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Standard quadrupole beam-based alignment (BBA) techniques rely on orbit data and on the sequential
variation of quadrupole and orbit corrector magnets (OCM). This results in time-consuming measurements
of the order of several hours in most circular accelerators. Fast (10 kHz) beam position monitors (BPM) and
OCMs with ac power supplies are routinely used in modern synchrotron light sources to drive fast orbit
feedback systems. In this paper we show how they can be employed also to dramatically reduce the time for
any quadrupole BBA to several minutes only, ensuring the same level of accuracy and precision. Moreover,
conversely to the standard BBA, the new procedure accounts automatically for any level of betatron
coupling, BPM roll and OCM tilt. In the case of the ALBA 3rd generation light source, the time for a
complete measurement dropped from 5 hours to 10 minutes, a reduction by a factor 30. As further
extension of this novel approach, an even faster skew quadrupole BBAwas demonstrated in ALBA for the
first time, taking advantage of the additional ac modulation of the skew quadrupole field. Results from this
fully ac measurement are compared with those obtained via a traditional dc scan of the skew quadrupole.
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I. INTRODUCTION

Aligning the beam centroid to the center of the magnetic
elements is an efficientway tominimize unwantedmultipole
feed-down effects in particle accelerators. A beam crossing
magnets off axis experiences orbit distortion and alteration
of the dispersion function (in quadrupoles via dipole feed-
down), as well as linear optics errors and coupling (in
sextupoles via normal and skew quadrupole feed-down).
The beam-based alignment (BBA) facilitates the work of
corrector magnets to minimize these errors and reduces the
deviation between the real machine and the accelerator
model. Two different quadrupole BBA approaches are
described in the literature. In the first, the observable is
the offset between beam trajectory and quadrupole axis
[1–4]. In the second, the observable is the beam position at
the BPM when it passes through the axis of the closest
quadrupole [5–8]. The first technique is known as beam-to-
quad while the second is referred to as BPM-to-quad.
The beam-to-quad technique does not require OCM

scans but is model dependent: Tunes and optical functions
are needed to infer the beam-to-quad offset. Moreover, it

does not provide directly the BPM-to-quad offsets, though
they can be interpolated from the measured ones. This
method gives a direct indication of how well centered is the
beam, but not how much the individual quadrupoles or the
BPMs have to be realigned. To achieve that the model has
to be used again.
The BPM-to-quad technique does not rely on the

accelerator optics model but needs to scan the strength
of one or several OCMs at every quadrupole change. This is
usually much more time consuming and it may give
inaccurate results if the beam orbit has a pronounced angle
at the quadrupole. The aim of the method is to align the
BPMs, which are prone to electronic induced offsets, to the
magnets layout, which is assumed to be more stable over
time. Besides, the BPMs are usually attached to the vacuum
chamber and need to be realigned after interventions.
Magnets are misaligned too, but this lays outside the scope
of this method. In synchrotron light sources the quadrupole
scan is typically performed step by step in a dc way and
slow acquisition (10 Hz) orbit position data are analyzed,
whereas the BBA of quadrupoles in the interaction regions
of colliders is usually carried out via a continuous quadru-
pole gradient modulation and the harmonic analysis of turn-
by-turn BPM data. In the literature the latter approach is
referred to as k-modulation [5] and requires quadrupole
power supplies with ac capabilities, presently not available
in ALBA. Therefore, standard BPM-to-quad BBA used to
be carried out in its storage ring via slow acquisition orbit
position data and dc changes of both quadrupoles and
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OCMs [9]. A complete measurement over 120 BPMs in
both planes takes usually 5 hours. An overview of different
BBA techniques and implementations can be found in [10].
In this paperwe present a fast BBA (FBBA)BPM-to-quad

method based on the parallel ac modulation of several
OCMs at different frequencies and on the harmonic
analysis of orbit data sampled at high frequency (10 kHz).
A complete FBBA requires 10 minutes only, which repre-
sents a reduction by a factor 30 compared to the standard
5 hours. It is worthwhile stressing the fact that the FBBA is a
different scheme compared to the k-modulation, where the
ac modulation is performed on the quadrupoles, not on the
steerers, and the harmonic analysis is performed on the beam
trajectory (turn-by-turn data), not on the orbit.
A fully ac FBBA with harmonic modulation of the

magnet to be centered was proved for the first time at
ALBA by centering the beam into skew quadrupoles,
which are trim coils mounted on the main sextupoles
and feature ac capabilities. Besides the fact of being an
even faster operation, this analysis aligns automatically also
the sextupole magnets onto which the skew quadrupole
coils are installed, with benefits to the machine optics.
A fast acquisition archiver (FA) providing synchronous

BPM data at 10 kHz rate originally developed at Diamond
[11] was installed in ALBA [12] and other synchrotron light
sources since 2011. OCMs can be then excited in parallel in
both planes and at different frequencies. Themotion induced
by any steerer in each plane can be isolated and analyzed
separately from the harmonic analysis of FA data during the
OCMmodulation by looking at the spectral peaks generated
at those (known) frequencies. Even though FA data contain
position data synchronized among all 120 BPMs, this is not
the case for the ac OCMs. Their currents are either not
archived (as in the case of ALBA) or not suitable for
conversion into strengths, also their calibration factors are
frequency-dependent and not known a priori. This requires
some preliminary mathematical gymnastics of the original
BBA formulas to remove any dependence of the observables
on the OCM strength. The formalism developed to this end
accounts also for the presence of an arbitrarily large betatron
coupling, OCM tilt, and BPM roll.
The paper is structured as follows: the FBBA is presented

in Sec. II. In Sec. III the experimental set-up is described.
The error analysis based on the alignment tolerances and
the expected accuracy are evaluated in Sec. IV. In Sec. V
experimental results of the new methodology applied to
ALBA are presented and compared with the standard BBA.
Some conclusions are drawn in Sec. VI, whereas the
mathematical details of the proposed approach are presented
in Appendices A and B.

II. QUADRUPOLE FAST BEAM-BASED
ALIGNMENT

In this section we present different approaches to
evaluate the BPM-to-quad offsets with respect to

quadrupole magnets under various assumptions and con-
ditions. In Sec. II A we consider exciting horizontal and
vertical OCMs separately while in Sec. II B we consider a
simultaneous orbit modulation in the two planes, though
still ignoring coupling effects. A complete treatment
including betatron coupling, BPM roll, OCM tilt and
dual-plane orbit modulation is presented in Sec. II C.
While the first two approaches are valid for normal
quadrupoles only, the last is more general and is applicable
to both normal and skew quadrupoles. A further extension
to make use of an ac modulation of the quadrupole itself
(either normal or skew) on top of the ac modulation of
the OCMs is also presented. If implemented, this fully
ac variant would further reduce the FBBA time by an
additional factor two.

A. Single-plane ac excitation

In the linear regime and in the presence of a time-varying
OCM setting, vjðtÞ, the vertical closed-orbit readings ylðtÞ
and ykðtÞ at two BPMs l and k read

ylðtÞ − y0l ¼ Ryy
lj ðvjðtÞ − v0Þ;

ykðtÞ − y0k ¼ Ryy
kj ðvjðtÞ − v0Þ; ð1Þ

where t represents discrete, equally spaced time values
(sampled at a 10 kHz rate in the case of ALBA), y0 is the
BPM position reading when the OCM setting is v0. As any
other BPM-to-quad BBA implementation, this method
does not relies on the accelerator model knowledge so
the effective orbit response matrix (ORM) Ryy

lj is unknown.
In this paper we will assume that the BPM l is next to the
varied quadrupole as sketched in Fig. 1. The OCM j is
chosen to produce a large variation of the orbit at BPM l.
Hence, although we do not assume any specific value for
Ryy
lj , it should not have a small value at BPM l.

FIG. 1. Sketch of the beam closed orbit when passing through
the center of the quadrupole (next to the BPM l) to be aligned.
In the example drawn vjðtÞ ¼ v0 generates the closed orbit that
makes the beam pass through the quadrupole center.
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While a synchronous temporal sampling of the BPM
data is ensured by the FA, in the case of ALBA, the OCMs
data vjðtÞ are not available, hence not observable.
Nevertheless, the two equations in the above system can
be combined to remove any dependence on the OCM
excitation, namely

yl1ðtÞ − y0l1 ¼
Ryy
lj1

Ryy
kj1

ðyk1ðtÞ − y0k1Þ: ð2Þ

The above equation describes the linear correlation
between BPM data during a beam steering. The label 1
refers to the first quadrupole setting. Any change in the
quadrupole current ΔI modifies both the response matrix
elements, i.e., the slope in Eq. (2), and the orbit distortion if
the beam is not centered to the quadrupole under study.
These effects can be written as

yl2ðtÞ − y0l2 ¼
Ryy
lj2

Ryy
kj2

ðyk2ðtÞ − y0k2Þ; ð3Þ

where the label 2 refers to the modified quadrupole strength
(or modified quadrupole current, I0 þ ΔI). The new con-
stant values can be written as y0l2 ¼ y0l1 þ Al and
y0k2 ¼ y0k1 þ Ak, where Al and Ak account for the orbit
distorted by the off-axis passage through the quadrupole.
Equation (3) can be then rewritten as

yl2ðtÞ − y0l1 ¼
Ryy
lj2

Ryy
kj2

ðyk2ðtÞ − y0k1Þ þ Alkj; ð4Þ

where Alkj ¼ Al − Ryy
lj2=R

yy
kj2Ak represents an offset with

respect to the line of Eq. (2). The intersection between two
(or more) lines obtained with two (or more) quadrupole
settings would correspond to the beam crossing the quadru-
pole on axis, since the orbit distortion would not depend
on its strength. According to Eqs. (2) and (4), the only
condition for two lines to have the same value is when both
hand sides are zero, i.e., when Alkj ¼ 0 ⇒ y0l2 ¼ y0l1;
y0k2 ¼ y0k1, ylðtÞ ¼ y0l1 and ykðtÞ ¼ y0k1. The physical mean-
ing of y0l1 and y0k1 in Eq. (2) is then nothing else than the
BPM readings for which the beam crosses the quadrupole
on axis, i.e., when the beam is aligned. If one of the
monitors is close to the quadrupole under scrutiny, e.g., the
BPM l, y0l denotes the BPM-to-quad offset. The offset can
be obtained not knowing the exact value of the response
matrix Ryy

lj , which depends on the OCM and BPM
calibration factors. This technique, as well as the original
BBA, is completely model independent.
A graphical illustration of the method is given in Fig. 2

where the two lines measured prior and after a change
in the quadrupole current, corresponding to Eqs. (2)
and (3), are displayed. In this particular case, using only

the information of one BPM (BPM k) apart from the BPM
closest to the quadrupole (BPM l), the estimated offset is
98� 16 μm. The error bar is computed as the distance
along the axis of the BPM l from the intersection point
when a separation between the two fit lines equals the BPM
noise. The latter is evaluated from the fluctuations in the
BPM readings with unperturbed beam.
Accuracy and precision can be improved by using data

from several BPMs k. Ideally, the two lines of Fig. 2 shall
have sufficiently different slopes so to increase both the
accuracy, when determining the intersection, and the
precision, when computing the error bar. Similarly, differ-
ent pairs of BPMs provide different accuracy and precision,
because of their different sensitivity to determine the offset,
that is proportional to the change of the slopes in Eqs. (2)

and (3), namely
Ryy
lj2

Ryy
kj2
−

Ryy
lj1

Ryy
kj1
.

