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Neutron bang times tbang and mean neutron speeds ū have been measured at the Z facility for a series of
D2-filled targets, in magnetized liner inertial fusion experiments. Measurements were made by a novel
neutron time-of-flight (nTOF) diagnostic, adapted for use at this facility, and consisted of detecting the
neutron times in flight at seven independent scintillator–photomultiplier tube detectors (channels), located on
three noncoplanar lines of sight, with distances to the neutron source varying between 690 and 2510 cm. The
nTOF signals were analyzed by identifying fiducials on the detector traces to quantify the time in flight to
each distance, using a nonrelativistic model for a uniformly thermalized, Maxwellian plasma distribution.
The measured neutron arrival times were then linearly regressed on distance with the bang time and mean
speed estimated from the fit parameters. A particular shot, 2584, is analyzed here to illustrate the method and
the issues encountered in these measurements. On this particular shot, six usable channel traces were
obtained. The standard errors of the parameter fits were as follows: tbang ¼ 3102.95� 0.97 ns (standard
error) with six nTOF traces on the system clock and ū ¼ 2.1524� 0.0032 cm=ns (standard error), from
which the mean, nonrelativistic, kinetic energy Ē of the neutrons was 2.4216� 0.0144 MeV (standard
error). The estimates of ū and Ē here agree within 1% of the published values for the Dðd; nÞ3He reaction.
Hence, these measurements are consistent with the production of a thermalized, Maxwellian D-D fusion
plasma in this experiment. The source duration was estimated to be 3.25� 0.84 ns (standard error) from six
pulse-width measurements.
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I. INTRODUCTION

Inertial confinement fusion (ICF) experiments on various
fusion targets have been conducted at the Z accelerator (Z)
[1,2] (Sandia National Laboratories, New Mexico) for over
20 years. Of particular recent interest has been the magnetic
liner inertial fusion (MagLIF) approach [3]. The attainment
of a pulsed plasma source of thermonuclear DD neutrons
(with a mean neutron energy of 2.45 MeV, ion temperature
of 2–3 keV, duration of ∼2 ns, and yield into 4π sr of
∼1012 neutrons) has been reported forD2-filled targets [4–7].
The purpose of this article is to evaluate a novel neutron

time-of-flight (nTOF) technique at Z for measuring (a) the
bang time tbang of neutron emission on a system clock and
(b) the mean speed ū of the emergent neutrons, which can
be compared to the published value for a thermalized

plasma driven by the Dðd; nÞ3He reaction. This article
focuses more on the nTOF technique—as modified for use
at the Z accelerator—than on interpreting the internal
plasma dynamics of a given MagLIF target.
Historically, the TOF technique has become a mainstay

for characterizing particle beams in steady-state experi-
ments [8–10]. The reason is that a TOF experiment is
conceptually simple: The speed u of a single particle may
be estimated by measuring its time in flight (tstart − tstop)
over a known spatial distance L and constitutes a type of
temporal spectrometer.
However, when applied to pulsed, particle sources, the

TOF technique involves more issues: (a) The emitted speed
distribution of particles spreads out with distance as faster
particles spatially outdistance the slower ones, broadening
the in-flight speed distribution; (b) the particle source
distribution may vary significantly in time, entangling early
and late speed distributions; (c) the impulse response of the
detector both delays and distorts the output signal compared
to the input; and (d) the overall geometry, shielding, and
sensitivity of the detector may allow for the detection of
backscattered and ancillary particles, not directly related to
the experiment, to mask uncollided neutrons. Signal noise,
of course, may be added to these effects.
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Most of these complications have been encountered
when the TOF technique is applied to neutron-emitting,
high-density–high-temperature plasmas in laser-driven,
ICF experiments. However, under controlled conditions,
such issues have been addressed, and the neutron (nTOF)
technique has estimated tbang (the starting time of
neutron production on a system clock); neutron yield
into 4π sr; effective ion plasma temperatures; and fine
temporal details of a burning plasma—on a nanosecond
timescale [11–18].
A modified approach to an nTOF diagnostic was needed

for work in the Z environment, where spatial- temporal
x-ray and bremsstrahlung and neutron fields coexist close
to the dd neutron source. This is largely due to the x rays
from hot electrons and from high-voltage, pulsed-power
components near the target. These can saturate an nTOF
detector during a shot; and the sheer mass of Z acts as
a gigantic, neutron scatterer, complicating the recorded
nTOF signals.
In a novel strategy to reduce these problems, Ruiz [19]

proposed to measure neutrons at several locations Lk
farther out from the source so that the detectors might
be able to recover from the x rays that precede the arrival of
target neutrons. The penalty for measurements in the far
field is, of course, pulse broadening that washes out fine
details of neutron production. Yet, at longer distances, one
does expect better resolution for the arrival times of
previously uncollided neutrons incident on detectors and,
hence, improved estimates of tbang than from a single
distance. Moreover, multiple arrival-time measurements,
linearly proportional to Lk, should lead on average to a
more reliable estimate of the mean neutron speed ū.
However, the emphasis of this approach depends on
defining the neutron times of arrival in the midst of noise
and backscattered neutrons and x rays.
The remainder of this article is organized as follows:

