shown in Fig. 6 represent the
scenario in which a nonzero chromaticity adds an addi-
tional 0.00256 to the tune-jump amplitude. This shows that
particles over the whole beam benefit from the tune jump
of 0.03.
The required quadrupole strength and power supply

can be estimated. The intrinsic resonance with the highest
rigidity is at jGγj ¼ −9þ νy ¼ 20.673 or γ ¼ 135.6, where
Bρ ¼ 904 Tm. Considering the three-fold symmetry of

RHIC ion ring, three quadrupoles are used. To correct this
resonance, a tune jump of Δνy ¼ 0.01 in 50 turns is
required for each of the three quadrupoles. The required
quadrupole strength is

B0l ¼ 4πΔνy
β

Bρ ¼ 2.27T; ð19Þ

where β ¼ 50m, Δνy ¼ 0.01, and l ¼ 0.8m for each
quadrupole. This yields B0 ¼ 2.84 T=m. For the beam
pipe radius R ¼ 0.04 m, the required current becomes

NI ¼ B0R2

2μ0
¼ 1809A − turns: ð20Þ

Using a two-turn coil gives a required current of 905 A.
This is similar to the design of the AGS horizontal tune-
jump system. The inductance for such a quadrupole is
57 μH, based on the standard inductance formula.
In RHIC, 50 turns require approximately 640 μs. The

required voltage is

V ¼ L
dI
dt

≈ 81V; ð21Þ

where L ¼ 57 μH and 640 μs are used. Thus a tune-jump
system consisting of three quads and three power supplies
of 1000 A and 100 V, respectively, should be effective. This
represents a modest tune-jump system compared to the two
utilized in the AGS: the AGS vertical tune-jump system
from the 1980s required 2250 A and 15 kV, with a rise time
of 1.6 μs [4], and the AGS horizontal tune-jump system
currently in use requires 1500 A and 750 V [21–22].
The polarizations after each intrinsic resonance are

illustrated in Fig. 7, where the results of the nominal ramp
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highest resonance near Gγ ¼ −20.673, with a fractional vertical
tune of 0.673. The horizontal axis represents the relative time to
the resonance crossing, and the vertical axis represents the energy
relative to the synchronous particle at the jump time in units of
Gγ. The revolution frequency of RHIC varies between 77.8 kHz
and 78.2 kHz for deuteron beam on the ramp. Note that the
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momentum-spread boundaries of the whole beam. The resonance
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is adopted, which is measured for an unpolarized deuteron. A
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with and without a tune-jump system are presented. The
tune-jump system can correct all the intrinsic spin reso-
nances except for jGγj ¼ νy − 12, which will induce a full
spin flip at the nominal ramp, without the need for the tune-
jump quadrupoles. The overall efficiency for the tune-jump
method plus a normal ramp across jGγj ¼ νy − 12 is 95%.
The lines between points are only drawn to guide the eye.

VI. OVERLAPPING RESONANCES AND
SYNCHROTRON SIDEBANDS

In this paper, we treated all resonances as isolated
resonances, and Froissart-Stora formula is used to treat
each resonance. A natural question is weather this treatment
is valid. To treat two resonances next to each other as
separated resonances, the distance between the two reso-
nances δ should be much larger than the maximum of the
two resonance strengths ϵ1 and ϵ2. The closest distance
between intrinsic and imperfection resonances are for the
case νy ¼ 0.175 where the distance is 0.175 in the tune
space. Since most of the resonances are less than or in the
order of 0.001, the ratio of the separation of the two
resonances to the resonance strength is more than two
orders of magnitude, which satisfies the condition for the
isolated resonances: δ ≫ maxðϵ1; ϵ2Þ.
In addition to the imperfection and intrinsic resonances,

there are numerous synchrotron sideband resonances dur-
ing the acceleration. The distances of these resonances are
in distances of multiples of synchrotron tune, �pνsyn from
the parent ones, where p is the sideband order [23]. The
strength of each sideband is the product of the parent
resonance strength ϵ and the Bessel function JpðxÞ, where x
is the ratio of the spin-tune modulation depth GΔγ over the
synchrotron tune νsyn [24]. The synchrotron tune for
deuteron beam in RHIC along the ramp has been measured
as 3 × 10−3 at injection and 3 × 10−4 at 100 GeV. On the
ramp, the spin resonance strength of the solenoids reduces
from 0.03 down to 0.0023 at top energy. In general, the
spin-tune modulation depthGΔγ should be smaller than the
solenoidal partial snake strength so that resonances from
solenoids overpower the parent resonance as well as the
synchrotron sidebands for all particles with different
synchrotron oscillation amplitudes. This is the case for
the injection and middle range of the ramp. Near the top
energy where GΔγ ¼ 0.008, the resonance strength from
solenoid is only 0.0023 which is not enough to cover the
expected spin-tune modulation depth 0.008. As discussed
in the end of Sec. IV, harmonic orbit bumps need to be
added to generate a stronger resonance strength. As an
example, for Gγ ¼ 18, the orbit harmonic of 6 mm gen-
erates resonance strength of 0.025, much larger than the
spin-tune modulation depth of 0.008. With the combination
of solenoids and harmonic orbit bumps, the resonance
strengths from them are much stronger than the strengths of
the synchrotron sidebands. As a result, the resonances from

them overpower the parent resonance as well as the
synchrotron sidebands. For the intrinsic resonance case,
the synchrotron motion effect has been considered and
wider tune jump has been proposed. The 0.03 jump in tune
space is much larger than the synchrotron tune (10−3

to 10−4).

VII. CONCLUSION

The possibility of accelerating polarized deuterons in
the BNL EIC has been explored in detail. The resonance
strengths have been calculated for various RHIC lattices.
Furthermore, several possible schemes to overcome
these resonances have been analyzed. We found that the
imperfection spin resonances can be overcome by using
the detector solenoids as partial snakes. This has the
additional benefit of ensuring longitudinal polarization at
jGγj ¼ 3 × integer, together with vertical orbit bumps.
Intrinsic spin resonances can be handled using a modest
tune-jump system. In summary, this paper describes the
feasibility for polarized deuteron acceleration in BNL EIC.
Adding a modest tune-jump system and using detector
solenoids in combination with harmonic orbit bumps in the
BNL EIC would likely preserve the deuteron beam
polarization to the full energy. In the future design work
of polarized deuteron in BNL EIC, front-to-end particle
simulation is planned.
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