For each quadrupole, the results presented here have
been obtained first by selecting the most suitable OCM and
then by averaging the results over different pairs of BPMs.
Couples with error bars larger than three times the average
error bar (i.e., with weak correlation) are discarded. In the
example of Fig. 2, by using the data from all the BPMs a
simple average leads to an offset of 84� 10 μm. Instead, if
the above mentioned outliers are discarded, the final offset
is 92� 3 μm. Figure 3 shows the offset estimation of BPM
No. 69 given by each one of the other 119 BPMs. The red
dots represent the discarded BPM results and correspond

FIG. 2. Example of measured only vertical plane FBBA. The
BPM offsets leading to the on-axis crossing of the beam through
the quadrupole are inferred from the intercept of the two lines:
before (blue) and after (red) the quadrupole change ΔI ¼ 2.5 A.
The OCM was excited at 6 Hz. The data shown here corresponds
to the case l ¼ 69.
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well with peaks of the inverse of the sensitivity factor
estimated from the model.
It is generally assumed that the quadrupoles are

better aligned and keep their alignment over time better
than the BPMs. In most cases, after each measurement,
an artificial BPM numerical offset y0l1 is added to ensure
that the closed-orbit correction centers the beam onto the
quadrupole axis.

B. Multi-frequency and dual-plane ac excitation

The analysis presented in the previous section does not
depend on the frequency of the ac OCM excitation. In order
to fully exploit the ac nature of this approach and to speed
up the overall measurement, quadrupole offset in both
planes can be obtained in a single measurement by a
simultaneous excitation of horizontal and vertical OCMs at
different frequencies. The FA data stream will contain the
beam response to both excitations, and so a Fourier analysis
can be performed to decouple the two responses. In Eq. (2)
the ylðtÞ signal contains the orbit response both from the dc
OCM strength and the (not observable) ac OCM excitation
vjðtÞ. When the beam is excited by two OCMs (horizontal
and vertical) at different frequencies, both dc and ac
originated components need to be isolated and summed

up before applying the method described in the previous
section. Equation (2) is generalized to

x̃lðtÞ − x0l ¼
Rxx
lj

Rxx
kj
ðx̃kðtÞ − x0kÞ; ð5Þ

ỹlðtÞ − y0l ¼
Ryy
lj

Ryy
kj
ðỹkðtÞ − y0kÞ; ð6Þ

where

x̃lðtÞ ¼ xl;dc þ xl;fhðtÞ; ð7Þ

ỹlðtÞ ¼ yl;dc þ yl;fvðtÞ: ð8Þ

xdc and ydc denote the dc originated components of the FA
data, whereas xfhðtÞ and yfvðtÞ represent their harmonics
oscillating at the horizontal and vertical excitation frequen-
cies, fh and fv, respectively. Any BPM response due to
other external sources is hence removed. Under the
assumption of operating the machine at low betatron
coupling, its impact can be ignored and the analysis of
Sec. II A repeated on the signals x̃ and ỹ.
Before showing an example of the multifrequency

FBBA, it shall be noticed that betatron coupling and the
finite sampling frequency (10 kHz) introduce some cross-
talk among the BPM harmonics. Even in machines operat-
ing at low coupling, this interference may appear at those
BPMs with weak response to OCM excitation. This issue is
addressed in Appendix B, where a numerical solution is
presented to correct the cross-talk. The cross talk depends
on how close are the selected ac frequencies of each plane
but there are other considerations that influence the
frequency selection and are addressed in Sec. III. In the
case of ALBA the most suitable frequencies were found
to be 7 Hz in the horizontal plane and 6 Hz in the
vertical plane.
As for the single-plane, single-frequency measurement

introduced in the previous section, the intersection of the
lines of Eq. (5) before and after the quadrupole change
provides the BPM-to-quad offsets, x0l and x0k. The same
exercise applied to the vertical data via Eq. (6) will
determine the vertical BPM-to-quad offsets.
In Fig. 4 results from a (parallel) dual-plane excitation

are displayed along with those from the equivalent (sequen-
tial) single-plane excitations. In the top plot the raw vertical
data sampled at 10 kHz (corresponding to Eq. (2) are
reported. The blue and red lines refer to the single-plane
excitation. The green and black curves are from the dual-
plane excitation, whose beating is generated by betatron
coupling mixing the two modulations. The ỹ data of Eq. (6)
obtained from the harmonic analysis of those curves are
reported in the bottom plot, showing how the two lines
obtained from the dual-frequency OCM excitation match

FIG. 3. The upper plot shows the BPM l estimated offsets
obtained from the lines intersection using data from all the other
119 BPMs. The cases where the error bar is larger than three
times the average error bar are highlighted in red and removed
from the final average. The lower plot shows the inverse of the
difference between the slopes in Eqs. (2) and (3) estimated from
the model. Notice that the removed BPMs (red dots) in the upper
plot coincide with those for which the such sensitivity factor is
close to zero (the inverse factor has a peak) in the lower plot. The
data shown here corresponds to the case BPM l ¼ 69.
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very well the linear fits obtained from the single-frequency
modulation. In this example, the offsets of the closest BPM
to the quadrupole obtained from the two approaches are
32� 4 μm (single frequency) and 29� 2 μm (dual fre-
quency). These results are obtained after applying the same
statistics described at the end of Sec. II A.

C. Dual-plane ac excitation and beam coupling

If betatron coupling, BPMs rolls or OCMs tilts cannot be
neglected, Eq. (1) needs to be modified by including the
effective off-diagonal ORM terms Rxy, Ryx

xkðtÞ − x0k ¼ Rxx
kj ðhjðtÞ − h0Þ þ Rxy

kpðvpðtÞ − v0Þ
ynðtÞ − y0n ¼ Ryy

npðvpðtÞ − v0Þ þ Ryx
nj ðhjðtÞ − h0Þ: ð9Þ

By doing so, the ratio between the above two equations
evaluated at two BPMs does not yield any longer the
observable linear relation of Eq. (2). A different (and novel)
mathematical approach is then required.
Equation (9) is general enough to be valid for any

amount of OCM tilts. The inclusion of Rxy and Ryx can
absorb coupling effects of any kind. A brief proof is
presented in Appendix Sec. A 1 of Appendix A.
The inclusion of betatron coupling allows a straightfor-

ward extension of the FBBA to skew quadrupoles. This is of
particular interest in synchrotron light sources since these
magnets are usually trim coils mounted on the yokes of
sextupoles: aligning the beam at a skew quadrupole would
hence correspond to a sextupole BBA, which benefits the
machine linear optics and betatron coupling. Moreover,
since trim coils usually feature ac functionalities, the FBBA
can be extended to a fully ac approach by varying their
strengths sinusoidally instead of repeating the measurement
at two different strengths, hence halving the measurement
time. The frequency of the skew quadrupole excitation is
chosen so to not interfere with the ones of the OCMs.
In this sections only the final results are presented and

discussed, while all proofs and details can be found in
Appendix A. There, a general formula evaluating the BPM-
to-quad offset l is derived:

x0l ¼ℜfhxlj0igþSfhxljfhigMhþSfhxljfvigMv

y0l ¼ℜfhylj0igþSfhyljfvigMvþSfhyljfhigMh; ð10Þ

where the coefficients M are observable independent on
the type of quadrupole (be it normal or skew), though they
differ if the latter is changed in either dc or ac mode. The
symbol hxjfi denotes the Fourier component of the signal x
at the frequency f, i.e., the projection of x on f. The signed
amplitudes S are defined as:

Sfhxjfzig ¼ jhxjfzijsgnfcosðψ ðzÞ
x − ψ zÞg; ð11Þ

where ψ ðzÞ
x is the phase of the BPMs signal x at the steerer

frequency fz corresponding to the z plane while ψ z is the
phase of that steerer signal. All projections and phases can
be obtained from the BPM readings of the FA. Explicit
formulas are given in Appendix A. There it is also shown

how the difference ψ ðzÞ
x − ψ z is either 0 or π. Thus, the sign

of S is either positive or negative and shall correspond to
the one of the ORM coefficients.
ℜfhxlj0ig represents thus the real part of the dc

component of the horizontal beam orbit during the simul-
taneous horizontal and vertical ac OCM excitation.
Sfhxljfhig is the signed amplitude of the horizontal
position at frequency fh and is the leading term along
with the dc component. The term Sfhxljfvig accounts for
betatron coupling and is proportional to the horizontal
beam response to the vertical OCM. Equivalent definitions
and considerations apply to the vertical data.

FIG. 4. Top plot: correlation between two BPMs vertical raw
data sampled at 10 kHz before (green dots) and after (black dots)
a quadrupole change during the simultaneous excitation of a
horizontal (at 7 Hz) and a vertical (at 6 Hz) OCM. Blue and red
dots correspond to data taken with one OCM at a time. Bottom
plot: comparison between the lines resulting from fitting the
single-frequency case with Eq. (2) and those of Eqs. (6) and (8)
from the dual-frequency case. The two final offsets agree
roughly: 32� 4 μm from the single-frequency excitation and
29� 2 μm from the dual-plane modulation. The data shown here
corresponds to the case BPM l ¼ 5.
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The formulas in Eq. (10) are the core of the FBBA and
apply to any quadrupole type (normal or skew) and
modulation (dc or ac). The coefficients M read

Mh ¼ −
DxDyv −DxvDy

DxhDyv −DxvDyh
¼ Yhk

Xhk

Mv ¼ −
DxhDy −DxDyh

DxhDyv −DxvDyh
¼ Yvk

Xvk
: ð12Þ

For a dc (normal or skew) quadrupole scan, the coefficients
D become

Dx ¼ ℜfhxk2j0ig −ℜfhxk1j0ig
Dy ¼ ℜfhyk2j0ig −ℜfhyk1j0ig
Dxh ¼ Sfhxk2jfhig − Sfhxk1jfhig
Dyv ¼ Sfhyk2jfvig − Sfhyk1jfvig
Dxv ¼ Sfhxk2jfhig − Sfhxk1jfhig
Dyh ¼ Sfhyk2jfhig − Sfhyk1jfhig: ð13Þ

An analytic derivation is given in Sec.A 2 ofAppendixA.
Labels 1 and 2 refer to data acquired at the quadrupole
current I0 − ΔI and at I0 þ ΔI, respectively.