(a) Section II describes the spatial deployment of neutron
detectors and their characterization at the Z for MagLIF
experiments, together with raw data from shot 2584 that
illustrate several of the experimental issues, noted above;
(b) Sec. III describes a model for neutron pulse shapes
according to the theory of Brysk [11] for a uniform
temperature and particle density, Maxwellian DD plasma
and accounts for the IRF of the detectors, together with
definitions of arrival times (expanded in the Appendix);
(c) Sec. IV displays the results of linearly fitting the
nTOF arrival data and estimates tbang and ū; and
(d) Sec. V discusses alternative estimates of tbang, ū, and
their uncertainties, based on simple assumptions of time
and distance errors as well as an estimate of the source
duration. A priori, we anticipate individual, distance
uncertainties δL ≈ 1 cm at best (Sec. II A) and uncertainties
in time δt ≈ 1 ns (Appendix). “Back-of-the-envelope”
uncertainty estimates of pertinent parameters are listed
in Table IV.

II. EXPERIMENTAL CONFIGURATION
AND RAW DATA 2584

A. Geometry and detector characterization

Figure 1 shows a perspective view of the Z accelerator at
the Z facility. Overall, the accelerator is cylindrically
symmetric about a vertical center axis passing through a
concentric, vacuum target chamber (3.66 m in diameter and
7.62 m high); a MagLIF target is placed at the center of
this chamber. Marx generators, storage capacitors, pulse-
forming lines, switches, and a plastic insulation stack
surround the target chamber. These components are vari-
ously immersed in oil or water or evacuated. Outside the
target chamber, in spherical-polar coordinates, nTOF
detectors were situated at several radial line-of-sight dis-
tances Lk and different angular locations as shown in
Table I. Detectors at 689.64 and 785.98 cm were located in
a pit below the center of the accelerator tank, and the other
detectors were above. The choice of multiple, noncoplanar
line-of-sight axes allowed for angular consistency and
output asymmetry checks. CH2 and Pb collimators were
placed near the neutron source as well as near the detectors,
except for the farthest detector at 2510 cm from the
source, which lacked heavy shielding. Table I lists the
channel names for the detectors, their angular locations,
and distances Lk around the target.
Radial source-to-scintillator distances Lk were measured

with a graduated, steel tape which was (just) able to resolve
length increments of ∼0.07 cm (1=32 inches), with an
ascribed accuracy to Lk of not better than �1 cm. Such
uncertainties δL translate into ∼0.5 ns arrival-time uncer-
tainties for 2.45 MeV neutrons. (Despite such estimates δL,
Table I retains distance values to 0.01 cm to reduce round-
off errors in the statistical analyses below.)

FIG. 1. Perspective view of the Z accelerator for MagLIF target
experiments and of the lines of sight used for nTOF measure-
ments (not to scale). Depicted inwards from the outer oil-tank
wall are Marx generators, storage capacitors, pulse-forming lines,
and the insulator stack; not shown is the MagLIF target-chamber
insert itself. Labeled NTOF detector locations are shown on
the various diverging lines of sight and correspond to Table I. The
origin of the spherical-polar coordinate system coincides with the
target, and its polar axis (green) is coincident with the cylindrical
symmetry axis of the target chamber.
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Altogether, seven identically designed detectors were
used for nTOF studies. Each consisted of a 7.62-cm-
diameter, 2.54-cm-thick (1% quenched) BC-422Q scintil-
lator, coupled via a 25.4-cm-long, ultra-violet-transmission
Lucite light guide to the photocathode of Hamamatsu
R5946-MOD4 mesh-type photomultiplier tube (PMT).
Traces were recorded by 8-bit, 1 GHz digitizers with
0.25 ns dwell times. The impulse response function of
these detectors has been studied with cosmic rays by
Bonura and Ruiz [20] and is generically depicted in
Fig. 2 with labeled points of interest: an initial start-time
“toe,” a “foot” (or dead time) region during which scin-
tillator light travels to the PMT. Throughput times (toe-
to-PMT signal peak) for all these detectors were calibrated
[20]; they varied from ∼11 to 13 ns (�0.3 ns, 1σ uncer-
tainty) and depended on the PMT bias. By contrast, the

PMT FWHM was ∼3.5 ns (�0.3 ns) and only weakly
dependent on the PMT bias. To properly align each trace
with the zero time of the system clock, the entire through-
put time of each plus cable delays were needed to be
subtracted from the time base of the traces. All the detectors
had unique cable and throughput delays (due to different
biases) of at least 10–12 ns. Some nTOF detectors were
“dual” in that two PMTs viewed the same scintillator in
opposite directions; these included channels BA2/BA3 and
27A2/27B2 in Table I, of which 27A2 was lost.