In the case of ac excitation of the normal or skew
quadrupole, the coefficients D read

Dx ¼ Sfhxkjfsig
Dy ¼ Sfhykjfsig
Dxh ¼ Sfhxkjfh þ fsig þ Sfhxkjfh − fsig
Dyv ¼ Sfhykjfv þ fsig þ Sfhykjfv − fsig
Dxv ¼ Sfhxkjfv þ fsig þ Sfhxkjfv − fsig
Dyh ¼ Sfhykjfh þ fsig þ Sfhykjfh − fsig: ð14Þ

An analytic derivation is given in Sec. A 3 of Appendix A.
fs is the (known) skew quadrupole excitation frequency.
Throughout this paper, Mh;v are computed as the slopes

of the linear fits Yhk ¼ MhXhk and Yvk ¼ MvXvk, where
the denominator X and numerator Y are measured at all
BPMs. An example of such fits in the case of a normal dc
varied quadrupole for BPM l ¼ 5 is shown in Fig. 5. The
vertical offset measured via Eq. (10), i.e., taking betatron
coupling into account, is 30.5� 0.4 μm, compatible to
the value obtained from uncoupled analysis of Fig. 4

FIG. 5. Example of a Mh (top) and Mv (bottom) linear fit
using the combined data of the 120 BPMs before and after a dc
normal quadrupole changed by 2.5A. Quadrupole and steerer
setting are the same of Fig. 4 i.e., BPM l ¼ 5. Using Eq. (10), the
resulting vertical offset taking coupling effects into account
is y0l ¼ 30.5� 0.4 μm.

FIG. 6. Example of aMh andMv linear fit using the combined
data of the 120 BPMs before and after a dc skew quadrupole
changed by 2.5A. Using Eq. (10), the resulting offsets are x0l ¼
330.7� 0.5 μm and y0l ¼ 265.3� 7.0 μm. The data shown here
corresponds to the case l ¼ 10.
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(29� 2 μm) and the single-frequency excitation
(32� 4 μm). For these specific quadrupole and BPM,
the third (coupling) term in the r.h.s of Eq. (10) which
is proportional to Mh is relatively small, ≃0.1 μm. Larger
deviations between this more general analysis and the one
(ignoring coupling) described in the previous section are to
be expected at quadrupoles with larger offsets (i.e., larger
coefficients M) and/or larger coupled motion (i.e., large
cross-term signed amplitudes Sfhxljfvig and Sfhyljfhig).
The uncertainty associated to the resulting BPM-to-quad

offsets is obtained by error propagation in Eq. (10). The
uncertainty associated to theM factors is obtained from the
fit. The uncertainty associated to all projections hxjfi and
hyjfi is obtained from the corresponding BPM data with
neither OCM nor quadrupole excitation. An example of
such baseline noise is shown in Fig. 9.
In order to test the validity of Eq. (9) for large BPM rolls,

we reanalyzed the same data but rotating the x and y
readings of all the BPMs by different angles, except BPM l.
Irrespective to the angle artificially applied the result
changes two orders of magnitude less that the assigned

uncertainty. In particular one can check that a π=2 rotation,
that is x ⇒ y and y ⇒ −x which implies Dx ⇒ Dy,
Dy ⇒ −Dx, Dxh ⇒ Dyh, Dyh ⇒ −Dxh, Dxv ⇒ Dyv and
Dyv ⇒ −Dxv, leaves Eq. (12) unchanged.
A second example of linear fit to infer the coefficientsM

and, thus, the offsets of a dc skew quadrupole next to the
BPM l ¼ 10 is shown in Fig. 6.
A last example of analysis, this time performed with an

ac modulation of the same skew quadrupole of Fig. 6 is
shown in Fig. 7. The horizontal offsets inferred with the dc
and ac excitation are 330.7� 0.5 μm and 311.3� 2.8 μm,
respectively. The vertical offsets are also discordant
265.3� 7.0 μm and 288.3� 2.3 μm. In Sec. V it will be
shown how a systematic discrepancy between the results
from a dc and an ac skew quadrupole variation affects all
magnets at ALBA.

III. OPTIMIZING THE EXPERIMENTAL SETUP

In practice, the experimental set-up has a certain param-
eter settings that can influence the precision of our analysis.
For this reason, we provide next a study of these param-
eters, like the waveform amplitude and frequency or the
BPM buffer length. The OCM waveform is defined by a
series of discrete current set points separated by 80 μs and
pre-loaded in the magnet power supply. The waveform is
repeated continuously so that the current in the corrector
coils emulates a sinusoidal profile. However, if the
requested rate of change in the current is too large, the
output current may not be able to follow the desired curve.
For each waveform frequency there is thus an upper limit
on the achievable effective sine amplitude. Above that
maximum, the effective amplitude will no longer increase
and the output current will exhibit spikes and disconti-
nuities on top of the pure sinusoidal signal, introducing
harmonics at higher frequencies.
Figure 8 shows the maximum orbit distortion at the 120

ALBA BPMs as a function of the OCM waveform
amplitude and frequency. As in the standard BBA, a
maximum orbit distortion of around �0.5 mm is created
during the FBBA. According to Fig. 8 this is only possible
at frequencies lower than 7 Hz. On the other hand, from 0 to
15 Hz the BPMs noise decreases strongly as the frequency
increases—see Fig. 9. An amplitude of 0.5 A and frequen-
cies of 7 and 6 Hz for the horizontal and vertical plane,
respectively, were found to be a reasonable trade-off for the
quadrupole FBBA.
ALBA skew quadrupole and OCM power supplies are

identical and a similar approach was followed to determine
the skew quadrupole frequency in ac mode. During the dc
FBBA of normal and skew quadrupoles, their current is
varied by �2.5 A (the same change of the standard BBA at
ALBA). Following an extrapolation of the data in Fig. 8, in
order to use the same current change during the ac skew
quadrupole FBBA, its frequency is then limited to 1.6 Hz.

FIG. 7. Example of aMh andMv linear fit using the combined
data of the 120 BPMs with a skew quadrupole ac modulation (at
1.6 Hz) of the same skew quadrupole of Fig. 6. By using Eq. (12)
and Eq. (14), the resulting offsets are x0l ¼ 311.3� 2.8 μm and
y0l ¼ 288.3� 2.3 μm. The data shown here corresponds to the
case l ¼ 10.
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The skew quadrupole trim coils are mounted on the
sextupole magnets. When the former are powered the
magnetic symmetry of the six poles is broken. Magnetic
simulations show that the effect of the trim coils is sizable
in displacing the magnetic center vertically (0.1 mm=A)
but also quite linear. For this reason, FBBA of dc quadru-
poles are performed both at −2.5 A and þ2.5 A. FBBA of
ac quadrupole are expected to be less sensitive to this issue
because of the continuous and symmetric variation of the
trim coil current.
The optimum acquisition time (i.e., the length of the FA

buffer to be Fourier analyzed) was determined by evalu-
ating the BPM-to-quad offset errors as a function of the
used buffer length. To this end two different sources of error
are considered. The first is the uncertainty in evaluating the
coefficients Mh and Mv (group error). The second is the
error in evaluating the BPM offsets via Eq. (10) (buffer
error). Despite the names, both depend on the length of the
FA buffer used for the analysis.
For the normal quadrupole FBBA, a test was carried out

on 5 BPMs with an acquisition time of 5.5 s and the
resulting offsets were taken as reference. These were then
reevaluated after reducing the same FA buffer by steps of
50 ms. Buffer errors between the reference offsets and the
ones from the reduced buffer were then computed, and the
resulting errors are averaged over the used BPMs subgroup.
The group errors are recalculated for every different buffer
and averaged for the 5 BPMs. Figure 10 presents an
example of such error analysis. For acquisition times of
around 1.5 s, both buffer and group errors are below 3 μm.

FIG. 8. Maximum orbit distortion over all the 120 BPMs as a
function of the waveform amplitude and frequency. A very
similar behavior is observed in both planes.

FIG. 9. Example of the 120 BPMs mean spectral noise at
18 mA (the typical beam current for a BBA measurement at
ALBA). The noise decreases rapidly from zero to 15 Hz. It is
worthwhile stressing the fact that while the BBA is influenced by
the integrated noise spectrum (1.5 μm and 0.8 μm rms in the two
planes, including the 50 Hz peak), the novel FBBA is affected
only by the noise at the selected frequencies (which is below
10−2 μm).

FIG. 10. Measured buffer and group offset errors, averaged
over 5 BPMs, as a function of the acquisition time for a (dc)
normal quadrupole FBBA.
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Longer acquisition times would further reduce systematic
errors, though at slower pace and at the price of longer
numerical calculations. An acquisition time of 1.5 s was
found then to be a acceptable trade-off.
Notice that in Fig. 10 the group error rapidly (above

0.5 s) converges to a given value, and it does not decrease

with the buffer size. In that case, the group error is limited
by a real discrepancy between BPMs in theMh andMv fit.
The value at which the group error saturates indicates
how well our linear model given by Eq. (9) corresponds to
the reality.
For the dc skew quadrupole FBBA the same error

analysis was carried out, this time increasing the buffer
size to 6.5 s. The results are shown in Fig. 11. Buffer and
group errors in the two planes are similar already after 2 or
3 s, though at a level much higher than the one observed for
normal quadrupoles (∼10 μm compared to less than 3 μm).
This was to be expected, since skew quadrupoles have a
much weaker impact on the beam motion (and hence on the
BPM signal) compared to normal quadrupoles, where the
buffer error reaches the 3 μm level around 6 s. The group
error also is at the level of 3 μm in the horizontal plane.
In the case of the ac skew quadrupole FBBA, the buffer

and group errors as a function of the acquisition time are
shown in Fig. 12. Again, at 6 s the buffer error reaches the
3 μm level. At 6 s acquisition time the ac method has
similar buffer errors but smaller group errors, specially in
the vertical plane.
Table I summarizes the optimized parameters of the

experimental setup.
The mechanical alignment of both quadrupole magnets

and sextupole magnets during the ALBA storage ring
installation is detailed in [13]. According to that, the
alignment tolerances are in both cases around 30 μm.
Also, both for quadrupoles and sextupoles, the coils
mounted in the iron poles are cooled in parallel, which
ensures the same equilibrium temperature and magnetic
stated the poles and hence keeps the magnetic center.

IV. ESTIMATION OF THE METHOD ACCURACY

In the previous section the dependence of the measure-
ment buffer and group errors on the acquisition time has
been studied. There are other sources of uncertainty, for
instance the beam orbit angle at the quadrupole to be
aligned (the lower, the better) and the distance between the
magnet and the nearest BPM (again, the lower, the better).

FIG. 11. Measured average of 5 BPM offset errors as a function
of the acquisition time for a (dc) skew quadrupole FBBA.

FIG. 12. Measured average of 5 BPM offset errors as a function
of the acquisition time for a ac skew quadrupole FBBA.

TABLE I. Summary of the optimized measurement parameters
for which the expected buffer error in the evaluation of the offset
is around 3 μm, and the group error of about 1 μm for the normal
quadrupole case and 10 μm in the skew quadrupole case.

OCM horizontal frequency fh 7 Hz
OCM vertical frequency fv 6 Hz
ac skew quadrupole frequency fs 1.6 Hz
rms orbit distortion (H,V) 0.5 mm
ΔI OCM 0.5 A
ΔI normal quadrupole 2.5 A
ΔI skew quadrupole 2.5 A
Acquisition time (normal quadrupole) 1.5 s
Acquisition time (skew quadrupole) 6.0 s
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The orbit angle is difficult to estimate experimentally,
though readily accessible in simulations. In this section,
we present results from numerical tests aiming at quantify-
ing the expected accuracy induced by these two factors.
Even though ac FBBA cannot be performed at ALBA
because the quadrupole power supplies do not have ac
capabilities, it is next included in the analysis for
completeness.
Standard BBA and novel FBBA (both ac and dc)

measurements have been simulated on a set of 100 lattice
models including realistic magnet and girder random
displacements and tilts, magnetic field errors, as well as
an orbit distortion corrected at operational levels. The
standard deviations of the (Gaussian) error distributions
are listed in Table II.
In order to minimize other sources of uncertainty in these

simulations, acquisition time and other experimental
parameters of Table I have been artificially chosen so to
limit their contribution to the overall accuracy to 0.1 μm.
For each one of the 100 lattice models and quadrupoles to
be aligned, the most suitable OCM was also chosen: this is
to take into account the different modulation of the lattice
functions for each model and hence of the modified
effectiveness of the steerers.
The accuracy achieved in simulations is summarized

in Table III. As figure of merit, the standard deviation of
the difference between the expected and the simulated

measurement BPM offsets is computed first, and averaged
over the 100 model lattices then, to generate a single
number for each comparison. In general all methods have a
similar accuracy (lines 2–6), which is around 10% of the
expected offsets (first line). Differences among the methods
are lower: For normal quadrupole offsets the agreement is
below 4 μm (lines 7–9), while for skew quadrupoles it is
5 μm (last line). These error estimates shall be combined
with those estimated from the experimental parameters of
Sec. III.

V. FBBA METHOD VALIDATION

In this section experimental results with the different
FBBA methods introduced in Sec. II are presented. In
Sec. VA offsets measured via the standard quadrupole
BBA are compared to the ones obtained via the novel
FBBA, ignoring betatron coupling in the latter. In Sec. V B,
the impact of the corrections included in the FBBA to
account for coupling is evaluated on the same data sets.
Finally in Sec. V C, outcomes from the skew quadrupole
FBBA via dc and ac excitation are examined.
The ALBA storage ring comprises 32 combined-

function-bending magnets, 112 quadrupoles, 32 skew
quadrupoles, 88 OCMs per plane and 120 BPMs. Both
FBBA and BBA aim to align the 120 BPMs (or a subgroup
in the case of the skew quadrupoles) to their neighboring
magnets. Even though each BPM has at least one quadru-
pole next to it, there are some quadrupole triplets with no
BPM in between.
During the measurement, the ALBA storage ring fea-

tured a betatron coupling at the level of ϵy=ϵx ≃ 0.7%. The
experimental parameters of Table I were used.

A. Quadrupole BBA and FBBA
(ignoring betatron coupling)

The novel quadrupole FBBA is first compared to the
standardBBAby ignoring betatron coupling in the harmonic
analysis of the former, i.e., following the procedure described
in Sec. II A. The BPM-to-quad offsets of the 120 BPMs
obtained with the two methods are displayed in Fig. 13.
The overall agreement is rather good, although at some
BPMs discrepancies are well beyond the estimated uncer-
tainty. The standard deviation among all BPMs of the two
sets is around 15 μm in both planes. The expected buffer
error originating from the finite measurement time is
approximately 4 μm (see Sec. III) and the one stemming
from the lattice characteristics an additional 4 μm horizon-
tally and 2 μm vertically (see Table III). The observed
discrepancy is thusmore than two times larger than expected.
The larger offsets measured around BPM no. 20 are
suspected to arise from important mechanical misalignment,
though to date this hypothesis could not be verified.
As far as the measurement reproducibility is concerned,

both BBA and FBBA of some quadrupoles were repeated

TABLE II. Standard deviation values for the Gaussian error
distribution used to generate the 100 perturbed lattices.

Girder (H, V) positioning error 150 μm
Magnet (H, V) positioning error 25 μm
Girder and magnet tilt error 50 μrad
Dipole and quadrupole field error 0.1%

TABLE III. Top line: quadrupole rms offset inserted into the
model and to be inferred. The corresponding BPM offsets are
retrieved by the simulated measurements and the standard
deviation with respect to the expected value (model, lines 2–6)
or from another technique (BBA or dc FFBA, lines 7–10) is
computed at all BPMs and averaged over 100 simulated lattices.

Horizontal Vertical

1 Model rms quadrupole offset 150 μm 150 μm

Mean difference between offsets:

2 (Normal quad.) BBA vs model 15 μm 12 μm
3 (Normal quad.) dc FBBA vs model 16 μm 12 μm
4 (Normal quad.) ac FBBA vs model 16 μm 13 μm
5 (Skew quad.) dc FBBA vs model 19 μm 9 μm
6 (Skew quad.) ac FBBA vs model 19 μm 6 μm
7 (Normal quad.) dc FBBA vs BBA 4 μm 2 μm
8 (Normal quad.) ac FBBA vs BBA 4 μm 3 μm
9 (Normal quad.) ac FBBA vs dc FBBA 0 μm 3 μm
10 (Skew quad.) ac FBBA vs dc FBBA 0 μm 5 μm
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two consecutive times, and this repeated additional five
times after cycling all magnets and waiting ten minutes for
thermal stabilization. Results for the horizontal offset at the
BPM no. 21 are reported in Fig. 14, showing a global
reproducibility within the estimated error bar. Magnetic
hysteresis seems also to play no observable role, the curves
1 and 2 in the same plot (without magnet cycling) being
compatible with the five values measured after cycling the
quadrupoles. Similar observations were made at other
BPMs and in the vertical plane. Very similar level of
reproducibility were reported in [10].

B. FBBA comparison with beam coupling

A complete set of quadrupole FBBA is evaluated first by
ignoring betatron coupling (i.e., applying the procedure of
Sec. II B) and then by including its contribution (i.e.,
making use of the more general scheme of Sec. II C).
The difference between the 120 BPM offsets inferred from
the two approaches is displayed in the two plots of Fig. 15
(left vertical scale). We observe a similar discrepancy in
both planes BPM offsets (6 μm rms and 7 μm rms in the

FIG. 13. Standard BBA and FBBA measurements for the 120
ALBA BPMs. The upper plot shows the results for the horizontal
plane while the lower plot refers to the vertical plane. The results
exciting the OCMs in ac are shown in red while the dc case result
is shown in blue.

FIG. 14. Reproducibility of both BBA and FBBA for the BPM
no. 21 in the horizontal plane over 5 consecutive measurements
with (curves 1) and without (curves 2) magnetic cycles.

FIG. 15. Difference between the FBBA offsets at the 120
ALBA BPMs when including or excluding coupling effects (blue
curves, left axis). In order to attempt to correlate this difference
with cross-talk between the two planes, the offsets in the opposite
plane are shown in the same plot (red curves, right axis).
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horizontal and vertical plane respectively). Some of the
largest differences in the horizontal plane appear to be
correlated to the largest vertical offsets (right vertical
scale in the top plot of Fig. 15), similarly large horizontal
BPM offsets induce large differences between the two
approaches in the vertical plane (see bottom plot of the
same figure). This correlation, visible mainly around
BPM no. 20, is to be expected since the coupling effect
is linear with the terms Mh and Mv [see Eq. (10)] so a
correlation of the coupling effect and the offset in the
opposite plane is expected. Instead, the large discrepancies
observed in the vertical plane around BPM No. 60 and
BPM No. 115 without any effect in the horizontal plane are
not understood.
Also, this comparison provides an estimation of the

FBBA and BBA accuracy lower limit for a given amount of
coupling (0.7% in our case), BPM rolls and OCM tilts
(roughly 1% in our case): 6 μm and 7 μm rms in the two
planes, respectively. This is smaller than the discrepancy
between standard BBA and FBBA, which is at the level of
15 μm rms (see Fig. 13).

C. Skew quadrupole FBBA comparison

The FBBA analysis presented in Sec. II C was tested on
32 skew quadrupoles (trim coils on sextupoles), both with
dc and ac excitation. Again, their offset are identified by the
one inferred at the nearest BPM. The same optimized
experimental parameters of Table I were used. These are
expected to provide similar systematic errors (within
4–5 μm), as shown in Sec. III and Table III. However,
the use of an ac excitation reduces the measurement time
by a factor 2.
As shown in Fig. 16, the two methods yield very similar

results, especially in the horizontal plane. In the vertical
plane, the dc approach results in an almost systematically
larger offset (the average difference is 113 μm and the rms
difference is 44 μm), which corresponds to a factor 20
larger than the one expected from simulations (last row in
Table III).
It is worth noticing that in the vertical plane, the dc

offsets have an average of 86 μm while the ac case the
average is quite smaller - 26 μm. Regarding the method
precision, as in the example shown in Sec. II C, the ac case
shows smaller error bars (when considering both planes).
As in the case of the normal quadrupole FBBA, repeat-

ability tests at some BPMs (i.e., skew quadrupoles) were
performed. The results for BPM no. 21 (the same monitor
as in Fig. 14) in the horizontal plane are displayed in
Fig. 17. A weak dependence of the BPM offset on the
magnetic hysteresis was observed for the dc FBBA during
the first two sets of measurements only. That dependency

FIG. 16. FBBA measurements at the 32 BPMs nearest to skew
quadrupole magnets. The top plot shows the results for the
horizontal plane, while the bottom curves refer to the vertical
plane. Results obtained via the ac skew quadrupole excitation are
shown in blue while those from the dc scan are in red.