B. Representative raw nTOF signals

Sandia’smultichannel nTOF diagnostic “piggybacked” on
five, MagLIF developmental shots of varying design. All the
recorded traces were shifted 8 ns earlier by cable adjustments
and were labeled “raw” data. (Data labeled “corrected” data
noted in Sec. IV B were further adjusted in time base by the
tabulated small corrections described above.)
Figures 3–6 show time-series recorded signals DkðtÞ

from shot 2584 and illustrate some of the experimental
issues and properties encountered in fielding this diagnos-
tic. (Four additional shots in this series yielded similar
characteristics and results.) Shot 2584 obtained usable
signals in six channels (Table I) of the seven fielded
nTOF detectors, a not uncommon occurrence in this series
and a justification for dual detectors. (The missing signal
27A2 in Fig. 1 went off the scale due to a faulty scope
sensitivity setting).
Figure 3 shows the BB1 signal from the detector

closest to the source (∼690 cm). It illustrates why the
time-resolving neutron detectors used here cannot be
deployed appreciably closer to the MagLIF target: The
off-scale pulse at 3000 ns corresponds to bremsstrahlung

TABLE I. Source-to-detector distances Lk (cm) and angular
locations of nTOF detectors for MagLIF shot 2584 in standard
spherical-polar coordinates. Azimuthal angles were measured
relative to a fixed, locally defined direction.

Distance (cm) L,k Channel name Azimuth (deg) Polar (deg)

689.64 BB1 � � � 180
785.98 BA2 � � � 180
785.98 BA3 � � � 180
944.56 27B2 270 78
1145.85 27B1 270 78
2510.00 5A1 50 78
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from various pulsed-power components of the accelerator
and possibly the MagLIF target, while the neutron pulse is
the tiny peak at∼3430 ns. The figure also indicates the time
in flight of a 2.45 MeV D-D neutron to the BB1 detector.
Figure 4 qualitatively compares variations in the raw

signal noise in the neutron traces. Shown here are again
BB1 (lower trace) and channel 27B2 (upper trace, shifted
and scaled), which is located ∼2 m more distant from the
MagLIF target than the BB1 detector and which peaks in

signal ∼100 ns later than BB1. The dominant noise in BB1
is due to signal quantization in the digitizer, which was
trying to capture the tiny nTOF pulse near an off-scale x-ray
pulse; the noise clearly degrades the otherwise analyzable
BB1 neutron signal.
Figure 5 illustrates the advantages of a dual detector

as a check on signal reproducibility and a backup channel.
Dual channels BA2 and BA3 at the same distance from
the source are compared. The traces shown have been
smoothed [21,22], aligned in time at the peak (shift
∼1.3 ns), and scaled.
Figure 6 is a composite of the raw data traces obtained

from all six nTOF channels in shot 2584. (These have been
smoothed and aligned at the peak; cf. the Appendix.) The
signals in Fig. 6 are all monomodal pulses, skewed positive
(i.e., a higher falling than rising tail), increase in width
(FWHM) with distance from the MagLIF target due to
pulse spreading, and have most similar shapes at times
within their respective FWHM. The exception is channel
5A1 at 2510 cm, which was largely unshielded and may
show backscattering issues.

III. METHODS OF DATA ANALYSIS

The purpose of the analysis below is to make a case for
associating a fiducial (generically, t̄k) with a detected
neutron pulse at each distance Lk from the source. Such
fiducials may then establish mean neutron arrival times at
the detectors, and from them one may estimate a start time
tbang and mean speed ū—without dealing in detail with the
shape of the neutron pulse. This task requires a plasma
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model for neutron emission and propagation. For conven-
ience, we assume here that for time τ the MagLIF D2

plasma is thermalized with a constant and spatially uniform
temperature T producing an internal Maxwellian distribu-
tion of neutrons and ions. The following sections seek to
establish a connection between the properties of this plasma
model with experimental fiducials in the nTOF traces
DkðtÞ, if noise and competing interferences can be iden-
tified and controlled.

A. A model for uncollided neutron flux
in nTOF experiments

The first order of business in analyzingDkðtÞ in MagLIF
shot 2584 is to see if the duration of the source significantly
affects the arrival of neutrons at the nTOF detectors.
According to Refs. [4,5], an estimate of τ in a similar shot
is ∼2 ns. In quadrature with nTOF arrival times (>300 ns,
Fig. 3), τ contributes negligibly, and the source can be treated
as instantaneous for tbang and ū measurements. Yet, for
pulse-width measurements (9–24 ns, Fig. 6), τ may to be
noticeable. (See Sec. V.)
The next step is to derive how a neutron pulse in this

analysis spreads out in an nTOF experiment—i.e., an
impulse response GkðtÞ for neutrons arriving at location
Lk and at time t̂k (relative to tbang). This is based on Brysk’s
theoretical study [11] of nonrelativistic, uniform temper-
ature and particle density, Maxwellian plasmas, which
found that, for deuterium plasmas interacting by the
Dðd; nÞ3He-reaction, the differential neutron energy spec-
trum ∂N=∂E of neutrons emerging from the plasma is
isotropic and of the form