FIG. 17. Reproducibility of both dc and ac skew quadrupole
FBBA for the BPM no. 21 (6th skew quadrupole) in the
horizontal plane with (curves 1) and without (curves 2) magnetic
cycles.
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on the magnetic history in the dc skew quadrupole case was
discussed in Sec. III, it should be noticed that although it is
a week effect, the magnetic history effect brings the dc
measurement closer to the ac measurement. As in Fig. 14
the error bars in Fig. 17 are smaller for the ac case even
though they stem from a single measurement.
It is worthwhile noticing how the measured skew

quadrupole offsets of Fig. 16 are much larger than those
of normal quadrupoles (see Fig. 13), reaching 500 μm at
several locations, not only in sector 3 (region around BPM
no. 20 in Fig. 16) which is suspected to suffer from large
mechanical misalignment. According to the mechanical
alignment of sextupoles and quadrupoles discussed in
Sec. III their difference should be in the range of 30 μm.
The origin of this large discrepancy is unknown and it is
one of the crucial issues to tackle in future studies.

VI. CONCLUSIONS

We have developed a new method (called fast beam
based alignment—FBBA) to align the beam through the
center of the storage ring quadrupoles by using an ac
excitation of the OCMs and the 10 kHz BPM data
acquisition—a standard hardware in most synchrotron light
sources. The mathematical treatment presented in this paper
allows to perform dual plane BBA (horizontal and vertical),
includes betatron coupling, BPM roll and OCM tilt effects,
and extends this method to both normal and skew quadru-
pole magnets.
With a careful choice of the experimental setup param-

eters, the technique speeds up the BBA at ALBA by about a
factor 30 (10 min vs 5 hours), and reaches the same level of
precision. Furthermore and as shown for the case of the

skew quadrupole magnets, the method could still gain a
factor two in speed if the quadrupoles could be excited with
an ac modulation.
We also performed exhaustive simulations to evaluate

the intrinsic accuracy of the method (in the order of 15 μm),
and the expected differences between the standard and the
FBBA. The experimental results show that both methods
agree at the level of the intrinsic accuracy for the normal
quadrupole case. Larger and systematic deviations are
observed in the vertical offsets of skew quadrupoles
depending on their type of variation, dc or ac. The origin
of this discrepancy is still under investigation. Since the dc
skew quadrupole measurement is prone to hysteresis
effects, we believe it is less accurate that than the ac
version. Also the skew quadrupole ac measurement fea-
tures smaller error bars and is a factor 2 faster.
It is our opinion that the larger scope of the FBBA,

namely the inclusion of betatron coupling, BPM roll and
OCM tilt and the extension to skew quadrupoles (i.e., to
sextupole alignment in most synchrotron light sources), and
its huge gain in rapidity allow to consider it as superior with
respect to standard beam-based alignment techniques in
circular accelerators.
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APPENDIX A: FBBA MATHEMATICAL BACKGROUND

In this appendix assumptions and mathematics are detailed to derive the final formulas to infer the offset of (either normal
or tilted) quadrupoles from observable BPM data from the FA, assuming no knowledge of the ac steerers parameters
(strengths and possible tilts). Three hypotheses are needed in order to deduce these formulas: (1) For each quadrupole under
study, only one ac steerer per plane is excited at two different frequencies fh and fv, respectively. (2) The ac beam orbit
distortion at frequencies fh and fv is entirely due to the ac steerers, i.e., any other source of beam motion at those
frequencies must be negligible. (3) The amplitude of the ac steerers is also assumed to be invariant during the
quadrupole scan.

1. General formulas

A more general version of Eq. (1) including betatron coupling reads

xkðtnÞ − x0k ¼ Rxx
kj ðhjðtnÞ − h0jÞ þ Rxy

kj ðvjðtnÞ − v0jÞ;
ykðtnÞ − y0k ¼ Ryx

kj ðhjðtnÞ − h0jÞ þ Ryy
kj ðvjðtnÞ − v0jÞ; ðA1Þ

where tn is the FA sampling time, Rxx
kj and Ryy

kj denote the on-diagonal ORM coefficients, while the off-diagonal ones
(generated by betatron coupling) are Rxy

kj and R
yx
kj . As for Eq. (1), the index k denotes a generic BPM, whereas the label lwill

later refer to the monitor closest to the quadrupole under study. The BPM reading corresponding to the centering of the
quadrupole will be ðx0l ; y0l Þ obtained with unknown (and not observable) OCM strengths ðh0j; v0jÞ. Note that even though
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horizontal and vertical steerers share the same label j, they do not necessarily refer to the same magnet: In fact it may be
convenient make use of two different OCMs with different horizontal and vertical beta function in order to increase their
effectiveness. According to the hypotheses 1, and 2, the beam motion of interest for this study can be Fourier expanded as

xkðtnÞ ¼
X2

m¼0

Xk;m cosð2πfmtn þ ψ ðmÞ
xk Þ ¼ ℜ

�X2

m¼0

ðXk;me
iψ ðmÞ

xk Þei2πfmtn
�

¼ 1

2

X2

m¼0

ðhxkjfmiei2πfmtn þ c:c:Þ;

ykðtnÞ ¼
X2

m¼0

Yk;m cosð2πfmtn þ ψ ðmÞ
yk Þ ¼ ℜ

�X2

m¼0

ðYk;me
iψ ðmÞ

yk Þei2πfmtn
�

¼ 1

2

X2

m¼0

ðhykjfmiei2πfmtn þ c:c:Þ; ðA2Þ

whereℜ and c.c. represent the real part and the complex conjugate, respectively, whereas the hzjfi denotes the (observable)
projection of the BPM signal z onto the frequency f (a complex quantity, defined by amplitude and phase of the harmonic at
frequency f of the BPM reading, of which more in Appendix B). The above sums run over three indices, m ¼ 0 (dc mode,
fm ¼ 0),m ¼ 1 (fm ¼ fh) andm ¼ 2 (fm ¼ fv). The ac steerer functions can be also Fourier expanded. The hypotheses 1
and 2 allow to write them as

hjðtnÞ ¼ ĥj cos ð2πfhtn þ ψhÞ ¼ ℜfðĥjeiψhÞei2πfhtng ¼ 1

2
ðhhjjfhiei2πfhtn þ c:c:Þ;

vjðtnÞ ¼ v̂j cos ð2πfvtn þ ψvÞ ¼ ℜfðv̂jeiψvÞei2πfvtng ¼ 1

2
ðhvjjfviei2πfvtn þ c:c:Þ: ðA3Þ

The amplitudes of the steerer excitation ĥj and v̂j are assumed to be not observable, as the archiving of their currents is
either absent or not reliable for a conversion into strengths. The above expressions are valid as long as the OCMs are
upright. A steerer tilted by an angle ω introduces a vertical (horizontal) motion component at frequency fh (fv), namely

hjðtnÞ ¼
1

2
ðCω;jhhjjfhiei2πfhtn þSω;jhvjjfviei2πfvtn þ c:c:Þ;

vjðtnÞ ¼
1

2
ðCω;jhvjjfviei2πfvtn þSω;jhhjjfhiei2πfhtn þ c:c:Þ: ðA4Þ

In the above definitions, Cω;j and Sω;j denote cosωj and sinωj, respectively. By inserting Eqs (A2) and (A4) in Eq. (A1),
the latter reads

1

2

X2

m¼0

ðhxkjfmiei2πfmtn þ c:c:Þ − x0k ¼ Cω;j

�
Rxx
kj

�
1

2
hhjjfhiei2πfhtn þ c:c: − h0j

�
þ Rxy

kj

�
1

2
hvjjfviei2πfvtn þ c:c: − v0j

��

þ Sω;j

�
Rxx
kj

�
1

2
hvjjfviei2πfvtn þ c:c: − v0j

�
þ Rxy

kj

�
1

2
hhjjfhiei2πfhtn þ c:c: − h0j

��
;

1

2

X2

m¼0

ðhykjfmiei2πfmtn þ c:c:Þ − y0k ¼ Cω;j

�
Ryx
kj

�
1

2
hhjjfhiei2πfhtn þ c:c: − h0j

�
þ Ryy

kj

�
1

2
hvjjfviei2πfvtn þ c:c: − v0j

��

þ Sω;j

�
Ryx
kj

�
1

2
hvjjfviei2πfvtn þ c:c: − v0j

�
þ Ryy

kj

�
1

2
hhjjfhiei2πfhtn þ c:c: − h0j

��
:

ðA5Þ

Note that both sides in the above equations are real numbers, h0j and v0j being real quantities too. The above relations must
hold for each mode m ¼ 0, 1, 2 and at any time tn. They can be then split into two separate systems
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1

2
ðhxkj0i þ c:c:Þ − x0k ¼ −Rxx

kj h0j − Rxy
kj v0j; ðm ¼ 0Þ

1

2
ðhxkjfhiei2πfhtn þ c:c:Þ ¼ Rxx

kj

�
1

2
hhjjfhiei2πfhtn þ c:c:

�
; ðm ¼ 1Þ

1

2
ðhxkjfviei2πfvtn þ c:c:Þ ¼ Rxy

kj

�
1

2
hvjjfviei2πfvtn þ c:c:

�
; ðm ¼ 2Þ; ðA6Þ

1

2
ðhykj0i þ c:c:Þ − y0k ¼ −Ryx

kj h0j − Ryy
kj v0j; ðm ¼ 0Þ

1

2
ðhykjfhiei2πfhtn þ c:c:Þ ¼ Ryx

kj

�
1

2
hhjjfhiei2πfhtn þ c:c:

�
; ðm ¼ 1Þ

1

2
ðhykjfviei2πfvtn þ c:c:Þ ¼ Ryy

kj

�
1

2
hvjjfviei2πfvtn þ c:c:

�
; ðm ¼ 2Þ: ðA7Þ

In the above expressions the original ORM coefficients have been replaced by effective ones, accounting for the effects of
tilted steerers:

Rxx
kj ↔ Cω;jRxx

kj þ Sω;jR
xy
kj

Ryy
kj ↔ Cω;jR

yy
kj þ Sω;jR

yx
kj ;

Rxy
kj ↔ Cω;jR

xy
kj þ Sω;jRxx

kj

Ryx
kj ↔ Cω;jR

yx
kj þ Sω;jR

yy
kj .