∂N
∂E ≈ A exp

�
− ðE − ĒÞ2

σ2T

�
; ð1Þ

where Ē, σT , and E have units of energy; the constant
A > 0 has units of neutron density per unit energy; and
σT represents the energy spread for temperature T.
Equation (1) is a Gaussian distribution in neutron kinetic
energy E, and Ē is the mean neutron kinetic energy as well
as the statistical mode. Emergent neutrons that do not
interact with each other or surrounding materials on the
way to the nTOF detector preserve this information about
the internal plasma conditions (Ē and T), and we refer to
them collectively as uncollided neutrons. (Relativistic
computations of ∂N=∂E have been made by Munro [12]
and Ballabio [13], who found asymmetries at much higher
neutron energies. But, such a calculation is unneeded for
the DD fusion neutrons here, because Ē ¼ 2.45 MeV is
much smaller than m0c2 ¼ 939 MeV.)
Using the chain rule of calculus and ∂N=∂E, one can

derive the temporal shape GkðtÞ of uncollided incident
neutrons at location Lk for this model:

GkðtÞ ≅ −A · B

�
2Ē
t̂k

��
t̂k
t

�
3

exp

�
− ū2Ē2

σ2TL
2
k

ðt − t̂kÞ2
�
: ð2Þ

Here, t is the observation time (referenced to tbang)
and corresponding to kinetic energy E in Eq. (1); the
parameters Ē ¼ 2.45 MeV, ū≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ē=m0

p
≈ 2.2 cm=ns,

m0 ¼ 939 MeV=c2, and t̂k ≡ Lk=ū are the theoretical
mean neutron kinetic energy, its corresponding mean
speed, its rest mass, and its mean flight time, respectively.
Several aspects of Eq. (2) need emphasis: (a) GkðtÞ is

proportional to the input of uncollided neutrons at the
upstream face of the kth nTOF detector (the constant B > 0
represents geometric factors); (b) in form, GkðtÞ is very
nearly Gaussian, provided that neutrons from the source are
emitted nearly instantaneously and if the observation time t
is close to t̂k (e.g., from Fig. 4, the half width of the BB1
neutron signal is ∼5 ns and its flight time is ∼320 ns,
giving an observation ratio jt − t̂BB1j=t̂BB1 ≈ 1.5%); and,
most importantly, (c) the theoretical mean time ðūÞ−1Lk and
width ðσT=ū ĒÞLk ofGkðtÞ increase linearly with Lk, which
obtains experimentally. The parameters σT , ū, and Ē all
connect back to the source plasma.

B. Detector effects in the measurements Dk(t)

Experimentally, one does not measure the uncollided-
neutron signal GkðtÞ in Eq. (2), because the measured
signals DkðtÞ have been distorted by the impulse response
function (IRF) of the individual detectors; the detectors are
also sensitive to extraneous x-ray interactions as well as to
neutrons; and signal noise is present. The effects can be
combined withGkðtÞ in this model as a convolution [21,23]
equation for DkðtÞ as

DkðtÞ ¼
Z

∞

−∞
Rkðt0ÞGkðt − t0Þdt0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rk∗Gk

þ skðtÞ þ εkðtÞ: ð3Þ

Here, RkðtÞ (presumed known) is the impulse response
function of the kth detector (Sec. II A, Fig. 2); and skðtÞ and
εkðtÞ, respectively, represent interference signals (e.g.,
downscattered neutrons and x rays) and random signal
noise. It is assumed here that (a) RkðtÞ and GkðtÞ are
integrable, zero valued for t < 0 but positive valued for
t ≥ 0, and, hence, Rk ∗Gkðt < 0Þ ¼ 0; (b) the nTOF
detectors are operating linearly and independently; and
(c) all signals detected in each channel superpose.
The skðtÞ and εkðtÞ interference terms in Eq. (3) are

largely listed for completeness but not detailed here. They
are site specific, requiring local mitigation, once identified.
For example, at Z the x-ray contributions to skðtÞ were
reduced by moving the nTOF detectors farther from the
neutron source; and contributions of downscattered neu-
trons could be reduced by shielding, collimation, and
limiting the temporal range of the data analysis to the
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FWHM of the output data DkðtÞ [17]. In principle, it may
be possible to simulate the scattered neutron flux outside
the Z machine with the Monte Carlo technique [14,15],
but this is a particularly onerous task at Z due to the
proximity and inhomogeneity of the massive accelerator to
the neutron and x-ray scattering. The noise term εkðtÞ in
Eq. (3) is similarly site and location specific. As noted
in Sec. II B, the most prevalent noise in the nTOF signals
was quantization noise (BB1); it was controlled largely
by averaging and smoothing techniques [21,22]. (See the
Appendix below.) Glebov [14], Hatarik [15], and Murphy
[16–18] have delineated similar issues for experiments at
NOVA and NIF, as well as some mitigating schemes.

C. Extracting information about GkðtÞ from DkðtÞ
Equation (3) models the flow of timewise information

GkðtÞ about MagLIF-produced neutrons into the data
DkðtÞ. It is a Fredholm integral equation of the second
kind and presents a redoubtable unfold problem for
extracting GkðtÞ pointwise from DkðtÞ. [Solutions are
not unique, if they exist at all, and are complicated by
the presence of noise εkðtÞ and the need for appropriate,
physical constraints—issues widely discussed in the liter-
ature [24–27].] In assessing nTOF data at NIF, Hatarik et al.
[14–18] have prescribed a more analytical model of GkðtÞ
with undetermined coefficients, based on the Brysk theory,
which can be folded forward in Rk ∗Gk to yield a fitting
function for DkðtÞ and from which details of the plasma
may be inferred.
The simpler goals of estimating tbang and ū for the

MagLIF shots do not require an approximate reconstruction
of GkðtÞ. Heuristically, one wishes to identify generic,
fiducial points t̄k in DkðtÞ that are independent of the
changing spread in nTOF pulses and that can be interpreted
as the times of arrival of a pulse at Lk on the system clock.
This condition obtains for nTOF pulses as long as ∂N=∂E
remains fixed in time. Such fiducial times t̄k in the data are
analogous and estimate times t̂k in GkðtÞ [Eq. (2)].
Natural candidates for t̄k are times at or near the peak of

the data signal. Three definitions were defined and labeled
at each location Lk as follows: htik, the mean time value of
DkðtÞ over its FWHM time domain; tksmoo at the maximum
value of a smoothing function to DkðtÞ; and tkmode, a few-
point estimate of the statistical mode of DkðtÞ. The
Appendix defines these measures and shows in a test
case with channel BB1 (the noisiest signal) that all three
measures showed ∼1�ns agreement (cf. Sec. IVA,
Table II). We infer from the Appendix that δt ≈ 1 ns for
the uncertainty in measuring arrival times for these fiducial
methods (cf. Sec. V.)
The definition htik is particularly useful, because math-

ematically the mean time of hRk ∗Gki in Eq. (3) is the sum
of means, hRki þ hGki [28]; so, in principle, an estimate of
t̂k for the arrival of GkðtÞ at Lk can be obtained from the
knowledge of hRk ∗Gki and hRkðtÞi. (The consistency of

tksmoo and tkmode with htik in the Appendix suggests a similar
property for tksmoo and tkmode, which is not mathematically
justified here).
By whichever fiducial-time measure t̄k that one chooses

above, Eq. (3) can be transformed to the following timing
equation for the nTOF signals on the system clock:

t̄k|{z}
clock time

− ðΔtkÞ|ffl{zffl}
detector

¼ tbang|{z}
clock time

þ ðūÞ−1Lk|fflfflfflffl{zfflfflfflffl}
TOF

: ð4Þ

Here, the fiducial time t̄k of DkðtÞ on the system clock
minus the throughput time of the detector represents tbang
on the system clock plus the time in flight of uncollided
nTOF neutrons moving at the mean speed ū from the
source. The noise and interference signals have been
suppressed.
Equation (4) can then be used as a fitting function for

MagLIF shots on Z, once the fiducial times t̄k, distances Lk,
and throughput times Δtk for each channel have been
determined. From this linear fit, one interprets the intercept
as an estimate of tbang and the slope as ðūÞ−1, the inverse of
the mean neutron speed. It is worth emphasizing (a) that
Δtk is the entire throughput time of the kth nTOF detector
and (b) that, for shot 2584, 8 ns of each detector’s dead time
has already been removed in the raw trace. The corre-
sponding raw fiducial arrival times can be corrected for
the individual remainders of Δtk (∼3–5 ns), due to PMT
bias settings and manufacturing differences, and also fit
to Eq. (4).

IV. RESULTS

A. Comparison of raw neutron arrival times
for all channels and fiducial methods

Table II compares the raw-data arrival times for each of
the six usable nTOF detectors in shot 2584 by distance and
fiducial method. The table reflects similar agreements in
time (δt≲ 1 ns) among various methods as seen in the
Appendix. An exception to this trend is the point hti5A1 at
2510 cm, differing from t5A1mode and t

5A1
smoo by ∼2 ns; as noted,

this detector was sparsely shielded, and its trace may be

TABLE II. Raw-data arrival times at each nTOF detector
distance Lk in shot 2584 by the independent fiducial methods
from the Appendix. The means htiFWHM were calculated from the
FWHM time regions of the recorded raw traces.

Distance (cm) t-smoo (ns) htiFWHM (ns) t-mode (ns)

689.64 3426.50 3426.70 3426.56
785.98 3471.25 3472.10 3471.00
785.98 3472.50 3473.29 3472.50
944.56 3544.20 3544.63 3544.01
1145.85 3638.11 3638.98 3638.11
2510.00 4268.41 4270.40 4268.16
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showing interference from scattered neutrons and x rays.
[In the following, neither removing nor weighting this
datum in Eq. (4) improved the fit, so the point was retained
in the final analysis, an unresolved issue. The effect of this
discrepancy on the tbang estimate is ∼0.33 ns; cf. Sec. V].