ðA8Þ

Since the ORM coefficients are not observable through this technique and they will not be used in the final formulas, this
replacement and thus the steerer tilts do not impact the following derivation and analysis. The dc equations (m ¼ 0) can be
written as

ℜfhxkj0ig − x0k ¼ −Rxx
kj h0j − Rxy

kj v0j

ℜfhykj0ig − y0k ¼ −Ryx
kj h0j − Ryy

kj v0j;
⇒

x0k ¼ ℜfhxkj0ig þ Rxx
kj h0j þ Rxy

kj v0j

y0k ¼ ℜfhykj0ig þ Ryx
kj h0j þ Ryy

kj v0j.
ðA9Þ

The above equations are the starting point for the evaluation of the quadrupole offset ðx0l ; y0l Þ. The next step is to manipulate
their right-hand side (r.h.s.) in order to make only observable quantities appear. A physics consideration imposes some
constraints on the last two equations of both systems in Eqs. (A6)–(A8). Indeed, the ORM coefficients must be real numbers
and time-independent. Those equations must then hold simultaneously for both harmonics oscillating at �fh and �fv,
resulting in

hxkjfhi ¼ Rxx
kj hhjjfhi

hxkjfhi� ¼ Rxx
kj hhjjfhi�

hxkjfvi ¼ Rxy
kj hvjjfvi

hxkjfvi� ¼ Rxy
kj hvjjfvi�;

hykjfhi ¼ Ryx
kj hhjjfhi

hykjfhi� ¼ Ryx
kj hhjjfhi�

hykjfvi ¼ Ryy
kj hvjjfvi

hykjfvi� ¼ Ryy
kj hvjjfvi�.

ðA10Þ

The (real) ORM coefficients can be written as

Rkj ¼ jRkjjeiθðRkjÞ; θðRkjÞ ¼
�
0; if Rkj > 0

π; if Rkj < 0
: ðA11Þ

The equations in the systems of Eq. (A10) can then be written as

jhxkjfhije�iψ ðhÞ
xk ¼ jRxx

kj jjhhjjfhije�i½θðRxx
kj Þþψh�

jhxkjfvije�iψ ðvÞ
xk ¼ jRxy

kj jjhvjjfvije�i½θðRxy
kj Þþψv�;

jhykjfhije�iψ ðhÞ
yk ¼ jRyx

kj jjhhjjfhije�i½θðRyx
kj Þþψh�

jhykjfvije�iψ ðvÞ
yk ¼ jRyy

kj jjhvjjfvije�i½θðRyy
kj Þþψv�.

ðA12Þ

For the above equations to be simultaneously valid (i.e., irrespective of the sign in the exponential term) BPM phases ψ ðh;vÞ
x;y

and steerer phases ψh;v must satisfy the following relations

ψ ðhÞ
xk − ψh ¼ θðRxx

kj Þ
ψ ðvÞ
xk − ψv ¼ θðRxy

kj Þ;
ψ ðhÞ
yk − ψh ¼ θðRyx

kj Þ
ψ ðvÞ
yk − ψv ¼ θðRyy

kj Þ.
ðA13Þ
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The sign of any ORM coefficient can be then replaced by the difference between BPM and steerer phase. By combining
Eqs (A11)–(A13) the following expressions for the ORM element can be derived

Rxx
kj ¼

Sfhxkjfhig
ĥj

Rxy
kj ¼

Sfhxkjfvig
v̂j

;

Ryx
kj ¼

Sfhykjfhig
ĥj

Ryy
kj ¼

Sfhykjfvig
v̂j

;

ðA14Þ

where ĥj ¼ jhhjjfhij and v̂j ¼ jhvjjfvij are the steerer amplitudes introduced in Eq. (A4) and the signed amplitudes S are
defined as

Sfhxkjfhig ¼ jhxkjfhijsgnfcosðψ ðhÞ
xk − ψhÞg

Sfhxkjfvig ¼ jhxkjfvijsgnfcosðψ ðvÞ
xk − ψvÞg;

Sfhykjfhig ¼ jhykjfhijsgnfcosðψ ðhÞ
yk − ψhÞg

Sfhykjfvig ¼ jhykjfvijsgnfcosðψ ðvÞ
yk − ψvÞg.

ðA15Þ

Since the argument within the cosine terms are either 0 or π, the sign of S is either positive or negative. While BPM amplitudes

jhx; yjfh;vij and phases ψ ðh;vÞ
x;y are direct observables from the harmonic analysis of FA data, the steerer phases ψh;v are not.

Nevertheless they can be inferred from the BPM phases by making use of Eqs. (A11) and (A13), since

ψ ðhÞ
xk ¼ n1π þ ψh

ψ ðvÞ
xk ¼ n2π þ ψv

ψ ðhÞ
yk ¼ n3π þ ψh

ψ ðvÞ
yk ¼ n4π þ ψv

⇒

2ψ ðhÞ
xk ¼ 2n1π þ 2ψh

2ψ ðvÞ
xk ¼ 2n2π þ 2ψv

2ψ ðhÞ
yk ¼ 2n3π þ 2ψh

2ψ ðvÞ
yk ¼ 2n4π þ 2ψv;

⇒

ψh ¼
1

2
mod ð2ψ ðhÞ

xk ; 2πÞ

ψv ¼
1

2
mod ð2ψ ðvÞ

xk ; 2πÞ

ψh ¼
1

2
mod ð2ψ ðhÞ

yk ; 2πÞ

ψv ¼
1

2
mod ð2ψ ðvÞ

yk ; 2πÞ;

ðA16Þ

where n1;2;3 are either 0 or 1 according to the sign of the corresponding ORM coefficient. The last system in the above equation
indicates that the steerer phase can be retrieved from the BPM reading in both planes and that it must be the same at all BPMs.
This allows to average over the two planes and among all N BPMs, namely

with large coupling∶

ψh ¼
1

4N

XN

k¼1

½mod ð2ψ ðhÞ
xk ; 2πÞ þmod ð2ψ ðhÞ

yk ; 2πÞ�

ψv ¼
1

4N

XN

k¼1

½mod ð2ψ ðvÞ
yk ; 2πÞ þmod ð2ψ ðvÞ

xk ; 2πÞ�;

with ultra − low coupling∶

ψh ¼
1

2N

XN

k¼1

mod ð2ψ ðhÞ
xk ; 2πÞ

ψv ¼
1

2N

XN

k¼1

mod ð2ψ ðvÞ
yk ; 2πÞ;

ðA17Þ

The steerer phase ψh;v is hence measurable and so are the signed amplitudes S of Eq. (A15). The choice of using either
the first or the second set of equations above may depend on the amount of coupling in the machine. Indeed the phases

ψ ðhÞ
yk and ψ ðvÞ

xk originate from the BPM signal in the plane orthogonal to the excitation: With ultralow coupling the
measurement of that weak signal may be corrupted by noise and other sources, hence reducing accuracy and precision
in evaluating the steerer phases.
Once the steerer phases are computed, the first system of Eq. (A16) can be used to asses the quality of the data: The

smaller the deviation from nπ of the difference between BPM and steerer phase, the more robust is the analysis.
With both S and ψh;v computed from observable BPM data, we can go back to Eq. (A9), substitute the ORM coefficients

with Eq. (A14) and evaluate the latter for the BPM l closest to the quadrupole under study:

x0l ¼ ℜfhxlj0ig þ SfhxljfhigMh þ SfhxljfvigMv

y0l ¼ ℜfhylj0ig þ SfhyljfvigMv þ SfhyljfhigMh;

Mh ¼
h0j
ĥj

Mv ¼
v0j
v̂j

;
ðA18Þ
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where the coefficientsM are observable and depend on the magnet under study and on the type of its variation (either dc or
ac). The formulas in Eq. (A18) are the core of the FBBA. In the next sections, explicit expressions for the coefficients M
will be derived for normal and skew quadrupoles, both with dc and ac excitation.
It is worthwhile noticing that the second terms in the r.h.s. of Eq. (A18) scale with Sfhxljfhig and Sfhyljfvig,

respectively, i.e., with the beam response to the excitation in the corresponding plane: These are the leading terms along
with the dc beam responses ℜfhxlj0ig and ℜfhylj0ig. The last terms scale instead with Sfhxljfvig and Sfhyljfhig,
respectively, i.e., with the beam response in the plane orthogonal to the steerer excitation: This in turn scales with (and
account for) betatron coupling in the machine and could be ignored in machines operating at ultralow coupling, where
jhxljfvij=jhxljfhij; jhyljfhij=jhyljfvij ≈ 0.1%. In order to have the same measurement sensitivity in both planes, OCMs
shall be chosen so to have jMhj ≃ jMvj.

2. Coefficients M for a dc quadrupole

In this section we derive the coefficientsM for the case of a quadrupole, either normal, skew or partially rotated, whose
strength is varied at least one time and the BPM modes measured each time. By doing so, the dc modes of Eq. (A9) during
the quadrupole scan read

x0k ¼ ℜfhxk1j0ig þ Rxx
kj1h0j þ Rxy

kj1v0j

x0k ¼ ℜfhxk2j0ig þ Rxx
kj2h0j þ Rxy

kj2v0j;

y0k ¼ ℜfhyk1j0ig þ Ryx
kj1h0j þ Ryy

kj1v0j

y0k ¼ ℜfhyk2j0ig þ Ryx
kj2h0j þ Ryy

kj2v0j;
ðA19Þ

where the labels 1 and 2 refer to the quadrupole current I0 − ΔI and to I0 þ ΔI, respectively. While varying the quadrupole
strength, neither the BPM readings centering the magnet (x0k, y

0
k) nor the dc steerer strengths (ĥj, v̂j) changes (hypothesis n.