B. Estimating tbang for neutrons

Postshot estimates of tbang began by fitting raw arrival-
time data in Table II upon distances Lk because (a) the
remaining IRF corrections were both similar to each other
and small (∼3–5 ns) compared to the DD neutron flight
times (>350 ns); and (b) we wished to see what effect
such corrections made on the fit parameters tbang and ū in
Eq. (4) when the corrections were finally made. Equal
weighting was used for these fits, and the fit residuals
statistically characterized and checked by a goodness-of-fit
test criterion.
Figure 7 shows the regression of htikFWHM upon Lk,

where the distances were taken as exact. (This procedure
falls within the Berkson regression model, even though
both axes have uncertainties [29–31].) In this figure, dotted
circles denote raw arrival times, the blue line represents the
fit, and the red lines indicate statistical 95% confidence
intervals for single points on the fit, magnified by a factor of
20 for visibility [29,32]. (Corresponding plots for the other
arrival-time estimates, tkMode and tksmoo vs Lk, are indistin-
guishable on this scale and not shown).
Statistical tests suggest that the regression in Fig. 7 is

reasonable. First, a normal probability plot of the six

residuals (i.e., htikFWHM minus the fit at Lk) are consistent
with a normal distribution of 0.0 ns mean and standard
deviation ∼1.14 ns. [For comparison, a simple quadrature
sum of estimated uncertainties in time and distance,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδtÞ2 þ ðūÞ−2ðδLÞ2

p
, yields ∼1.10 ns, where the uncer-

tainty δt in reading htikFWHM taken is ∼1 ns, δLk ∼ 1 ns,
and ðūÞ−1 ¼ 0.4629 ns=cm]. The second statistical test of
the fit was a χ2/degrees-of-freedom test [21,29,32] as a
measure of goodness of fit: Here, χ2 is 2.38, the sum of the
squared residuals with four degrees of freedom (d.o.f.) (six
residuals minus two fit parameters), and χ24=4 is 0.60.
Statistical tables [33] give a 95% confidence interval for
χ24=4 of 0.121–2.7856. Hence, at this confidence level,
there is no evidence to suggest that the fit of these data to
Eq. (4) is either too good to be true, unbelievable, or due to
outliers in the data.
Regressions were applied to the arrival times for

each method in Table II, and the corresponding fit param-
eters are shown in Table III. The top three lines pertain to
raw data-arrival times on the system clock. Shown are
(a) the intercept tbang at L ¼ 0 with its standard error
and the corresponding 95% confidence interval and (b) the
slope ðūÞ−1 (ns=cm) and its standard error (ns=cm).
[To save space here, 3100 ns has been subtracted from
tbang and its confidence interval; that is, “8.1” stands for
tbang ¼ 3108.1 ns, and “[6.1,10.1]” stands for a confidence
interval of [3106.1, 3110.1 ns]. The intercept SE and the
slope parameters may be read directly].
To visualize the results of Table III, Fig. 8 examines fits

near L ¼ 0. The upper part of this figure (in shades of blue
and red) again refers to the fit of raw arrival times htikFWHM
vs Lk in Fig. 7. According to Table III (top line), tbang for
this set of arrival times is 3108.06 ns; the red lines indicate a
95% confidence band of �2 ns about tbang (shown actual
size). For L near 0 cm, one can just distinguish differences
in the fit for the other raw estimates, tkMode and t

k
smoo (lines 2

and 3, Table III): The light blue shaded band sketches the
range of these fits and is truncated for L > 2 cm for clarity.
What effect on the tbang parameter does correcting the

raw arrival times for the individual, remaining parts
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TABLE III. Fit statistics for shot 2584. For each method, the
table lists the estimated intercept (bang time), its standard error
SE (both in nanoseconds), and its estimated 95% CI, plus the
slope and its standard error. For typographical convenience,
3100 ns has been arbitrarily subtracted from the fiducially
referenced intercepts and CIs in this table. The hticorr entry
includes the minor IRF corrections.

Method Intrcpt: SE (ns) 95% CI ns Slope: SE (ns/cm)

hti 8.1: 0.72 [6.1, 10.] 0.4631: 0.0006
t-mode 7.9: 0.69 [6.0, 9.9] 0.4623: 0.0005
t-smoo 8.2: 0.55 [6.6, 9.7] 0.4622: 0.0004
hti corr 3.0: 0.97 [0.3, 5.6] 0.4646: 0.0007
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(∼3–5 ns, Fig. 2) of the IRF throughputs Δtk have?
Corrected parameters for the htikFWHM data are shown on
the bottom line, labeled hticorr in Table III for comparison to
the top line, labeled hti. Here, the raw mean arrival times
were individually adjusted in time, and the resulting
corrected times were regressed against distance. The net
effect is to shift tbang earlier by about 5 ns on the system
clock with a slightly larger standard error and almost no
change in slope. The lower part of Fig. 8 shows these
differences graphically. Given the similarity in corrections
to the arrival times, this shift is not surprising. On the basis
of Table III and the previous statistical tests, one reports
[34,35] a neutron tbang ¼ 3102.95 ns with an SE ¼ 0.97 ns
and six measurements [or, equivalently, a CI of 3100.25–
3105.60 ns]. The other arrival-time measures on correction
gave similar results, but we have preferred the mean
measure htikFWHM, which has a clearer mathematical claim
on the convolution properties of Eq. (3) (Sec. III C) than do
tsmoo and tmode.