3). The difference between the two equations in the above two systems then reads

ℜfhxk2j0ig −ℜfhxk1j0ig ¼ ðRxx
kj1 − Rxx

kj2Þh0j þ ðRxy
kj1 − Rxy

kj2Þv0j
ℜfhyk2j0ig −ℜfhyk1j0ig ¼ ðRyy

kj1 − Ryy
kj2Þv0j þ ðRyx

kj1 − Ryx
kj2Þh0j: ðA20Þ

None of the quantities in the r.h.s. of the above equations is actually observable. Nevertheless, by diving h0j by ĥj and v0j by
v̂j and applying Eqs. (A14) and (A18), the rhs are rewritten in terms of the coefficients M and of the observable signed
amplitudes S, namely

ℜfhxk2j0ig −ℜfhxk1j0ig ¼ ðSfhxk1jfhig − Sfhxk2jfhigÞMh þ ðSfhxk1jfvig − Sfhxk2jfvigÞMv

ℜfhyk2j0ig −ℜfhyk1j0ig ¼ ðSfhyk1jfhig − Sfhyk2jfhigÞMh þ ðSfhyk1jfvig − Sfhyk2jfvigÞMv: ðA21Þ

By defining the following observable parameters, all computed from the harmonic analysis of BPM data before and
after varying the quadrupole strength

Dx ¼ ℜfhxk2j0ig −ℜfhxk1j0ig
Dy ¼ ℜfhyk2j0ig −ℜfhyk1j0ig
Dxh ¼ Sfhxk2jfhig − Sfhxk1jfhig
Dyv ¼ Sfhyk2jfvig − Sfhyk1jfvig
Dxv ¼ Sfhxk2jfhig − Sfhxk1jfhig
Dyh ¼ Sfhyk2jfhig − Sfhyk1jfhig; ðA22Þ

Cramer’s rule can be used to invert the system of Eq. (A21), yielding
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Mh ¼ −
DxDyv −DxvDy

DxhDyv −DxvDyh
¼ Yhk

Xhk

Mv ¼ −
DxhDy −DxDyh

DxhDyv −DxvDyh
¼ Yvk

Xvk
: ðA23Þ

In principle M can be evaluated at every BPM k and averaged over all monitors to obtain a more precise value.
However, the denominator in Eq. (A23) can be very small, hence risking to spoil the final result. To overcome this
difficulty it was found to be more convenient to evaluate the above denominator X and numerator Y at all BPMs and to
infer the coefficients M from the slope of their linear fit Yhk ¼ MhXhk and Yvk ¼ MvXvk.

3. Coefficients M for an ac quadrupole

In this section we derive the coefficientsM for the case of a quadrupole, either normal, skew or partially rotated, whose
strength is varied continuously via an ac (harmonic) excitation during the modulation of the OCMs. This reduces the
measurement time by a factor two, since the measurement does not need to be repeated for two (dc) values of the quadrupole
strengths. However, this approach requires a more complex mathematical derivation, since the starting point of Eq. (A1)
can no longer be used and a more general formalism needs to be deployed. In presence of an ac quadrupole modulation
Eq. (A1) reads

xkðtnÞ − x0k ¼ ðRxx
kj þ ρxxkj ðtnÞÞðhjðtnÞ − h0jÞ þ ðRxy

kj þ ρxykj ðtnÞÞðvjðtnÞ − v0jÞ;
ykðtnÞ − y0k ¼ ðRyy

kj þ ρyykj ðtnÞÞðvjðtnÞ − v0jÞ þ ðRyx
kj þ ρyxkj ðtnÞÞðhjðtnÞ − h0jÞ; ðA24Þ

where ρðtnÞ ¼ ρ̂ cos ð2πfstn þ ψ sÞ is the ac variation of the ORM coefficients induced by the quadrupole excitation at
(known) frequency fs and where ρðtnÞ ¼ ρ̂ cos ð2πfstn þ ψ sÞ is the ac variation of the ORM coefficients induced by the
quadrupole excitation at (known) frequency fs and phase ψ s (unknown a priori but measurable from BPM data as shown
later). As for the dc case, both on-diagonal ORM blocks (ρxx, ρyy) and off-diagonal (ρxy, ρxy) are let varying in order to
account for any possible quadrupole rotation. The terms that do not include ρðtnÞ in the above r.h.s. are the same of the dc
case studied so far and excite three modes: m ¼ 0 (fm ¼ 0), m ¼ 1 (fm ¼ fh) and m ¼ 2 (fm ¼ fv). The new ac terms
generate five additional modes in the recorded orbit. The horizontal ac quadrupole terms can indeed be rewritten as

ρ̂xxkj cosð2πfstn þ ψ sÞðhjðtnÞ − h0jÞ ¼ ℜfρ̂xxkj eiðmkjπþψsÞei2πfstng
�
1

2
ðhhjjfhiei2πfhtn þ c:c:Þ − h0j

�

¼ 1

4
ðhρxxkj jfsiei2πfstn þ c:c:Þðhhjjfhiei2πfhtn − h0j þ c:c:Þ

¼ 1

4
hρxxkj jfsihhjjfhiei2πðfhþfsÞtn þ 1

4
hρxxkj jfsi�hhjjfhiei2πðfh−fsÞtn

−
h0j
2

hρxxkj jfsiei2πfstn þ c:c:;

ρ̂xykj cosð2πfstn þ ψ sÞðvjðtnÞ − v0jÞ ¼ ℜfρ̂xykj eiðnkjπþψ sÞei2πfstng
�
1

2
ðhvjjfviei2πfvtn þ c:c:Þ − v0j

�

¼ 1

4
ðhρxykj jfsiei2πfstn þ c:c:Þðhvjjfviei2πfvtn − v0j þ c:c:Þ

¼ 1

4
hρxykj jfsihvjjfviei2πðfvþfsÞtn þ 1

4
hρxykj jfsi�hvjjfviei2πðfv−fsÞtn

−
v0j
2

hρxykj jfsiei2πfstn þ c:c:; ðA25Þ

where c.c. denotes as usual the complex conjugate, hρxxkj jfsi ¼ ρ̂xxkj e
iðmkjπþψ sÞ, hρxykj jfsi ¼ ρ̂xykj e

iðnkjπþψ sÞ. The amplitude of
the ORM modulation ρ̂kj depends on the maximum ac modulation imparted by the quadrupole and is always positive.
In order to account for a change in the sign of the ac ORM coefficients along the ring, which depend on the BPM k and
steerer j, the integer numbers mkj and nkj are introduced in the corresponding phase terms. The five additional
horizontal orbit modes oscillate then at the frequencies ðfh � fsÞ, ðfv � fsÞ and fs. The ac OCM terms hjðtnÞ and
vjðtnÞ is expanded as in Eq. (A4), whereas the BPM reading xkðtnÞ is the same of Eq (A2) with the sum now running
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over eight indices m ¼ 0; 1;…; 7. The first three are the same of Eq. (A6), whereas the additional five stem from
Eq. (A25) and read

1

2
ðhxkjfh þ fsiei2πðfhþfsÞtn þ c:c:Þ ¼ 1

4
hρxxkj jfsihvjjfhiei2πðfhþfsÞtn þ c:c:; ðm ¼ 3Þ

1

2
ðhxkjfh − fsiei2πðfh−fsÞtn þ c:c:Þ ¼ 1

4
hρxxkj jfsi�hhjjfhiei2πðfh−fsÞtn þ c:c:; ðm ¼ 4Þ

1

2
ðhxkjfv þ fsiei2πðfvþfsÞtn þ c:c:Þ ¼ 1

4
hρxykj jfsihvjjfviei2πðfvþfsÞtn þ c:c:; ðm ¼ 5Þ

1

2
ðhxkjfv − fsiei2πðfv−fsÞtn þ c:c:Þ ¼ 1

4
hρxykj jfsi�hvjjfviei2πðfv−fsÞtn þ c:c:; ðm ¼ 6Þ

1

2
ðhxkjfsiei2πfstn þ c:c:Þ ¼ −

1

2
ðh0jhρxxkj jfsi þ v0jhρxykj jfsiÞei2πfstn þ c:c:; ðm ¼ 7Þ; ðA26Þ

Once again, the above relations must hold at any time. This implies that all factors in front of the phasors ei2πftn of both
hand sides must be equal. The following systems of equations are then obtained

hxkjfh þ fsi ¼ 1
2
hρxxkj jfsihhjjfhi

hxkjfh − fsi ¼ 1
2
hρxxkj jfsi�hhjjfhi

hxkjfv þ fsi ¼ 1
2
hρxykj jfsihvjjfvi

hxkjfv − fsi ¼ 1
2
hρxykj jfsi�hvjjfvi

hxkjfsi ¼ −v0jhρxykj jfsi − h0jhρxxkj jfsi;

hxkjfh þ fsi� ¼ 1
2
hρxxkj jfsi�hhjjfhi�

hxkjfh − fsi� ¼ 1
2
hρxxkj jfsihhjjfhi�

hxkjfv þ fsi� ¼ 1
2
hρxykj jfsi�hvjjfvi�

hxkjfv − fsi� ¼ 1
2
hρxykj jfsihvjjfvi�

hxkjfsi� ¼ −v0jhρxykj jfsi� − h0jhρxxkj jfsi�;

which, after some algebra, can be compacted as

jhxkjfh þ fsije�iðψ ðhþsÞ
xk

−ψ s−ψhÞ ¼ 1

2
ρ̂xxkj ĥje

�imkjπ

jhxkjfh − fsije�iðψ ðh−sÞ
xk

þψ s−ψhÞ ¼ 1

2
ρ̂xxkj ĥje

∓imkjπ

jhxkjfv þ fsije�iðψ ðvþsÞ
xk

−ψs−ψvÞ ¼ 1

2
ρ̂xykj v̂je

�inkjπ

jhxkjfv − fsije�iðψ ðv−sÞ
xk

þψs−ψvÞ ¼ 1

2
ρ̂xykj v̂je

∓inkjπ

jhxkjfsije�iðψ ðsÞ
xk
−ψ sÞ ¼ −v0jρ̂

xy
kj e

�inkjπ − h0jρ̂xxkj e
�imkjπ: ðA27Þ

ψ ðh�sÞ
xk , ψ ðv�sÞ

xk and ψ ðsÞ
xk denote the observable phases of the new BPM modes, whereas ψh and ψv are the steerer phases

measurable from the BPM data via Eq. (A17). The phase of the ac quadrupole modulation ψ s is still unknown, though
formulas to infer it from BPM data will be given at the end of this section. Once again, for the above equations to be
simultaneously valid (i.e., irrespective of the sign in the exponential term) the following relations between the different
phases must hold