C. Estimating mean neutron speed ū and Ē

If one task of this nTOF diagnostic is an estimate of tbang,
the other is to see if neutrons from a Dðd; nÞHe3 reaction
are consistent with the slope ðūÞ−1 from Eq. (4), Table III.
While this measurement does not detail the distribution of
all the emitted neutrons in shot 2584, it can rule out
thermalized or Maxwellian D-D distributions in the source

plasma if the measured mean speed ū differs appreciably
from the expected value. One notes in Table III that the
estimated slopes are nearly independent of both the arrival
time method used and IRF corrections to the detector
throughputs and have nearly identical standard errors.
Using measure hticorr in Table III, one has ū ¼ 2.1524�
0.0032 cm=ns (standard error) with six measurements
[equivalently, a 95% CI of 2.144–2.1614 ns with four
d.o.f.]. This estimate may be compared to the published
value of 2.16018587 cm=ns, quoted by [12] for D-D fusion
neutrons. Hence, here the results are consistent with
the production of D-D fusion neutrons. An estimate
of the average neutron energy Ē is then straightforward:
The relativistic result Ē ¼ m0c2½ð1 − ū2=c2Þ−1=2 − 1� gives
2.4308� 0.022 MeV—or, alternatively, as a 2.409–
2.453 MeV 95% CI with four d.o.f., which overlaps the
published reference value of 2.4486857 MeV [12]. The
corresponding classical result Ē ¼ ð1=2Þm0ū2 is 2.4216�
0.0144 MeV (standard error), or 2.4027–2.4419 MeV as a
95% CI, which does not quite overlap with the reference.
(Here, m0c2 was taken as 939.565379 MeV and c as
29.9792458 cm=ns [12]).

V. DISCUSSION AND SUMMARY

To give further credence to the above results, one can
estimate tbang without a regression analysis if one is willing
to assume the published value of ū for the Dðd; nÞ3He
reaction as a constant. That is, by summing the corrected
arrival times [29,30] in Eq. (4), one obtains htbangiN ≡
N−1 PN

k¼1ðt̄k − ðūÞ−1LkÞ ¼ 3105 ns, which may be com-
pared to hticorr ¼ 3103 ns for the estimate from regression
(Table III). Here,N ¼ 6, t̄k is the IRF-corrected mean travel
times (at FWHM), and ū is taken as 2.160 cm=ns [12]. See
Table IV. One also notes the estimate htbangiN is the
difference between two means (arrival times and times
in flight) over N samples so that the effect of one odd,
hypothetical error in arrival time [say, 2 ns for hti5A1, noted
in Sec. IV A] is partially averaged out by the rest of the
sample times, in this case 2 ns=6 samples, or 333 ps on
htbangiN , which we have ignored.
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for shot 2584. The dark blue fit line results from htiFWHM data with
95% confidence uncertainty lines (red); extrapolated fits for the
tSmoo and tmode data are indicated by the light blue line, truncated
for clarity at 2 ns. The green lines below indicate the result for bang
time and its uncertainty from htiFWHM data after IRF corrections
have been applied. The regression curve and its uncertainty band
are not shown but are closely parallel to the raw data curves above.

TABLE IV. A comparison of parameter values and uncertain-
ties by the regression analysis of Eq. (4) with corresponding
values obtained under the a priori assumptions that uncertainties
are δL ∼ 1 cm and δt ∼ 1 ns, respectively; the formulas are given
in the text.

Parameter By regression By assumptions

t-bang (ns) 3103 3105
Unc. t-bang (ns) 0.97 0.50
u (cm/ns) 2.1524 2.1601**
Unc. u (cm/ns) 0.0032 0.0072

*This value is quoted by Ref. [12] and assumed in this estimate.
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Although our reported uncertainty estimates for tbang and
ū are based on the corrected data and the regression
parameters (Table III), these uncertainties can also be
estimated from the simple a priori uncertainty estimates
(δL ∼ 1 cm, δt ∼ 1 ns) and error propagation. For example,
under these conditions the uncertainty in tbang can be
estimated by summing Eq. (4) as above. Then, propagating
both distance and time uncertainties, one estimates
ðδtbangÞ2 ≈ N−1½ðδtÞ2 þ ðδL=ūÞ2�, which by our assump-
tions gives δtbang ≈ 0.50 ns and is comparable to the
regression value (Table IV). In a similar way, it is possible
to estimate the uncertainty δū in the speed estimate ū: e.g.,
ū ≈ Lk=ðt̄k − tbangÞ, where t̄k is again the IRF-corrected
neutron arrival time at Lk. By error propagation, one now
finds ðδūÞ2ðt̄k − tbangÞ2 ≈ ðδLkÞ2 þ ū2½ðδtkÞ2 þ ðδtbangÞ2�,
where the statistical covariance between t̄k and tbang has
been ignored. It is convenient to select the midpoint of
the arrival time data in Fig. 6, taking L ¼ 945 cm,
ðt̄−tbangÞ¼444ns, ū¼2.16 cm=ns, and δt¼δtbang≈1ns.
The resulting uncertainty (Table IV) is δū ≈ 0.0072 cm=ns,
which is comparable to the regression estimate in Table III.
That these “back-of-the-envelope” estimates are compa-
rable to the regression estimates suggests an internal
consistency in the overall analysis of nTOF data and lends
support to the basic assumptions made a priori to the
analysis here.
Lastly, it was noted in Secs. II A and III A that, although

the duration τ of the source is essentially ignorable for
estimates of tbang and ū, it can contribute to the FWHM
wk
meas of DkðtÞ: ðwk