ψ ðhþsÞ
xk − ψ s − ψh ¼ mkjπ

ψ ðh−sÞ
xk þ ψ s − ψh ¼ −mkjπ

ψ ðvþsÞ
xk − ψ s − ψv ¼ nkjπ

ψ ðv−sÞ
xk þ ψ s − ψv ¼ −nkjπ

ψ ðsÞ
xk − ψ s ¼ okjπ; ðA28Þ
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which make both sides in all five equations of the system in Eq. (A27) be real quantities. The (unknown) integer okj is
introduced in the last equation in order to account for the sign of its r.h.s.. The signed amplitude S can be again
introduced as

Sfhxkjfhþfsig¼jhxkjfhþfsijsgnfcosðψ ðhþsÞ
xk −ψ s−ψhÞg

Sfhxkjfh−fsig¼jhxkjfh−fsijsgnfcosðψ ðh−sÞ
xk þψ s−ψhÞg

Sfhxkjfvþfsig¼jhxkjfvþfsijsgnfcosðψ ðvþsÞ
xk −ψ s−ψvÞg

Sfhxkjfv−fsig¼jhxkjfv−fsijsgnfcosðψ ðv−sÞ
xk þψ s−ψvÞg

Sfhxkjfsig¼jhxkjfsijsgnfcosðψ ðsÞ
xk −ψ sÞg; ðA29Þ

With the above definition, the system of Eq. (A27) can be rewritten as

Sfhxkjfh þ fsig ¼ 1

2
ρ̂xxkj ĥje

imkjπ

Sfhxkjfh − fsig ¼ 1

2
ρ̂xxkj ĥje

imkjπ

Sfhxkjfv þ fsig ¼ 1

2
ρ̂xykj v̂je

inkjπ

Sfhxkjfv − fsig ¼ 1

2
ρ̂xykj v̂je

inkjπ

Sfhxkjfsig ¼ −v0jρ̂
xy
kj e

inkjπ − h0jρ̂xxkj e
imkjπ; ðA30Þ

where we have removed the � sings since eimkjπ ¼ e−imkjπ . Notice that the projections at ðfh � fsÞ and ðfv � fsÞ
generate the same r.h.s in Eq. (A30), but we use them both in order to improve the overall signal to noise ratio. The
sum between the equations in the system of Eq. (A27) reads

Sfhxkjfsig ¼ −ðSfhxkjfv þ fsigþSfhxkjfv − fsigÞ
v0j
v̂j

− ðSfhxkjfh þ fsigþSfhxkjfh − fsigÞ
h0j
ĥj

: ðA31Þ

An equivalent analysis of the vertical signal of Eq. (A24) leads to

Sfhykjfsig ¼ −ðSfhykjfv þ fsigþSfhykjfv − fsigÞ
v0j
v̂j

− ðSfhykjfh þ fsigþSfhykjfh − fsigÞ
h0j
ĥj

: ðA32Þ

Equations (A31) and (A32) can be cast in a linear system equivalent to the one of the dc case, where the unknown
coefficients Mh ¼ h0j=ĥj and Mv ¼ v0j=v̂j appear:

−Dx ¼ DxhMh þDxvMv

−Dy ¼ DyhMh þDyvMv: ðA33Þ

where the auxiliary observable terms D read
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Dx ¼ Sfhxkjfsig
Dy ¼ Sfhykjfsig
Dxh ¼ Sfhxkjfh þ fsig þ Sfhxkjfh − fsig
Dyv ¼ Sfhykjfv þ fsig þ Sfhykjfv − fsig
Dxv ¼ Sfhxkjfv þ fsig þ Sfhxkjfv − fsig
Dyh ¼ Sfhykjfh þ fsig þ Sfhykjfh − fsig: ðA34Þ

Once again, Cramer’s rule can be used to invert the system of Eq. (A33), yielding

Mh ¼ −
DxDyv −DxvDy

DxhDyv −DxvDyh
¼ Yhk

Xhk

Mv ¼ −
DxhDy −DxDyh

DxhDyv −DxvDyh
¼ Yvk

Xvk
: ðA35Þ

Once again, the coefficientsM can be inferred from the slope of their linear fit Yhk ¼ MhXhk and Yvk ¼ MvXvk, with Y
and X evaluated at all BPMs.
In order for the elementMh;v to be observable one step is actually missing. The signed amplitudes S of Eq. (A29) depend

on: (i) measurable amplitude and phase of BPM modes, fhzjfqig and ψ ðqÞ
z , where z is either x or y and q denotes a generic

mode; (ii) the steerer phases ψh and ψv, which are measurable from the BPM data via Eq. (A17); (iii) the quadrupole phase
ψ s, which is yet unknown. The latter can be however inferred from the all other phases by means of Eq. (A28), since

ψ s ¼ ψ ðhþsÞ
xk − ψv −mkjπ

ψ s ¼ −ψ ðh−sÞ
xk þ ψv þmkjπ

ψ s ¼ ψ ðvþsÞ
xk − ψv − nkjπ

ψ s ¼ −ψ ðv−sÞ
xk þ ψv þ nkjπ

ψ s ¼ ψ ðsÞ
xk − okjπ;

ψ s ¼ ψ ðvþsÞ
yk − ψh − pkjπ

ψ s ¼ −ψ ðv−sÞ
yk þ ψh þ pkjπ

ψ s ¼ ψ ðhþsÞ
yk − ψh − qkjπ

ψ s ¼ −ψ ðh−sÞ
yk þ ψh þ qkjπ

ψ s ¼ ψ ðsÞ
yk − rkjπ;

ðA36Þ

where the second system is derived from the same analysis in the vertical plane. None of the integer number (mkj, nkj, okj,
pkj, qkj and rkj) needs to be evaluated. indeed, by multiplying all above equations by two and taking only the module of 2π,
the following expressions for ψ s are derived

ψ s ¼ mod ð2ψ ðhþsÞ
xk − 2ψh; 2πÞ=2

ψ s ¼ mod ð−2ψ ðh−sÞ
xk þ 2ψh; 2πÞ=2

ψ s ¼ mod ð2ψ ðvþsÞ
xk − 2ψv; 2πÞ=2

ψ s ¼ mod ð−2ψ ðv−sÞ
xk þ 2ψv; 2πÞ=2

ψ s ¼ mod ð2ψ ðsÞ
xk ; 2πÞ=2;

ψ s ¼ mod ð2ψ ðvþsÞ
yk − 2ψv; 2πÞ=2

ψ s ¼ mod ð−2ψ ðv−sÞ
yk þ 2ψv; 2πÞ=2

ψ s ¼ mod ð2ψ ðhþsÞ
yk − 2ψh; 2πÞ=2

ψ s ¼ mod ð−2ψ ðh−sÞ
yk þ 2ψh; 2πÞ=2

ψ s ¼ mod ð2ψ ðsÞ
yk ; 2πÞ=2;

ðA37Þ

The above expressions can be eventually properly averaged among themselves and over all BPMs to increase the final
accuracy.

APPENDIX B: DISCRETE SIGNAL CORRECTED FOURIER COMPONENT

This appendix details the procedure (already discussed in Ref. [14]) to extract the Fourier component at the frequency fm
of a discrete signal xðtnÞ, sampled at equally spaced time intervals tn ¼ nΔt. This harmonic corresponds to the projection of
x on fm, hxjfmi, introduced in Eq. (A2). This being a complex number, calculations will be made explicit for the real and

imaginary parts separately. These are then used to compute the phase ψ ðmÞ
x needed to evaluate the OCM phase ψh via

Eq. (A16). We assume that the signal xðtnÞ contains a set ofNf harmonics at frequencies fm, which are those excited during
the FBBA. The signal can thus be expanded as
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xðtnÞ ¼
XNf

m¼0

Xm cosð2πfmtn þ ψ ðmÞ
x Þ ¼ ℜ

�XNf

m¼0

ðXmeiψ
ðmÞ
x Þei2πfmtn

�

¼ ℜ

�XNf

m¼0

hxjfmiei2πfmtn
�

¼ 1

2

XNf

m¼0

ðhxjfmiei2πfmtn þ hxjfmi�e−i2πfmtnÞ: ðB1Þ

The indexm ¼ 0 is included to account for the dc component too (fm ¼ 0). The first step in computing hxjfmi is to evaluate
the raw Fourier component at a given frequency fr

hxjfriraw ¼ 2

N

XN−1

n¼0

xðtnÞe−2πifrtn ¼
1

N

XN−1

n¼0

XNf

m¼0

ðhxjfmiei2πfmtn þ hxjfmi�e−i2πfmtnÞe−2πifrtn

¼
XNf

m¼0

�
hxjfmi

�
1

N

XN−1

n¼0

e−i2πðfr−fmÞtn
�
þ hxjfmi�

�
1

N

XN−1

n¼0

e−i2πðfrþfmÞtn
��

: ðB2Þ

The signal sampled at 10 kHz implies that tn ¼ nΔt, with Δt ¼ 0.1 ms. N in the above sums represents the length of FA
vector data containing the x signal. The exponential sums within the above parentheses can be written as

XN−1

n¼0

e−inΔt ¼ 1 − e−iNΔt

1 − e−iΔt
⇒ ξ�rm ¼ 1

N

XN−1

n¼0

e−i2πðfr−fmÞtn ¼ 1

N
1 − e−i2πðfr�fmÞNΔt

1 − e−i2πðfr�fmÞΔt : ðB3Þ

The measured raw projection hxjfriraw is then a linear combination of all corrected Fourier projections hxjfmi

hxjfriraw ¼ ξ−rmhxjfmi þ ξþrmhxjfmi� ⇒
�
ℜfhxjfrig
ℑfhxjfrig

�

raw
¼

�
ℜfξþrm þ ξ−rmgℑfξþrm − ξ−rmg
ℑfξþrm þ ξ−rmgℜfξ−rm − ξþrmg

��
ℜfhxjfmig
ℑfhxjfmig

�
: ðB4Þ

The above system is then extended to all Nf raw projections [measured via Eq. (B2)], resulting in a square linear system

hxjfi��!
raw ¼ Chxjfi��!

⇒ hxjfi��! ¼ C−1hxjfi��!
raw ðB5Þ

where both hxjfi��!
and hxjfi��!

raw are vectors of 2Nf elements and C is a 2Nf × 2Nf matrix dependent on all ξ�rm terms. C is
close to the identity matrix, with nonzero off-diagonal elements generated by the finite sampling time Δt and introducing a
cross-talk between all modes. The corrected (i.e., uncoupled) projections hxjfi can be however inferred from the last
(inverted) system of Eq. (B5).
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