measÞ2 ≈ ðwk
spreadÞ2 þ ð3.5 nsÞ2 þ τ2 at

each Lk, where wk
spread is the Gaussian FWHM from

Eq. (2) and 3.5 ns is the approximate FWHM of each
nTOF detector. Briefly, if widths wk

meas in Fig. 6 are
corrected by 3.5 ns in quadrature and regressed upon
Lk, then the intercept at L ¼ 0 is an estimate of the source
duration. The result is 3.25 ns (standard error, 0.84 ns,
six measurements), or a 95% confidence interval of
[0.91, 5.59] ns. [An uncertainty estimate of (δτ) can also
be obtained by a simple, geometric argument and the
estimate δt ∼ 1 ns: Since the fit curve ofN, FWHMs wk

spread

vs Lk passes through the point (N−1ΣkLk ≈ 1144 cm,
N−1Σkwk

spread), then by similar triangles one has ðδτÞ≈
ð1 nsÞð1144 cmÞ=ð2510–1144 cmÞ ¼ 0.84 ns, as above].
In summary, this article describes a multichannel nTOF

diagnostic suitable for neutron measurements at the Z
accelerator and has been fielded on several developmental
MagLIF shots. The analysis of nTOF data for shot 2584 is
discussed here in detail, yielding estimates of the neutron
bang time tbang on the system clock and the mean speed ū
(with uncertainties) for neutrons generated in the shot. The
method of analysis was based on (a) a plasma model due to
Brysk [11], which assumes that the source plasma is
uniform in temperature and particle density as well as

Maxwellian; (b) signal traces in each channel were treated
as Gaussian with linearly increasing arrival times and
widths vs distance from the source; (c) definitions for
times of arrival for the neutron pulses at a detector were
defined and tested; (d) corrections were applied for the
throughput response of the detectors; and (e) the arrival
times were linearly regressed on distance from the neutron
source to yield fit parameters related to tbang and ū. Both the
estimated ū and mean kinetic energy Ē of the neutrons were
consistent with the published values for DD fusion neutron
reactions. With less precision, a source duration and its
uncertainty was also obtained from pulse-width data.
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APPENDIX

For the nTOF experiments considered here, differing
operational techniques were used to characterize a generic
arrival time t̄k for each data trace DkðtÞ. Three procedures
were chosen, yielding peak-time estimates that we label
(a) tsmoo, (b) tmode, and (c) hti. The first two refer to the
statistical mode of the recorded traces: Specifically, tsmoo
refers to a smoothed trace and tmode to a raw trace (with
noise); and the third measure hti is a mean statistical value
over a specified time interval. These measures are com-
pared here for consistency using the noisiest raw data
channel in shot 2584: BB1.
The Savitzke-Golay (SG) method was chosen for the

tsmoo estimate. It is a low-pass digital filter for equally
spaced time-domain data [21,22] and transforms a discrete,
noisy signal, like DkðtÞ, into a smoothed signal Dsmoo

k ðtÞ,
based on local polynomial fits. (Both the polynomial
degree and the width of the averaging window can be
selected).
Figure 9 shows the results of applying this method to

DBB1ðtÞ in Fig. 3. The filter comprised a fourth-degree
polynomial with a 21-point smoothing window over the
201 points between 3400 ns ≤ t ≤ 3450 ns. Both the raw
data and smoothed result Dsmoo

BB1 ðtÞ are shown for compari-
son. The visual agreement betweenDBB1ðtÞ andDsmoo

BB1 ðtÞ is
qualitatively very close in each of these regions, with scant
evidence on this scale of systematic distortion in Dsmoo

BB1 ðtÞ.
But the real utility of this method is that both Dsmoo

BB1 ðtÞ and
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its derivative are smooth, so that the smoothed-signal mode
tBB1smoo can be precisely defined where ∂DBB1

smoo=∂t crosses 0.
This estimate is shown in shown in Fig. 10, where tsmoo ¼
3426.50 ns with a resolution uncertainty of less than 1 ns.
The second estimate of time at peak tBB1mode is defined

simply by the largest value of the raw data DBB1ðtÞ. This is
a crude “eyeball” method, requiring some arbitrary aver-
aging if there is no unique maximum signal value near the

peak. The value 3426.6 ns (dark red arrow) is shown at the
top in Fig. 11, where DBB1ðtÞ is shown as a binned pulse-
height distribution. (Four nearby values were averaged for
this estimate.)
The third estimate of arrival time was the statistical mean

hti≡ ½ΣN
j¼1tjDðtjÞ�=½ðΣN

j¼1DðtjÞ� over a specified time
interval or bins. This result is also shown at the bottom
in Fig. 11 (bright red arrow). Because of signal noise,
background signals, and the IRF, htiBB1 does depend on the
time interval. Figure 11 highlights two such windows: the
FWHM of the pulse region and a larger region containing
more of the skewed fall time of the pulse (labeled pulse
domain). One finds that htiBB1FWHM ¼ 3426.7 ns (33 pts) for
the FWHM region and htiBB1PULSE ¼ 3426.8 ns (80 pts) for
the wider domain ns.
In summary, one has three recorded “arrival-time”

measures for the BB1 signal in shot 2584 ranging from
3426.5 to 3426.7 ns.
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